1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Errors
open Util
open Names
open Term
open Vars
open Closure
open Reduction
open Reductionops
open Termops
open Environ
open Recordops
open Evarutil
open Evarsolve
open Globnames
open Evd
open Pretype_errors
type flex_kind_of_term =
| Rigid
| MaybeFlexible (* approx'ed as reducible but not necessarily so *)
| Flexible of existential
let flex_kind_of_term c sk =
match kind_of_term c with
| Rel _ | Const _ | Var _ -> MaybeFlexible
| Lambda _ when not (Option.is_empty (decomp_stack sk)) -> MaybeFlexible
| LetIn _ -> MaybeFlexible
| Evar ev -> Flexible ev
| Lambda _ | Prod _ | Sort _ | Ind _ | Construct _ | CoFix _ -> Rigid
| Meta _ -> Rigid
| Fix _ -> Rigid (* happens when the fixpoint is partially applied *)
| Cast _ | App _ | Case _ -> assert false
let not_purely_applicative_stack args =
List.exists (function (Zfix _ | Zcase _) -> true | _ -> false) args
let eval_flexible_term ts env c =
match kind_of_term c with
| Const c ->
if is_transparent_constant ts c
then constant_opt_value env c
else None
| Rel n ->
(try let (_,v,_) = lookup_rel n env in Option.map (lift n) v
with Not_found -> None)
| Var id ->
(try
if is_transparent_variable ts id then
let (_,v,_) = lookup_named id env in v
else None
with Not_found -> None)
| LetIn (_,b,_,c) -> Some (subst1 b c)
| Lambda _ -> Some c
| _ -> assert false
let apprec_nohdbeta ts env evd c =
let (t,sk as appr) = Reductionops.whd_nored_state evd (c, []) in
if not_purely_applicative_stack (snd (Reductionops.strip_app sk))
then zip (fst (whd_betaiota_deltazeta_for_iota_state
ts env evd Cst_stack.empty appr))
else c
let position_problem l2r = function
| CONV -> None
| CUMUL -> Some l2r
(* [check_conv_record (t1,l1) (t2,l2)] tries to decompose the problem
(t1 l1) = (t2 l2) into a problem
l1 = params1@c1::extra_args1
l2 = us2@extra_args2
(t1 params1 c1) = (proji params (c xs))
(t2 us2) = (cstr us)
extra_args1 = extra_args2
by finding a record R and an object c := [xs:bs](Build_R params v1..vn)
with vi = (cstr us), for which we know that the i-th projection proji
satisfies
(proji params (c xs)) = (cstr us)
Rem: such objects, usable for conversion, are defined in the objdef
table; practically, it amounts to "canonically" equip t2 into a
object c in structure R (since, if c1 were not an evar, the
projection would have been reduced) *)
let check_conv_record (t1,sk1) (t2,sk2) =
try
let proji = global_of_constr t1 in
let canon_s,sk2_effective =
try
match kind_of_term t2 with
Prod (_,a,b) -> (* assert (l2=[]); *)
if dependent (mkRel 1) b then raise Not_found
else lookup_canonical_conversion (proji, Prod_cs),[Zapp [a;pop b]]
| Sort s ->
lookup_canonical_conversion
(proji, Sort_cs (family_of_sort s)),[]
| _ ->
let c2 = global_of_constr t2 in
lookup_canonical_conversion (proji, Const_cs c2),sk2
with Not_found ->
lookup_canonical_conversion (proji,Default_cs),[]
in
let { o_DEF = c; o_INJ=n; o_TABS = bs;
o_TPARAMS = params; o_NPARAMS = nparams; o_TCOMPS = us } = canon_s in
let params1, c1, extra_args1 =
match strip_n_app nparams sk1 with
| Some (params1, c1,extra_args1) -> params1, c1, extra_args1
| _ -> raise Not_found in
let us2,extra_args2 =
let l',s' = strip_app sk2_effective in
let bef,aft = List.chop (List.length us) l' in
(bef, append_stack_app_list aft s') in
c,bs,(params,params1),(us,us2),(extra_args1,extra_args2),c1,
(n,zip(t2,sk2))
with Failure _ | Not_found ->
raise Not_found
(* Precondition: one of the terms of the pb is an uninstantiated evar,
* possibly applied to arguments. *)
let rec ise_try evd = function
[] -> assert false
| [f] -> f evd
| f1::l ->
match f1 evd with
| Success _ as x -> x
| UnifFailure _ -> ise_try evd l
let ise_and evd l =
let rec ise_and i = function
[] -> assert false
| [f] -> f i
| f1::l ->
match f1 i with
| Success i' -> ise_and i' l
| UnifFailure _ as x -> x in
ise_and evd l
(* This function requires to get the outermost arguments first. It is
a fold_right for backward compatibility.
It tries to unify the suffix of 2 lists element by element and if
it reaches the end of a list, it returns the remaining elements in
the other list if there are some.
*)
let ise_exact ise x1 x2 =
match ise x1 x2 with
| None, out -> out
| _, (UnifFailure _ as out) -> out
| Some _, Success i -> UnifFailure (i,NotSameArgSize)
let generic_ise_list2 i f l1 l2 =
let rec aux i l1 l2 =
match l1,l2 with
| [], [] -> (None, Success i)
| l, [] -> (Some (Inl (List.rev l)), Success i)
| [], l -> (Some (Inr (List.rev l)), Success i)
| x::l1, y::l2 ->
(match aux i l1 l2 with
| aa, Success i' -> (aa, f i' x y)
| _, (UnifFailure _ as x) -> None, x)
in aux i (List.rev l1) (List.rev l2)
(* Same but the 2 lists must have the same length *)
let ise_list2 evd f l1 l2 =
ise_exact (generic_ise_list2 evd f) l1 l2
let ise_array2 evd f v1 v2 =
let rec allrec i = function
| -1 -> Success i
| n ->
match f i v1.(n) v2.(n) with
| Success i' -> allrec i' (n-1)
| UnifFailure _ as x -> x in
let lv1 = Array.length v1 in
if Int.equal lv1 (Array.length v2) then allrec evd (pred lv1)
else UnifFailure (evd,NotSameArgSize)
(* This function tries to unify 2 stacks element by element. It works
from the end to the beginning. If it unifies a non empty suffix of
stacks but not the entire stacks, the first part of the answer is
Some(the remaining prefixes to tackle)) *)
let ise_stack2 no_app env evd f sk1 sk2 =
let rec ise_stack2 deep i sk1 sk2 =
let fail x = if deep then Some (List.rev sk1, List.rev sk2), Success i
else None, x in
match sk1, sk2 with
| [], [] -> None, Success i
| Zcase (_,t1,c1,_)::q1, Zcase (_,t2,c2,_)::q2 ->
(match f env i CONV t1 t2 with
| Success i' ->
(match ise_array2 i' (fun ii -> f env ii CONV) c1 c2 with
| Success i'' -> ise_stack2 true i'' q1 q2
| UnifFailure _ as x -> fail x)
| UnifFailure _ as x -> fail x)
| Zfix (((li1, i1),(_,tys1,bds1 as recdef1)),a1,_)::q1, Zfix (((li2, i2),(_,tys2,bds2)),a2,_)::q2 ->
if Int.equal i1 i2 && Array.equal Int.equal li1 li2 then
match ise_and i [
(fun i -> ise_array2 i (fun ii -> f env ii CONV) tys1 tys2);
(fun i -> ise_array2 i (fun ii -> f (push_rec_types recdef1 env) ii CONV) bds1 bds2);
(fun i -> ise_exact (ise_stack2 false i) a1 a2)] with
| Success i' -> ise_stack2 true i' q1 q2
| UnifFailure _ as x -> fail x
else fail (UnifFailure (i,NotSameHead))
| Zupdate _ :: _, _ | Zshift _ :: _, _
| _, Zupdate _ :: _ | _, Zshift _ :: _ -> assert false
| Zapp l1 :: q1, Zapp l2 :: q2 ->
if no_app&&deep then fail ((*dummy*)UnifFailure(i,NotSameHead)) else begin
(* Is requiring to match on all the shorter list a restriction
here ? we could imagine a generalization of
generic_ise_list2 that succeed when it matches only a strict
non empty suffix of both lists and returns in this case the 2
prefixes *)
match generic_ise_list2 i (fun ii -> f env ii CONV) l1 l2 with
|_,(UnifFailure _ as x) -> fail x
|None,Success i' -> ise_stack2 true i' q1 q2
|Some (Inl r),Success i' -> ise_stack2 true i' (Zapp r :: q1) q2
|Some (Inr r),Success i' -> ise_stack2 true i' q1 (Zapp r :: q2)
end
|_, _ -> fail (UnifFailure (i,(* Maybe improve: *) NotSameHead))
in ise_stack2 false evd (List.rev sk1) (List.rev sk2)
(* Make sure that the matching suffix is the all stack *)
let exact_ise_stack2 env evd f sk1 sk2 =
if Reductionops.compare_stack_shape sk1 sk2 then
ise_exact (ise_stack2 false env evd f) sk1 sk2
else UnifFailure (evd, (* Dummy *) NotSameHead)
let rec evar_conv_x ts env evd pbty term1 term2 =
let term1 = whd_head_evar evd term1 in
let term2 = whd_head_evar evd term2 in
(* Maybe convertible but since reducing can erase evars which [evar_apprec]
could have found, we do it only if the terms are free of evar.
Note: incomplete heuristic... *)
let ground_test =
if is_ground_term evd term1 && is_ground_term evd term2 then
if is_trans_fconv pbty ts env evd term1 term2 then
Some true
else if is_ground_env evd env then Some false
else None
else None in
match ground_test with
| Some true -> Success evd
| Some false -> UnifFailure (evd,ConversionFailed (env,term1,term2))
| None ->
(* Until pattern-unification is used consistently, use nohdbeta to not
destroy beta-redexes that can be used for 1st-order unification *)
let term1 = apprec_nohdbeta ts env evd term1 in
let term2 = apprec_nohdbeta ts env evd term2 in
begin match kind_of_term term1, kind_of_term term2 with
| Evar ev, _ when Evd.is_undefined evd (fst ev) ->
solve_simple_eqn (evar_conv_x ts) env evd
(position_problem true pbty,ev,term2)
| _, Evar ev when Evd.is_undefined evd (fst ev) ->
solve_simple_eqn (evar_conv_x ts) env evd
(position_problem false pbty,ev,term1)
| _ ->
evar_eqappr_x ts env evd pbty
(whd_nored_state evd (term1,empty_stack), Cst_stack.empty)
(whd_nored_state evd (term2,empty_stack), Cst_stack.empty)
end
and evar_eqappr_x ?(rhs_is_already_stuck = false) ts env evd pbty
((term1,sk1 as appr1),csts1) ((term2,sk2 as appr2),csts2) =
let default_fail i = (* costly *)
UnifFailure (i,ConversionFailed (env, zip appr1, zip appr2)) in
let miller_pfenning on_left fallback ev (_,skF) apprM evd =
let tM = zip apprM in
match list_of_app_stack skF with
| None -> default_fail evd
| Some lF -> match is_unification_pattern_evar env evd ev lF tM with
| None -> fallback ()
| Some l1' -> (* Miller-Pfenning's patterns unification *)
let t2 = nf_evar evd tM in
let t2 = solve_pattern_eqn env l1' t2 in
solve_simple_eqn (evar_conv_x ts) env evd
(position_problem on_left pbty,ev,t2) in
let flex_maybeflex on_left ev ((termF,skF as apprF),cstsF) ((termM, skM as apprM),cstsM) =
let switch f a b = if on_left then f a b else f b a in
let not_only_app = not_purely_applicative_stack skM in
let f1 i = miller_pfenning on_left
(fun () -> if not_only_app then (* Postpone the use of an heuristic *)
switch (fun x y -> Success (add_conv_pb (pbty,env,zip x,zip y) i)) apprF apprM
else default_fail i)
ev apprF apprM i
and f2 i =
match switch (ise_stack2 not_only_app env i (evar_conv_x ts)) skF skM with
|Some (l,r), Success i' when on_left && (not_only_app || List.is_empty l) ->
switch (evar_conv_x ts env i' pbty) (zip(termF,l)) (zip(termM,r))
|Some (r,l), Success i' when not on_left && (not_only_app || List.is_empty l) ->
switch (evar_conv_x ts env i' pbty) (zip(termF,l)) (zip(termM,r))
|None, Success i' -> switch (evar_conv_x ts env i' pbty) termF termM
|_, (UnifFailure _ as x) -> x
|Some _, _ -> UnifFailure (i,NotSameArgSize)
and f3 i =
match eval_flexible_term ts env termM with
| Some vM ->
switch (evar_eqappr_x ts env i pbty) (apprF,cstsF)
(whd_betaiota_deltazeta_for_iota_state ts env i cstsM (vM, skM))
| None -> UnifFailure (i,NotSameHead)
in
ise_try evd [f1; f2; f3] in
let eta env evd onleft sk term sk' term' =
assert (match sk with [] -> true | _ -> false);
let (na,c1,c'1) = destLambda term in
let c = nf_evar evd c1 in
let env' = push_rel (na,None,c) env in
let out1 = whd_betaiota_deltazeta_for_iota_state
ts env' evd Cst_stack.empty (c'1, empty_stack) in
let out2 = whd_nored_state evd
(zip (term', sk' @ [Zshift 1]), [Zapp [mkRel 1]]), Cst_stack.empty in
if onleft then evar_eqappr_x ts env' evd CONV out1 out2
else evar_eqappr_x ts env' evd CONV out2 out1
in
let app_empty = match sk1, sk2 with [], [] -> true | _ -> false in
(* Evar must be undefined since we have flushed evars *)
match (flex_kind_of_term term1 sk1, flex_kind_of_term term2 sk2) with
| Flexible (sp1,al1 as ev1), Flexible (sp2,al2 as ev2) ->
let f1 i =
match ise_stack2 false env i (evar_conv_x ts) sk1 sk2 with
|None, Success i' -> solve_simple_eqn (evar_conv_x ts) env i'
(position_problem true pbty,ev1,term2)
|Some (r,[]), Success i' -> solve_simple_eqn (evar_conv_x ts) env i'
(position_problem false pbty,ev2,zip(term1,r))
|Some ([],r), Success i' -> solve_simple_eqn (evar_conv_x ts) env i'
(position_problem true pbty,ev1,zip(term2,r))
|_, (UnifFailure _ as x) -> x
|Some _, _ -> UnifFailure (i,NotSameArgSize)
and f2 i =
if Evar.equal sp1 sp2 then
match ise_stack2 false env i (evar_conv_x ts) sk1 sk2 with
|None, Success i' ->
Success (solve_refl (fun env i pbty a1 a2 ->
is_success (evar_conv_x ts env i pbty a1 a2))
env i' sp1 al1 al2)
|_, (UnifFailure _ as x) -> x
|Some _, _ -> UnifFailure (i,NotSameArgSize)
else UnifFailure (i,NotSameHead)
in
ise_try evd [f1; f2]
| Flexible ev1, MaybeFlexible -> flex_maybeflex true ev1 (appr1,csts1) (appr2,csts2)
| MaybeFlexible, Flexible ev2 -> flex_maybeflex false ev2 (appr2,csts2) (appr1,csts1)
| MaybeFlexible, MaybeFlexible -> begin
match kind_of_term term1, kind_of_term term2 with
| LetIn (na,b1,t1,c'1), LetIn (_,b2,_,c'2) ->
let f1 i =
ise_and i
[(fun i -> evar_conv_x ts env i CONV b1 b2);
(fun i ->
let b = nf_evar i b1 in
let t = nf_evar i t1 in
evar_conv_x ts (push_rel (na,Some b,t) env) i pbty c'1 c'2);
(fun i -> exact_ise_stack2 env i (evar_conv_x ts) sk1 sk2)]
and f2 i =
let out1 = whd_betaiota_deltazeta_for_iota_state ts env i csts1 ((subst1 b1 c'1),sk1)
and out2 = whd_betaiota_deltazeta_for_iota_state ts env i csts2 ((subst1 b2 c'2),sk2)
in evar_eqappr_x ts env i pbty out1 out2
in
ise_try evd [f1; f2]
| _, _ ->
let f1 i =
if eq_constr term1 term2 then
exact_ise_stack2 env i (evar_conv_x ts) sk1 sk2
else
UnifFailure (i,NotSameHead)
and f2 i =
(try conv_record ts env i
(try check_conv_record appr1 appr2
with Not_found -> check_conv_record appr2 appr1)
with Not_found -> UnifFailure (i,NoCanonicalStructure))
and f3 i =
(* heuristic: unfold second argument first, exception made
if the first argument is a beta-redex (expand a constant
only if necessary) or the second argument is potentially
usable as a canonical projection or canonical value *)
let rec is_unnamed (hd, args) = match kind_of_term hd with
| (Var _|Construct _|Ind _|Const _|Prod _|Sort _) ->
not_purely_applicative_stack args
| (CoFix _|Meta _|Rel _)-> true
| Evar _ -> not_purely_applicative_stack args
(* false (* immediate solution without Canon Struct *)*)
| Lambda _ -> assert (match args with [] -> true | _ -> false); true
| LetIn (_,b,_,c) -> is_unnamed
(fst (whd_betaiota_deltazeta_for_iota_state
ts env i Cst_stack.empty (subst1 b c, args)))
| Case _| Fix _| App _| Cast _ -> assert false in
let rhs_is_stuck_and_unnamed () =
match eval_flexible_term ts env term2 with
| None -> false
| Some v2 ->
let applicative_stack = append_stack_app_list (fst (strip_app sk2)) empty_stack in
is_unnamed
(fst (whd_betaiota_deltazeta_for_iota_state
ts env i Cst_stack.empty (v2, applicative_stack))) in
let rhs_is_already_stuck =
rhs_is_already_stuck || rhs_is_stuck_and_unnamed () in
if (isLambda term1 || rhs_is_already_stuck)
&& (not (not_purely_applicative_stack sk1)) then
match eval_flexible_term ts env term1 with
| Some v1 ->
evar_eqappr_x ~rhs_is_already_stuck ts env i pbty
(whd_betaiota_deltazeta_for_iota_state
ts env i (Cst_stack.add_cst term1 csts1) (v1,sk1))
(appr2,csts2)
| None ->
match eval_flexible_term ts env term2 with
| Some v2 ->
evar_eqappr_x ts env i pbty (appr1,csts1)
(whd_betaiota_deltazeta_for_iota_state
ts env i (Cst_stack.add_cst term2 csts2) (v2,sk2))
| None -> UnifFailure (i,NotSameHead)
else
match eval_flexible_term ts env term2 with
| Some v2 ->
evar_eqappr_x ts env i pbty (appr1,csts1)
(whd_betaiota_deltazeta_for_iota_state
ts env i (Cst_stack.add_cst term2 csts2) (v2,sk2))
| None ->
match eval_flexible_term ts env term1 with
| Some v1 ->
evar_eqappr_x ts env i pbty
(whd_betaiota_deltazeta_for_iota_state
ts env i (Cst_stack.add_cst term1 csts1) (v1,sk1))
(appr2,csts2)
| None -> UnifFailure (i,NotSameHead)
in
ise_try evd [f1; f2; f3]
end
| Rigid, Rigid when isLambda term1 && isLambda term2 ->
let (na,c1,c'1) = destLambda term1 in
let (_,c2,c'2) = destLambda term2 in
assert app_empty;
ise_and evd
[(fun i -> evar_conv_x ts env i CONV c1 c2);
(fun i ->
let c = nf_evar i c1 in
evar_conv_x ts (push_rel (na,None,c) env) i CONV c'1 c'2)]
| Flexible ev1, Rigid ->
let f1 evd =
miller_pfenning true
(fun () -> Success ((* Postpone the use of an heuristic *)
add_conv_pb (pbty,env,zip appr1,zip appr2) evd))
ev1 appr1 appr2 evd
and f2 evd =
if isLambda term2 then
eta env evd false sk2 term2 sk1 term1
else UnifFailure (evd,NotSameHead)
in ise_try evd [f1;f2]
| Rigid, Flexible ev2 ->
let f1 evd =
miller_pfenning false
(fun () -> Success ((* Postpone the use of an heuristic *)
add_conv_pb (pbty,env,zip appr1,zip appr2) evd))
ev2 appr2 appr1 evd
and f2 evd =
if isLambda term1 then
eta env evd true sk1 term1 sk2 term2
else UnifFailure (evd,NotSameHead)
in ise_try evd [f1;f2]
| MaybeFlexible, Rigid ->
let f3 i =
(try conv_record ts env i (check_conv_record appr1 appr2)
with Not_found -> UnifFailure (i,NoCanonicalStructure))
and f4 i =
match eval_flexible_term ts env term1 with
| Some v1 ->
evar_eqappr_x ts env i pbty
(whd_betaiota_deltazeta_for_iota_state
ts env i (Cst_stack.add_cst term1 csts1) (v1,sk1))
(appr2,csts2)
| None ->
if isLambda term2 then eta env evd false sk2 term2 sk1 term1
else UnifFailure (i,NotSameHead)
in
ise_try evd [f3; f4]
| Rigid, MaybeFlexible ->
let f3 i =
(try conv_record ts env i (check_conv_record appr2 appr1)
with Not_found -> UnifFailure (i,NoCanonicalStructure))
and f4 i =
match eval_flexible_term ts env term2 with
| Some v2 ->
evar_eqappr_x ts env i pbty (appr1,csts1)
(whd_betaiota_deltazeta_for_iota_state
ts env i (Cst_stack.add_cst term2 csts2) (v2,sk2))
| None ->
if isLambda term1 then eta env evd true sk1 term1 sk2 term2
else UnifFailure (i,NotSameHead)
in
ise_try evd [f3; f4]
(* Eta-expansion *)
| Rigid, _ when isLambda term1 ->
eta env evd true sk1 term1 sk2 term2
| _, Rigid when isLambda term2 ->
eta env evd false sk2 term2 sk1 term1
| Rigid, Rigid -> begin
match kind_of_term term1, kind_of_term term2 with
| Sort s1, Sort s2 when app_empty ->
(try
let evd' =
if pbty == CONV
then Evd.set_eq_sort evd s1 s2
else Evd.set_leq_sort evd s1 s2
in Success evd'
with Univ.UniverseInconsistency _ ->
UnifFailure (evd,UnifUnivInconsistency)
| e when Errors.noncritical e -> UnifFailure (evd,NotSameHead))
| Prod (n,c1,c'1), Prod (_,c2,c'2) when app_empty ->
ise_and evd
[(fun i -> evar_conv_x ts env i CONV c1 c2);
(fun i ->
let c = nf_evar i c1 in
evar_conv_x ts (push_rel (n,None,c) env) i pbty c'1 c'2)]
| Ind sp1, Ind sp2 ->
if eq_ind sp1 sp2 then
exact_ise_stack2 env evd (evar_conv_x ts) sk1 sk2
else UnifFailure (evd,NotSameHead)
| Construct sp1, Construct sp2 ->
if eq_constructor sp1 sp2 then
exact_ise_stack2 env evd (evar_conv_x ts) sk1 sk2
else UnifFailure (evd,NotSameHead)
| Fix ((li1, i1),(_,tys1,bds1 as recdef1)), Fix ((li2, i2),(_,tys2,bds2)) -> (* Partially applied fixs *)
if Int.equal i1 i2 && Array.equal Int.equal li1 li2 then
ise_and evd [
(fun i -> ise_array2 i (fun i' -> evar_conv_x ts env i' CONV) tys1 tys2);
(fun i -> ise_array2 i (fun i' -> evar_conv_x ts (push_rec_types recdef1 env) i' CONV) bds1 bds2);
(fun i -> exact_ise_stack2 env i (evar_conv_x ts) sk1 sk2)]
else UnifFailure (evd, NotSameHead)
| CoFix (i1,(_,tys1,bds1 as recdef1)), CoFix (i2,(_,tys2,bds2)) ->
if Int.equal i1 i2 then
ise_and evd
[(fun i -> ise_array2 i
(fun i -> evar_conv_x ts env i CONV) tys1 tys2);
(fun i -> ise_array2 i
(fun i -> evar_conv_x ts (push_rec_types recdef1 env) i CONV)
bds1 bds2);
(fun i -> exact_ise_stack2 env i
(evar_conv_x ts) sk1 sk2)]
else UnifFailure (evd,NotSameHead)
| (Meta _, _) | (_, Meta _) ->
begin match ise_stack2 true env evd (evar_conv_x ts) sk1 sk2 with
|_, (UnifFailure _ as x) -> x
|None, Success i' -> evar_conv_x ts env i' CONV term1 term2
|Some (sk1',sk2'), Success i' -> evar_conv_x ts env i' CONV (zip (term1,sk1')) (zip (term2,sk2'))
end
| (Ind _ | Construct _ | Sort _ | Prod _ | CoFix _ | Fix _), _ -> UnifFailure (evd,NotSameHead)
| _, (Ind _ | Construct _ | Sort _ | Prod _ | CoFix _ | Fix _) -> UnifFailure (evd,NotSameHead)
| (App _ | Cast _ | Case _), _ -> assert false
| (LetIn _ | Rel _ | Var _ | Const _ | Evar _), _ -> assert false
| (Lambda _), _ -> assert false
end
and conv_record trs env evd (c,bs,(params,params1),(us,us2),(ts,ts1),c1,(n,t2)) =
if Reductionops.compare_stack_shape ts ts1 then
let (evd',ks,_) =
List.fold_left
(fun (i,ks,m) b ->
if Int.equal m n then (i,t2::ks, m-1) else
let dloc = (Loc.ghost,Evar_kinds.InternalHole) in
let (i',ev) = new_evar i env ~src:dloc (substl ks b) in
(i', ev :: ks, m - 1))
(evd,[],List.length bs - 1) bs
in
let app = mkApp (c, Array.rev_of_list ks) in
ise_and evd'
[(fun i ->
ise_list2 i
(fun i' x1 x -> evar_conv_x trs env i' CONV x1 (substl ks x))
params1 params);
(fun i ->
ise_list2 i
(fun i' u1 u -> evar_conv_x trs env i' CONV u1 (substl ks u))
us2 us);
(fun i -> evar_conv_x trs env i CONV c1 app);
(fun i -> exact_ise_stack2 env i (evar_conv_x trs) ts ts1)]
else UnifFailure(evd,(*dummy*)NotSameHead)
(* We assume here |l1| <= |l2| *)
let first_order_unification ts env evd (ev1,l1) (term2,l2) =
let (deb2,rest2) = Array.chop (Array.length l2-Array.length l1) l2 in
ise_and evd
(* First compare extra args for better failure message *)
[(fun i -> ise_array2 i (fun i -> evar_conv_x ts env i CONV) rest2 l1);
(fun i ->
(* Then instantiate evar unless already done by unifying args *)
let t2 = mkApp(term2,deb2) in
if is_defined i (fst ev1) then
evar_conv_x ts env i CONV t2 (mkEvar ev1)
else
solve_simple_eqn ~choose:true (evar_conv_x ts) env i (None,ev1,t2))]
let choose_less_dependent_instance evk evd term args =
let evi = Evd.find_undefined evd evk in
let subst = make_pure_subst evi args in
let subst' = List.filter (fun (id,c) -> eq_constr c term) subst in
match subst' with
| [] -> None
| (id, _) :: _ -> Some (Evd.define evk (mkVar id) evd)
let apply_on_subterm evdref f c t =
let rec applyrec (k,c as kc) t =
(* By using eq_constr, we make an approximation, for instance, we *)
(* could also be interested in finding a term u convertible to t *)
(* such that c occurs in u *)
if eq_constr c t then f k
else
match kind_of_term t with
| Evar (evk,args) when Evd.is_undefined !evdref evk ->
let ctx = evar_filtered_context (Evd.find_undefined !evdref evk) in
let g (_,b,_) a = if Option.is_empty b then applyrec kc a else a in
mkEvar (evk, Array.of_list (List.map2 g ctx (Array.to_list args)))
| _ ->
map_constr_with_binders_left_to_right (fun d (k,c) -> (k+1,lift 1 c))
applyrec kc t
in
applyrec (0,c) t
let filter_possible_projections c ty ctxt args =
let fv1 = free_rels c in
let fv2 = collect_vars c in
let len = Array.length args in
let tyvars = collect_vars ty in
List.map_i (fun i (id,b,_) ->
let () = assert (i < len) in
let a = Array.unsafe_get args i in
not (Option.is_empty b) ||
a == c ||
(* Here we make an approximation, for instance, we could also be *)
(* interested in finding a term u convertible to c such that a occurs *)
(* in u *)
isRel a && Int.Set.mem (destRel a) fv1 ||
isVar a && Id.Set.mem (destVar a) fv2 ||
Id.Set.mem id tyvars)
0 ctxt
let solve_evars = ref (fun _ -> failwith "solve_evars not installed")
let set_solve_evars f = solve_evars := f
(* We solve the problem env_rhs |- ?e[u1..un] = rhs knowing
* x1:T1 .. xn:Tn |- ev : ty
* by looking for a maximal well-typed abtraction over u1..un in rhs
*
* We first build C[e11..e1p1,..,en1..enpn] obtained from rhs by replacing
* all occurrences of u1..un by evars eij of type Ti' where itself Ti' has
* been obtained from the type of ui by also replacing all occurrences of
* u1..ui-1 by evars.
*
* Then, we use typing to infer the relations between the different
* occurrences. If some occurrence is still unconstrained after typing,
* we instantiate successively the unresolved occurrences of un by xn,
* of un-1 by xn-1, etc [the idea comes from Chung-Kil Hur, that he
* used for his Heq plugin; extensions to several arguments based on a
* proposition from Dan Grayson]
*)
exception TypingFailed of evar_map
let second_order_matching ts env_rhs evd (evk,args) argoccs rhs =
try
let evi = Evd.find_undefined evd evk in
let env_evar = evar_filtered_env evi in
let sign = named_context_val env_evar in
let ctxt = evar_filtered_context evi in
let filter = evar_filter evi in
let instance = List.map mkVar (List.map pi1 ctxt) in
let rec make_subst = function
| (id,_,t)::ctxt', c::l, occs::occsl when isVarId id c ->
begin match occs with
| Some _ ->
error "Cannot force abstraction on identity instance."
| None ->
make_subst (ctxt',l,occsl)
end
| (id,_,t)::ctxt', c::l, occs::occsl ->
let evs = ref [] in
let ty = Retyping.get_type_of env_rhs evd c in
let filter' = filter_possible_projections c ty ctxt args in
let filter = List.map2 (&&) filter filter' in
(id,t,c,ty,evs,filter,occs) :: make_subst (ctxt',l,occsl)
| [], [], [] -> []
| _ -> anomaly (Pp.str "Signature, instance and occurrences list do not match") in
let rec set_holes evdref rhs = function
| (id,_,c,cty,evsref,filter,occs)::subst ->
let set_var k =
match occs with
| Some Locus.AllOccurrences -> mkVar id
| Some _ -> error "Selection of specific occurrences not supported"
| None ->
let evty = set_holes evdref cty subst in
let instance = List.filter_with filter instance in
let evd,ev = new_evar_instance sign !evdref evty ~filter instance in
evdref := evd;
evsref := (fst (destEvar ev),evty)::!evsref;
ev in
set_holes evdref (apply_on_subterm evdref set_var c rhs) subst
| [] -> rhs in
let subst = make_subst (ctxt,Array.to_list args,argoccs) in
let evdref = ref evd in
let rhs = set_holes evdref rhs subst in
let evd = !evdref in
(* We instantiate the evars of which the value is forced by typing *)
let evd,rhs =
let evdref = ref evd in
try let c = !solve_evars env_evar evdref rhs in !evdref,c
with e when Pretype_errors.precatchable_exception e ->
(* Could not revert all subterms *)
raise (TypingFailed !evdref) in
let rec abstract_free_holes evd = function
| (id,idty,c,_,evsref,_,_)::l ->
let rec force_instantiation evd = function
| (evk,evty)::evs ->
let evd =
if is_undefined evd evk then
(* We force abstraction over this unconstrained occurrence *)
(* and we use typing to propagate this instantiation *)
(* This is an arbitrary choice *)
let evd = Evd.define evk (mkVar id) evd in
match evar_conv_x ts env_evar evd CUMUL idty evty with
| UnifFailure _ -> error "Cannot find an instance"
| Success evd ->
match reconsider_conv_pbs (evar_conv_x ts) evd with
| UnifFailure _ -> error "Cannot find an instance"
| Success evd ->
evd
else
evd
in
force_instantiation evd evs
| [] ->
abstract_free_holes evd l
in
force_instantiation evd !evsref
| [] ->
Evd.define evk rhs evd in
abstract_free_holes evd subst, true
with TypingFailed evd -> Evd.define evk rhs evd, false
let second_order_matching_with_args ts env evd ev l t =
(*
let evd,ev = evar_absorb_arguments env evd ev l in
let argoccs = Array.map_to_list (fun _ -> None) (snd ev) in
let evd, b = second_order_matching ts env evd ev argoccs t in
if b then Success evd else
*)
UnifFailure (evd, ConversionFailed (env,mkApp(mkEvar ev,l),t))
let apply_conversion_problem_heuristic ts env evd pbty t1 t2 =
let t1 = apprec_nohdbeta ts env evd (whd_head_evar evd t1) in
let t2 = apprec_nohdbeta ts env evd (whd_head_evar evd t2) in
let (term1,l1 as appr1) = try destApp t1 with DestKO -> (t1, [||]) in
let (term2,l2 as appr2) = try destApp t2 with DestKO -> (t2, [||]) in
let app_empty = Array.is_empty l1 && Array.is_empty l2 in
match kind_of_term term1, kind_of_term term2 with
| Evar (evk1,args1), (Rel _|Var _) when app_empty
&& List.for_all (fun a -> eq_constr a term2 || isEvar a)
(remove_instance_local_defs evd evk1 args1) ->
(* The typical kind of constraint coming from pattern-matching return
type inference *)
(match choose_less_dependent_instance evk1 evd term2 args1 with
| Some evd -> Success evd
| None -> UnifFailure (evd, ConversionFailed (env,term1,term2)))
| (Rel _|Var _), Evar (evk2,args2) when app_empty
&& List.for_all (fun a -> eq_constr a term1 || isEvar a)
(remove_instance_local_defs evd evk2 args2) ->
(* The typical kind of constraint coming from pattern-matching return
type inference *)
(match choose_less_dependent_instance evk2 evd term1 args2 with
| Some evd -> Success evd
| None -> UnifFailure (evd, ConversionFailed (env,term1,term2)))
| Evar (evk1,args1), Evar (evk2,args2) when Evar.equal evk1 evk2 ->
let f env evd pbty x y = is_trans_fconv pbty ts env evd x y in
Success (solve_refl ~can_drop:true f env evd evk1 args1 args2)
| Evar ev1, Evar ev2 ->
Success (solve_evar_evar ~force:true
(evar_define (evar_conv_x ts)) (evar_conv_x ts) env evd ev1 ev2)
| Evar ev1,_ when Array.length l1 <= Array.length l2 ->
(* On "?n t1 .. tn = u u1 .. u(n+p)", try first-order unification *)
(* and otherwise second-order matching *)
ise_try evd
[(fun evd -> first_order_unification ts env evd (ev1,l1) appr2);
(fun evd ->
second_order_matching_with_args ts env evd ev1 l1 t2)]
| _,Evar ev2 when Array.length l2 <= Array.length l1 ->
(* On "u u1 .. u(n+p) = ?n t1 .. tn", try first-order unification *)
(* and otherwise second-order matching *)
ise_try evd
[(fun evd -> first_order_unification ts env evd (ev2,l2) appr1);
(fun evd ->
second_order_matching_with_args ts env evd ev2 l2 t1)]
| Evar ev1,_ ->
(* Try second-order pattern-matching *)
second_order_matching_with_args ts env evd ev1 l1 t2
| _,Evar ev2 ->
(* Try second-order pattern-matching *)
second_order_matching_with_args ts env evd ev2 l2 t1
| _ ->
(* Some head evar have been instantiated, or unknown kind of problem *)
evar_conv_x ts env evd pbty t1 t2
let check_problems_are_solved evd =
match snd (extract_all_conv_pbs evd) with
| (pbty,env,t1,t2)::_ -> Pretype_errors.error_cannot_unify env evd (t1, t2)
| _ -> ()
let max_undefined_with_candidates evd =
(* If evar were ordered with highest index first, fold_undefined
would be going decreasingly and we could use fold_undefined to
find the undefined evar of maximum index (alternatively,
max_bindings from ocaml 3.12 could be used); instead we traverse
the whole map *)
let l = Evd.fold_undefined
(fun evk ev_info evars ->
match ev_info.evar_candidates with
| None -> evars
| Some l -> (evk,ev_info,l)::evars) evd [] in
match l with
| [] -> None
| a::l -> Some (List.last (a::l))
let rec solve_unconstrained_evars_with_canditates evd =
(* max_undefined is supposed to return the most recent, hence
possibly most dependent evar *)
match max_undefined_with_candidates evd with
| None -> evd
| Some (evk,ev_info,l) ->
let rec aux = function
| [] -> error "Unsolvable existential variables."
| a::l ->
try
let conv_algo = evar_conv_x full_transparent_state in
let evd = check_evar_instance evd evk a conv_algo in
let evd = Evd.define evk a evd in
match reconsider_conv_pbs conv_algo evd with
| Success evd -> solve_unconstrained_evars_with_canditates evd
| UnifFailure _ -> aux l
with
| IllTypedInstance _ -> aux l
| e when Pretype_errors.precatchable_exception e -> aux l in
(* List.rev is there to favor most dependent solutions *)
(* and favor progress when used with the refine tactics *)
let evd = aux (List.rev l) in
solve_unconstrained_evars_with_canditates evd
let solve_unconstrained_impossible_cases evd =
Evd.fold_undefined (fun evk ev_info evd' ->
match ev_info.evar_source with
| _,Evar_kinds.ImpossibleCase -> Evd.define evk (j_type (coq_unit_judge ())) evd'
| _ -> evd') evd evd
let consider_remaining_unif_problems ?(ts=full_transparent_state) env evd =
let evd = solve_unconstrained_evars_with_canditates evd in
let rec aux evd pbs progress stuck =
match pbs with
| (pbty,env,t1,t2 as pb) :: pbs ->
(match apply_conversion_problem_heuristic ts env evd pbty t1 t2 with
| Success evd' ->
let (evd', rest) = extract_all_conv_pbs evd' in
begin match rest with
| [] -> aux evd' pbs true stuck
| _ -> (* Unification got actually stuck, postpone *)
aux evd pbs progress (pb :: stuck)
end
| UnifFailure (evd,reason) ->
Pretype_errors.error_cannot_unify_loc (loc_of_conv_pb evd pb)
env evd ~reason (t1, t2))
| _ ->
if progress then aux evd stuck false []
else
match stuck with
| [] -> (* We're finished *) evd
| (pbty,env,t1,t2 as pb) :: _ ->
(* There remains stuck problems *)
Pretype_errors.error_cannot_unify_loc (loc_of_conv_pb evd pb)
env evd (t1, t2)
in
let (evd,pbs) = extract_all_conv_pbs evd in
let heuristic_solved_evd = aux evd pbs false [] in
check_problems_are_solved heuristic_solved_evd;
solve_unconstrained_impossible_cases heuristic_solved_evd
(* Main entry points *)
exception UnableToUnify of evar_map * unification_error
let the_conv_x ?(ts=full_transparent_state) env t1 t2 evd =
match evar_conv_x ts env evd CONV t1 t2 with
| Success evd' -> evd'
| UnifFailure (evd',e) -> raise (UnableToUnify (evd',e))
let the_conv_x_leq ?(ts=full_transparent_state) env t1 t2 evd =
match evar_conv_x ts env evd CUMUL t1 t2 with
| Success evd' -> evd'
| UnifFailure (evd',e) -> raise (UnableToUnify (evd',e))
let e_conv ?(ts=full_transparent_state) env evdref t1 t2 =
match evar_conv_x ts env !evdref CONV t1 t2 with
| Success evd' -> evdref := evd'; true
| _ -> false
let e_cumul ?(ts=full_transparent_state) env evdref t1 t2 =
match evar_conv_x ts env !evdref CUMUL t1 t2 with
| Success evd' -> evdref := evd'; true
| _ -> false
|