1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* $Id$ *)
open Util
open Names
open Term
open Reduction
open Closure
open Instantiate
open Environ
open Typing
open Classops
open Recordops
open Evarutil
type flexible_term = FConst of constant | FRel of int | FVar of identifier
type flex_kind_of_term =
| Rigid of constr
| MaybeFlexible of flexible_term
| Flexible of existential
let flex_kind_of_term c =
match kind_of_term c with
| IsConst c -> MaybeFlexible (FConst c)
| IsRel n -> MaybeFlexible (FRel n)
| IsVar id -> MaybeFlexible (FVar id)
| IsEvar ev -> Flexible ev
| _ -> Rigid c
let eval_flexible_term env = function
| FConst c -> constant_opt_value env c
| FRel n -> option_app (lift n) (lookup_rel_value n env)
| FVar id -> lookup_named_value id env
let evar_apprec env isevars stack c =
let rec aux s =
let (t,stack as s') = Reduction.apprec env (evars_of isevars) s in
match kind_of_term t with
| IsEvar (n,_ as ev) when Evd.is_defined (evars_of isevars) n ->
aux (existential_value (evars_of isevars) ev, stack)
| _ -> (t, list_of_stack stack)
in aux (c, append_stack (Array.of_list stack) empty_stack)
(* Precondition: one of the terms of the pb is an uninstanciated evar,
* possibly applied to arguments. *)
let rec evar_conv_x env isevars pbty term1 term2 =
let sigma = evars_of isevars in
let term1 = whd_castappevar sigma term1 in
let term2 = whd_castappevar sigma term2 in
(*
if eq_constr term1 term2 then
true
else
*)
(* Maybe convertible but since reducing can erase evars which [evar_apprec]*)
(* could have found, we do it only if the terms are free of evar *)
(not (has_undefined_isevars isevars term1) &
not (has_undefined_isevars isevars term2) &
is_fconv pbty env (evars_of isevars) term1 term2)
or
if ise_undefined isevars term1 then
solve_simple_eqn evar_conv_x env isevars (pbty,destEvar term1,term2)
else if ise_undefined isevars term2 then
solve_simple_eqn evar_conv_x env isevars (pbty,destEvar term2,term1)
else
let (t1,l1) = evar_apprec env isevars [] term1 in
let (t2,l2) = evar_apprec env isevars [] term2 in
if (head_is_embedded_evar isevars t1 & not(is_eliminator t2))
or (head_is_embedded_evar isevars t2 & not(is_eliminator t1))
then
(add_conv_pb isevars (pbty,applist(t1,l1),applist(t2,l2)); true)
else
evar_eqappr_x env isevars pbty (t1,l1) (t2,l2)
and evar_eqappr_x env isevars pbty (term1,l1 as appr1) (term2,l2 as appr2) =
(* Evar must be undefined since we have whd_ised *)
match (flex_kind_of_term term1, flex_kind_of_term term2) with
| Flexible (sp1,al1 as ev1), Flexible (sp2,al2 as ev2) ->
let f1 () =
if List.length l1 > List.length l2 then
let (deb1,rest1) = list_chop (List.length l1-List.length l2) l1 in
solve_simple_eqn evar_conv_x env isevars
(pbty,ev2,applist(term1,deb1))
& list_for_all2eq (evar_conv_x env isevars CONV) rest1 l2
else
let (deb2,rest2) = list_chop (List.length l2-List.length l1) l2 in
solve_simple_eqn evar_conv_x env isevars
(pbty,ev1,applist(term2,deb2))
& list_for_all2eq (evar_conv_x env isevars CONV) l1 rest2
and f2 () =
(sp1 = sp2)
& (array_for_all2 (evar_conv_x env isevars CONV) al1 al2)
& (list_for_all2eq (evar_conv_x env isevars CONV) l1 l2)
in
ise_try isevars [f1; f2]
| Flexible ev1, MaybeFlexible flex2 ->
let f1 () =
(List.length l1 <= List.length l2) &
let (deb2,rest2) = list_chop (List.length l2-List.length l1) l2 in
solve_simple_eqn evar_conv_x env isevars
(pbty,ev1,applist(term2,deb2))
& list_for_all2eq (evar_conv_x env isevars CONV) l1 rest2
and f4 () =
match eval_flexible_term env flex2 with
| Some v2 ->
evar_eqappr_x env isevars pbty
appr1 (evar_apprec env isevars l2 v2)
| None -> false
in
ise_try isevars [f1; f4]
| MaybeFlexible flex1, Flexible ev2 ->
let f1 () =
(List.length l2 <= List.length l1) &
let (deb1,rest1) = list_chop (List.length l1-List.length l2) l1 in
solve_simple_eqn evar_conv_x env isevars
(pbty,ev2,applist(term1,deb1))
& list_for_all2eq (evar_conv_x env isevars CONV) rest1 l2
and f4 () =
match eval_flexible_term env flex1 with
| Some v1 ->
evar_eqappr_x env isevars pbty
(evar_apprec env isevars l1 v1) appr2
| None -> false
in
ise_try isevars [f1; f4]
| MaybeFlexible flex1, MaybeFlexible flex2 ->
let f2 () =
(flex1 = flex2)
& (list_for_all2eq (evar_conv_x env isevars CONV) l1 l2)
and f3 () =
(try conv_record env isevars
(try check_conv_record appr1 appr2
with Not_found -> check_conv_record appr2 appr1)
with _ -> false)
and f4 () =
match eval_flexible_term env flex2 with
| Some v2 ->
evar_eqappr_x env isevars pbty
appr1 (evar_apprec env isevars l2 v2)
| None ->
match eval_flexible_term env flex1 with
| Some v1 ->
evar_eqappr_x env isevars pbty
(evar_apprec env isevars l1 v1) appr2
| None -> false
in
ise_try isevars [f2; f3; f4]
| Flexible ev1, Rigid _ ->
(List.length l1 <= List.length l2) &
let (deb2,rest2) = list_chop (List.length l2-List.length l1) l2 in
solve_simple_eqn evar_conv_x env isevars
(pbty,ev1,applist(term2,deb2))
& list_for_all2eq (evar_conv_x env isevars CONV) l1 rest2
| Rigid _, Flexible ev2 ->
(List.length l2 <= List.length l1) &
let (deb1,rest1) = list_chop (List.length l1-List.length l2) l1 in
solve_simple_eqn evar_conv_x env isevars
(pbty,ev2,applist(term1,deb1))
& list_for_all2eq (evar_conv_x env isevars CONV) rest1 l2
| MaybeFlexible flex1, Rigid _ ->
let f3 () =
(try conv_record env isevars (check_conv_record appr1 appr2)
with _ -> false)
and f4 () =
match eval_flexible_term env flex1 with
| Some v1 ->
evar_eqappr_x env isevars pbty
(evar_apprec env isevars l1 v1) appr2
| None -> false
in
ise_try isevars [f3; f4]
| Rigid _ , MaybeFlexible flex2 ->
let f3 () =
(try (conv_record env isevars (check_conv_record appr2 appr1))
with _ -> false)
and f4 () =
match eval_flexible_term env flex2 with
| Some v2 ->
evar_eqappr_x env isevars pbty
appr1 (evar_apprec env isevars l2 v2)
| None -> false
in
ise_try isevars [f3; f4]
| Rigid c1, Rigid c2 -> match kind_of_term c1, kind_of_term c2 with
| IsCast (c1,_), _ -> evar_eqappr_x env isevars pbty (c1,l1) appr2
| _, IsCast (c2,_) -> evar_eqappr_x env isevars pbty appr1 (c2,l2)
| IsSort s1, IsSort s2 when l1=[] & l2=[] -> base_sort_cmp pbty s1 s2
| IsLambda (na,c1,c'1), IsLambda (_,c2,c'2) when l1=[] & l2=[] ->
evar_conv_x env isevars CONV c1 c2
&
(let c = nf_evar (evars_of isevars) c1 in
evar_conv_x (push_rel_assum (na,c) env) isevars CONV c'1 c'2)
| IsLetIn (na,b1,t1,c'1), IsLetIn (_,b2,_,c'2) ->
let f1 () =
evar_conv_x env isevars CONV b1 b2
&
(let b = nf_evar (evars_of isevars) b1 in
let t = nf_evar (evars_of isevars) t1 in
evar_conv_x (push_rel_def (na,b,t) env) isevars pbty c'1 c'2)
& (List.length l1 = List.length l2)
& (List.for_all2 (evar_conv_x env isevars CONV) l1 l2)
and f2 () =
let appr1 = evar_apprec env isevars l1 (subst1 b1 c'1)
and appr2 = evar_apprec env isevars l2 (subst1 b2 c'2)
in evar_eqappr_x env isevars pbty appr1 appr2
in
ise_try isevars [f1; f2]
| IsLetIn (_,b1,_,c'1), _ ->(* On fait commuter les args avec le Let *)
let appr1 = evar_apprec env isevars l1 (subst1 b1 c'1)
in evar_eqappr_x env isevars pbty appr1 appr2
| _, IsLetIn (_,b2,_,c'2) ->
let appr2 = evar_apprec env isevars l2 (subst1 b2 c'2)
in evar_eqappr_x env isevars pbty appr1 appr2
| IsProd (n,c1,c'1), IsProd (_,c2,c'2) when l1=[] & l2=[] ->
evar_conv_x env isevars CONV c1 c2
&
(let c = nf_evar (evars_of isevars) c1 in
evar_conv_x (push_rel_assum (n,c) env) isevars pbty c'1 c'2)
| IsMutInd (sp1,cl1), IsMutInd (sp2,cl2) ->
sp1=sp2
& array_for_all2 (evar_conv_x env isevars CONV) cl1 cl2
& list_for_all2eq (evar_conv_x env isevars CONV) l1 l2
| IsMutConstruct (sp1,cl1), IsMutConstruct (sp2,cl2) ->
sp1=sp2
& array_for_all2 (evar_conv_x env isevars CONV) cl1 cl2
& list_for_all2eq (evar_conv_x env isevars CONV) l1 l2
| IsMutCase (_,p1,c1,cl1), IsMutCase (_,p2,c2,cl2) ->
evar_conv_x env isevars CONV p1 p2
& evar_conv_x env isevars CONV c1 c2
& (array_for_all2 (evar_conv_x env isevars CONV) cl1 cl2)
& (list_for_all2eq (evar_conv_x env isevars CONV) l1 l2)
| IsFix (li1,(_,tys1,bds1 as recdef1)), IsFix (li2,(_,tys2,bds2)) ->
li1=li2
& (array_for_all2 (evar_conv_x env isevars CONV) tys1 tys2)
& (array_for_all2
(evar_conv_x (push_rec_types recdef1 env) isevars CONV)
bds1 bds2)
& (list_for_all2eq (evar_conv_x env isevars CONV) l1 l2)
| IsCoFix (i1,(_,tys1,bds1 as recdef1)), IsCoFix (i2,(_,tys2,bds2)) ->
i1=i2
& (array_for_all2 (evar_conv_x env isevars CONV) tys1 tys2)
& (array_for_all2
(evar_conv_x (push_rec_types recdef1 env) isevars CONV)
bds1 bds2)
& (list_for_all2eq (evar_conv_x env isevars CONV) l1 l2)
| (IsMeta _ | IsLambda _), _ -> false
| _, (IsMeta _ | IsLambda _) -> false
| (IsMutInd _ | IsMutConstruct _ | IsSort _ | IsProd _), _ -> false
| _, (IsMutInd _ | IsMutConstruct _ | IsSort _ | IsProd _) -> false
| (IsApp _ | IsMutCase _ | IsFix _ | IsCoFix _),
(IsApp _ | IsMutCase _ | IsFix _ | IsCoFix _) -> false
| (IsRel _ | IsVar _ | IsConst _ | IsEvar _), _ -> assert false
| _, (IsRel _ | IsVar _ | IsConst _ | IsEvar _) -> assert false
and conv_record env isevars (c,bs,(xs,xs1),(us,us1),(ts,ts1),t) =
let ks =
List.fold_left
(fun ks b ->
(new_isevar isevars env (substl ks b) CCI)::ks)
[] bs
in
if (list_for_all2eq
(fun u1 u -> evar_conv_x env isevars CONV u1 (substl ks u))
us1 us)
&
(list_for_all2eq
(fun x1 x -> evar_conv_x env isevars CONV x1 (substl ks x))
xs1 xs)
& (list_for_all2eq (evar_conv_x env isevars CONV) ts ts1)
& (evar_conv_x env isevars CONV t
(if ks=[] then c else applist (c,(List.rev ks))))
then
(*TR*) (if !compter then (nbstruc:=!nbstruc+1;
nbimplstruc:=!nbimplstruc+(List.length ks);true)
else true)
else false
and check_conv_record (t1,l1) (t2,l2) =
try
let {o_DEF=c;o_TABS=bs;o_TPARAMS=xs;o_TCOMPS=us} =
objdef_info (cte_of_constr t1,cte_of_constr t2) in
let xs1,t,ts =
match list_chop (List.length xs) l1 with
| xs1,t::ts -> xs1,t,ts
| _ -> assert false
in
let us1,ts1 = list_chop (List.length us) l2 in
c,bs,(xs,xs1),(us,us1),(ts,ts1),t
with _ ->
raise Not_found
let the_conv_x env isevars t1 t2 = evar_conv_x env isevars CONV t1 t2
let the_conv_x_leq env isevars t1 t2 = evar_conv_x env isevars CUMUL t1 t2
|