aboutsummaryrefslogtreecommitdiffhomepage
path: root/pretyping/evarutil.ml
blob: 6407284be637980f5dcd11a42d8eb0a61dad5be5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

(* $Id$ *)

open Util
open Pp
open Names
open Univ
(* open Generic *)
open Term
open Sign
open Environ
open Evd
open Instantiate
open Reduction
open Indrec
open Pretype_errors

let rec filter_unique = function
  | [] -> []
  | x::l ->
      if List.mem x l then filter_unique (List.filter (fun y -> x<>y) l)
      else x::filter_unique l

let distinct_id_list = 
  let rec drec fresh = function
      [] -> List.rev fresh 
    | id::rest ->
 	let id' = next_ident_away_from id fresh in drec (id'::fresh) rest
  in drec []


(*
let filter_sign p sign x =
  sign_it
    (fun id ty (v,ids,sgn) ->
      let (disc,v') = p v (id,ty) in
      if disc then (v', id::ids, sgn) else (v', ids, add_sign (id,ty) sgn))
    sign
    (x,[],nil_sign)
*)

(*------------------------------------*
 * functional operations on evar sets *
 *------------------------------------*)

(* All ids of sign must be distincts! *)
let new_isevar_sign env sigma typ instance =
  let sign = var_context env in
  if not (list_distinct (ids_of_var_context sign)) then 
    error "new_isevar_sign: two vars have the same name";
  let newev = Evd.new_evar() in
  let info = { evar_concl = typ; evar_env = env; 
	       evar_body = Evar_empty; evar_info = None } in
  (Evd.add sigma newev info, mkEvar (newev,Array.of_list instance))

(* We don't try to guess in which sort the type should be defined, since
   any type has type Type. May cause some trouble, but not so far... *)
let dummy_sort = mkType dummy_univ

let make_instance env =
  fold_var_context
    (fun env (id, b, _) l -> if b=None then mkVar id :: l else l)
    env []

(* Declaring any type to be in the sort Type shouldn't be harmful since
   cumulativity now includes Prop and Set in Type. *)
let new_type_var env sigma =
  let instance = make_instance env in
  let (sigma',c) = new_isevar_sign env sigma dummy_sort instance in
  (sigma', c)

let split_evar_to_arrow sigma c =
  let (ev,args) = destEvar c in
  let evd = Evd.map sigma ev in
  let evenv = evd.evar_env in
  let (sigma1,dom) = new_type_var evenv sigma in
  let hyps = var_context evenv in
  let nvar = next_ident_away (id_of_string "x") (ids_of_var_context hyps) in
  let newenv = push_var_decl (nvar,make_typed dom (Type dummy_univ)) evenv in
  let (sigma2,rng) = new_type_var newenv sigma1 in
  let prod = mkProd (named_hd newenv dom Anonymous, dom, subst_var nvar rng) in
  let sigma3 = Evd.define sigma2 ev prod in
  let dsp = num_of_evar dom in
  let rsp = num_of_evar rng in
  (sigma3,
   mkEvar (dsp,args),
   mkEvar (rsp, array_cons (mkRel 1) (Array.map (lift 1) args)))


(* Redefines an evar with a smaller context (i.e. it may depend on less
 * variables) such that c becomes closed.
 * Example: in [x:?1; y:(list ?2)] <?3>x=y /\ x=(nil bool)
 * ?3 <-- ?1          no pb: env of ?3 is larger than ?1's
 * ?1 <-- (list ?2)   pb: ?2 may depend on x, but not ?1.
 * What we do is that ?2 is defined by a new evar ?4 whose context will be
 * a prefix of ?2's env, included in ?1's env. *)

let do_restrict_hyps sigma c =
  let (ev,args) = destEvar c in
  let args = Array.to_list args in
  let evd = Evd.map sigma ev in
  let env = evd.evar_env in
  let hyps = var_context env in
  let (_,(rsign,ncargs)) =
    List.fold_left 
      (fun (sign,(rs,na)) a ->
	 (List.tl sign,
	  if not(closed0 a) then 
	    (rs,na)
	  else 
	    (add_var (List.hd sign) rs, a::na)))
      (hyps,([],[])) args 
  in
  let sign' = List.rev rsign in
  let env' = change_hyps (fun _ -> sign') env in
  let instance = make_instance env' in
  let (sigma',nc) = new_isevar_sign env' sigma evd.evar_concl instance in
  let sigma'' = Evd.define sigma' ev nc in
  (sigma'', nc)




(*------------------------------------*
 * operations on the evar constraints *
 *------------------------------------*)

type 'a evar_defs = 'a Evd.evar_map ref

(* ise_try [f1;...;fn] tries fi() for i=1..n, restoring the evar constraints
 * when fi returns false or an exception. Returns true if one of the fi
 * returns true, and false if every fi return false (in the latter case,
 * the evar constraints are restored).
 *)
let ise_try isevars l =
  let u = !isevars in
  let rec test = function
      [] -> isevars := u; false
    | f::l ->
 	  (try f() with reraise -> isevars := u; raise reraise)
       or (isevars := u; test l)
  in test l



(* say if the section path sp corresponds to an existential *)
let ise_in_dom isevars sp = Evd.in_dom !isevars sp

(* map the given section path to the evar_declaration *)
let ise_map isevars sp = Evd.map !isevars sp

(* define the existential of section path sp as the constr body *)
let ise_define isevars sp body = isevars := Evd.define !isevars sp body

(* Does k corresponds to an (un)defined existential ? *)
let ise_undefined isevars c = match kind_of_term c with
  | IsEvar (n,_) -> not (Evd.is_defined !isevars n)
  | _ -> false

let ise_defined isevars c = match kind_of_term c with
  | IsEvar (n,_) -> Evd.is_defined !isevars n
  | _ -> false

let restrict_hyps isevars c =
  if ise_undefined isevars c & not (closed0 c) then begin
    let (sigma,rc) = do_restrict_hyps !isevars c in
    isevars := sigma;
    rc
  end else 
    c

let has_ise sigma t = 
  try let _ = whd_ise sigma t in false
  with Uninstantiated_evar _ -> true

(* We try to instanciate the evar assuming the body won't depend
 * on arguments that are not Rels or Vars, or appearing several times.
 *)
(* Note: error_not_clean should not be an error: it simply means that the
 * conversion test that lead to the faulty call to [real_clean] should return
 * false. The problem is that we won't get the right error message.
 *)

let real_clean isevars sp args rhs =
  let subst = List.map (fun (x,y) -> (y,mkVar x)) (filter_unique args) in
  let rec subs k t =
    match kind_of_term t with
      |IsRel i ->
 	 if i<=k then t
 	 else (try List.assoc (mkRel (i-k)) subst with Not_found -> t)
      | IsVar _ -> (try List.assoc t subst with Not_found -> t)
      | _ -> map_constr_with_binders succ subs k t
  in
  let body = subs 0 rhs in
  (* if not (closed0 body) then error_not_clean CCI empty_env sp body; *)
  body

let make_instance_with_rel env =
  let n = rel_context_length (rel_context env) in
  let vars = 
    fold_var_context
      (fun env (id,b,_) l -> if b=None then mkVar id :: l else l)
      env [] in
  snd (fold_rel_context
    (fun env (_,b,_) (i,l) -> (i-1, if b=None then mkRel i :: l else l))
    env (n+1,vars))

let make_subst env args =
  snd (fold_var_context
    (fun env (id,b,c) (args,l as g) ->
       match b, args with
	 | None, a::rest -> (rest, (id,a)::l)
	 | Some _, _ -> g
	 | _ -> anomaly "Instance does not match its signature")
    env (List.rev args,[]))

(* [new_isevar] declares a new existential in an env env with type typ *)
(* Converting the env into the sign of the evar to define *)

let new_isevar isevars env typ k =
  let subst,env' = push_rels_to_vars env in
  let typ' = substl subst typ in
  let instance = make_instance_with_rel env in
  let (sigma',evar) = new_isevar_sign env' !isevars typ' instance in
  isevars := sigma';
  evar

(* [evar_define] solves the problem lhs = rhs when lhs is an uninstantiated
 * evar, i.e. tries to find the body ?sp for lhs=mkEvar (sp,args)
 * ?sp [ sp.hyps \ args ]  unifies to rhs
 * ?sp must be a closed term, not referring to itself.
 * Not so trivial because some terms of args may be terms that are not
 * variables. In this case, the non-var-or-Rels arguments are replaced
 * by <implicit>. [clean_rhs] will ignore this part of the subtitution. 
 * This leads to incompleteness (we don't deal with pbs that require
 * inference of dependent types), but it seems sensible.
 *
 * If after cleaning, some free vars still occur, the function [restrict_hyps]
 * tries to narrow the env of the evars that depend on Rels.
 *
 * If after that free Rels still occur it means that the instantiation
 * cannot be done, as in  [x:?1; y:nat; z:(le y y)] x=z
 * ?1 would be instantiated by (le y y) but y is not in the scope of ?1
 *)

let keep_rels_and_vars c = match kind_of_term c with
  | IsVar _ | IsRel _ -> c
  | _ -> mkImplicit   (* Mettre mkMeta ?? *)

let evar_define isevars lhs rhs =
  let (ev,argsv) = destEvar lhs in
  if occur_evar ev rhs then error_occur_check CCI empty_env ev rhs;
  let args = List.map keep_rels_and_vars (Array.to_list argsv) in 
  let evd = ise_map isevars ev in
  (* the substitution to invert *)
  let worklist = make_subst evd.evar_env args in
  let body = real_clean isevars ev worklist rhs in
  ise_define isevars ev body;
  [ev]



(* Solve pbs (?i x1..xn) = (?i y1..yn) which arises often in fixpoint
 * definitions. We try to unify the xi with the yi pairwise. The pairs
 * that don't unify are discarded (i.e. ?i is redefined so that it does not
 * depend on these args). *)

let solve_refl conv_algo isevars c1 c2 =
  let (ev,argsv1) = destEvar c1
  and (_,argsv2) = destEvar c2 in
  let evd = Evd.map !isevars ev in
  let env = evd.evar_env in
  let hyps = var_context env in
  let (_,rsign) = 
    array_fold_left2
      (fun (sgn,rsgn) a1 a2 ->
	 if conv_algo a1 a2 then 
	   (List.tl sgn, add_var (List.hd sgn) rsgn)
	 else 
	   (List.tl  sgn, rsgn))
      (hyps,[]) argsv1 argsv2 
  in
  let nsign = List.rev rsign in
  let nenv = change_hyps (fun _ -> nsign) env in
  let nargs = (Array.of_list (List.map mkVar (ids_of_var_context nsign))) in
  let newev = Evd.new_evar () in
  let info = { evar_concl = evd.evar_concl; evar_env = nenv;
	       evar_body = Evar_empty; evar_info = None } in
  isevars :=
    Evd.define (Evd.add !isevars newev info) ev (mkEvar (newev,nargs));
  Some [ev]


(* Tries to solve problem t1 = t2.
 * Precondition: one of t1,t2 is an uninstanciated evar, possibly
 * applied to arguments.
 * Returns an optional list of evars that were instantiated, or None
 * if the problem couldn't be solved. *)

(* Rq: uncomplete algorithm if pbty = CONV_X_LEQ ! *)
let rec solve_simple_eqn conv_algo isevars ((pbty,t1,t2) as pb) =
  let t1 = nf_ise1 !isevars t1 in
  let t2 = nf_ise1 !isevars t2 in
  if eq_constr t1 t2 then 
    Some []
  else 
    match (ise_undefined isevars t1, ise_undefined isevars t2) with
      | (true,true) ->
	  if num_of_evar t1 = num_of_evar t2 then 
	    solve_refl conv_algo isevars t1 t2
	  else if Array.length(snd (destEvar t1)) < 
	          Array.length(snd (destEvar t2)) then 
	    Some (evar_define isevars t2 t1)
	  else 
	    Some (evar_define isevars t1 t2)
      | (true,false) -> Some (evar_define isevars t1 t2)
      | (false,true) -> Some (evar_define isevars t2 t1)
      | _ -> None

(*-------------------*)
(* Now several auxiliary functions for the conversion algorithms modulo
 * evars. used in trad and progmach
 *)


let has_undefined_isevars isevars c =
  let rec hasrec k = match splay_constr k with
    | OpEvar ev, cl when ise_in_dom isevars ev ->
	if ise_defined isevars k then 
	  hasrec (existential_value !isevars (ev,cl))
	else
	  failwith "caught"
    | _, cl -> Array.iter hasrec cl
  in 
  (try (hasrec c ; false) with Failure "caught" -> true)

let head_is_exist isevars = 
  let rec hrec k = match kind_of_term k with
    | IsEvar _     -> ise_undefined isevars k
    | IsAppL (f,_) -> hrec f
    | IsCast (c,_) -> hrec c
    | _ -> false
  in 
  hrec 

let rec is_eliminator c = match kind_of_term c with
  | IsAppL _    -> true
  | IsMutCase _ -> true
  | IsCast (c,_) -> is_eliminator c
  | _ -> false

let head_is_embedded_exist isevars c =
  (head_is_exist isevars c) & (is_eliminator c)

let head_evar = 
  let rec hrec c = match kind_of_term c with
    | IsEvar (ev,_)       -> ev
    | IsMutCase (_,_,c,_) -> hrec c
    | IsAppL (c,_)        -> hrec c
    | IsCast (c,_)        -> hrec c
    | _                   -> failwith "headconstant"
  in 
  hrec 
    
let status_changed lev (pbty,t1,t2) =
  try 
    List.mem (head_evar t1) lev or List.mem (head_evar t2) lev
  with Failure _ ->
    try List.mem (head_evar t2) lev with Failure _ -> false

(* Operations on value/type constraints used in trad and progmach *)

type type_constraint = constr option
type val_constraint = constr option

(* Old comment...
 * Basically, we have the following kind of constraints (in increasing
 * strength order):
 *   (false,(None,None)) -> no constraint at all
 *   (true,(None,None))  -> we must build a judgement which _TYPE is a kind
 *   (_,(None,Some ty))  -> we must build a judgement which _TYPE is ty
 *   (_,(Some v,_))      -> we must build a judgement which _VAL is v
 * Maybe a concrete datatype would be easier to understand.
 * We differentiate (true,(None,None)) from (_,(None,Some Type))
 * because otherwise Case(s) would be misled, as in
 * (n:nat) Case n of bool [_]nat end  would infer the predicate Type instead
 * of Set.
 *)

(* The empty type constraint *)
let empty_tycon = None

(* Builds a type constraint *)
let mk_tycon ty = Some ty

(* Constrains the value of a type *)
let empty_valcon = None

(* Builds a value constraint *)
let mk_valcon c = Some c

(* Propagation of constraints through application and abstraction:
   Given a type constraint on a functional term, returns the type
   constraint on its domain and codomain. If the input constraint is
   an evar instantiate it with the product of 2 new evars. *)

let split_tycon loc env isevars = function
  | None -> None,None
  | Some c ->
      let t = whd_betadeltaiota env !isevars c in
      match kind_of_term t with
        | IsProd (na,dom,rng) -> Some dom, Some rng
	| _ ->
	    if ise_undefined isevars t then
	      let (sigma,dom,rng) = split_evar_to_arrow !isevars t in
	      isevars := sigma;
	      Some dom, Some rng
	    else
	      Stdpp.raise_with_loc loc
		(Type_errors.TypeError (CCI,env,Type_errors.NotProduct c))

let valcon_of_tycon x = x