1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
open Pp
open Util
open Univ
open Names
open Term
open Declarations
open Inductive
open Inductiveops
open Environ
open Sign
open Rawterm
open Nameops
open Termops
open Libnames
open Nametab
open Evd
open Mod_subst
let dl = dummy_loc
(****************************************************************************)
(* Tools for printing of Cases *)
let encode_inductive r =
let indsp = inductive_of_reference r in
let constr_lengths = mis_constr_nargs indsp in
(indsp,constr_lengths)
(* Parameterization of the translation from constr to ast *)
(* Tables for Cases printing under a "if" form, a "let" form, *)
let has_two_constructors lc =
Array.length lc = 2 (* & lc.(0) = 0 & lc.(1) = 0 *)
let isomorphic_to_tuple lc = (Array.length lc = 1)
let encode_bool r =
let (_,lc as x) = encode_inductive r in
if not (has_two_constructors lc) then
user_err_loc (loc_of_reference r,"encode_if",
str "This type has not exactly two constructors");
x
let encode_tuple r =
let (_,lc as x) = encode_inductive r in
if not (isomorphic_to_tuple lc) then
user_err_loc (loc_of_reference r,"encode_tuple",
str "This type cannot be seen as a tuple type");
x
module PrintingCasesMake =
functor (Test : sig
val encode : reference -> inductive * int array
val member_message : std_ppcmds -> bool -> std_ppcmds
val field : string
val title : string
end) ->
struct
type t = inductive * int array
let encode = Test.encode
let subst subst ((kn,i), ints as obj) =
let kn' = subst_kn subst kn in
if kn' == kn then obj else
(kn',i), ints
let printer (ind,_) = pr_global_env Idset.empty (IndRef ind)
let key = Goptions.SecondaryTable ("Printing",Test.field)
let title = Test.title
let member_message x = Test.member_message (printer x)
let synchronous = true
end
module PrintingCasesIf =
PrintingCasesMake (struct
let encode = encode_bool
let field = "If"
let title = "Types leading to pretty-printing of Cases using a `if' form: "
let member_message s b =
str "Cases on elements of " ++ s ++
str
(if b then " are printed using a `if' form"
else " are not printed using a `if' form")
end)
module PrintingCasesLet =
PrintingCasesMake (struct
let encode = encode_tuple
let field = "Let"
let title =
"Types leading to a pretty-printing of Cases using a `let' form:"
let member_message s b =
str "Cases on elements of " ++ s ++
str
(if b then " are printed using a `let' form"
else " are not printed using a `let' form")
end)
module PrintingIf = Goptions.MakeRefTable(PrintingCasesIf)
module PrintingLet = Goptions.MakeRefTable(PrintingCasesLet)
(* Flags.for printing or not wildcard and synthetisable types *)
open Goptions
let wildcard_value = ref true
let force_wildcard () = !wildcard_value
let _ = declare_bool_option
{ optsync = true;
optname = "forced wildcard";
optkey = SecondaryTable ("Printing","Wildcard");
optread = force_wildcard;
optwrite = (:=) wildcard_value }
let synth_type_value = ref true
let synthetize_type () = !synth_type_value
let _ = declare_bool_option
{ optsync = true;
optname = "pattern matching return type synthesizability";
optkey = SecondaryTable ("Printing","Synth");
optread = synthetize_type;
optwrite = (:=) synth_type_value }
let reverse_matching_value = ref true
let reverse_matching () = !reverse_matching_value
let _ = declare_bool_option
{ optsync = true;
optname = "pattern-matching reversibility";
optkey = SecondaryTable ("Printing","Matching");
optread = reverse_matching;
optwrite = (:=) reverse_matching_value }
(* Auxiliary function for MutCase printing *)
(* [computable] tries to tell if the predicate typing the result is inferable*)
let computable p k =
(* We first remove as many lambda as the arity, then we look
if it remains a lambda for a dependent elimination. This function
works for normal eta-expanded term. For non eta-expanded or
non-normal terms, it may affirm the pred is synthetisable
because of an undetected ultimate dependent variable in the second
clause, or else, it may affirms the pred non synthetisable
because of a non normal term in the fourth clause.
A solution could be to store, in the MutCase, the eta-expanded
normal form of pred to decide if it depends on its variables
Lorsque le prédicat est dépendant de manière certaine, on
ne déclare pas le prédicat synthétisable (même si la
variable dépendante ne l'est pas effectivement) parce que
sinon on perd la réciprocité de la synthèse (qui, lui,
engendrera un prédicat non dépendant) *)
(nb_lam p = k+1)
&&
let _,ccl = decompose_lam p in
noccur_between 1 (k+1) ccl
let avoid_flag isgoal = if isgoal then Some true else None
let lookup_name_as_renamed env t s =
let rec lookup avoid env_names n c = match kind_of_term c with
| Prod (name,_,c') ->
(match concrete_name (Some true) avoid env_names name c' with
| (Name id,avoid') ->
if id=s then (Some n)
else lookup avoid' (add_name (Name id) env_names) (n+1) c'
| (Anonymous,avoid') -> lookup avoid' env_names (n+1) (pop c'))
| LetIn (name,_,_,c') ->
(match concrete_name (Some true) avoid env_names name c' with
| (Name id,avoid') ->
if id=s then (Some n)
else lookup avoid' (add_name (Name id) env_names) (n+1) c'
| (Anonymous,avoid') -> lookup avoid' env_names (n+1) (pop c'))
| Cast (c,_,_) -> lookup avoid env_names n c
| _ -> None
in lookup (ids_of_named_context (named_context env)) empty_names_context 1 t
let lookup_index_as_renamed env t n =
let rec lookup n d c = match kind_of_term c with
| Prod (name,_,c') ->
(match concrete_name (Some true) [] empty_names_context name c' with
(Name _,_) -> lookup n (d+1) c'
| (Anonymous,_) -> if n=1 then Some d else lookup (n-1) (d+1) c')
| LetIn (name,_,_,c') ->
(match concrete_name (Some true) [] empty_names_context name c' with
| (Name _,_) -> lookup n (d+1) c'
| (Anonymous,_) -> if n=1 then Some d else lookup (n-1) (d+1) c')
| Cast (c,_,_) -> lookup n d c
| _ -> None
in lookup n 1 t
(**********************************************************************)
(* Fragile algorithm to reverse pattern-matching compilation *)
let update_name na ((_,e),c) =
match na with
| Name _ when force_wildcard () & noccurn (list_index na e) c ->
Anonymous
| _ ->
na
let rec decomp_branch n nal b (avoid,env as e) c =
if n=0 then (List.rev nal,(e,c))
else
let na,c,f =
match kind_of_term (strip_outer_cast c) with
| Lambda (na,_,c) -> na,c,concrete_let_name
| LetIn (na,_,_,c) -> na,c,concrete_name
| _ ->
Name (id_of_string "x"),(applist (lift 1 c, [mkRel 1])),
concrete_name in
let na',avoid' = f (Some b) avoid env na c in
decomp_branch (n-1) (na'::nal) b (avoid',add_name na' env) c
let rec build_tree na isgoal e ci cl =
let mkpat n rhs pl = PatCstr(dl,(ci.ci_ind,n+1),pl,update_name na rhs) in
let cnl = ci.ci_cstr_nargs in
List.flatten
(list_tabulate (fun i -> contract_branch isgoal e (cnl.(i),mkpat i,cl.(i)))
(Array.length cl))
and align_tree nal isgoal (e,c as rhs) = match nal with
| [] -> [[],rhs]
| na::nal ->
match kind_of_term c with
| Case (ci,p,c,cl) when c = mkRel (list_index na (snd e))
& (* don't contract if p dependent *)
computable p (ci.ci_pp_info.ind_nargs) ->
let clauses = build_tree na isgoal e ci cl in
List.flatten
(List.map (fun (pat,rhs) ->
let lines = align_tree nal isgoal rhs in
List.map (fun (hd,rest) -> pat::hd,rest) lines)
clauses)
| _ ->
let pat = PatVar(dl,update_name na rhs) in
let mat = align_tree nal isgoal rhs in
List.map (fun (hd,rest) -> pat::hd,rest) mat
and contract_branch isgoal e (cn,mkpat,b) =
let nal,rhs = decomp_branch cn [] isgoal e b in
let mat = align_tree nal isgoal rhs in
List.map (fun (hd,rhs) -> (mkpat rhs hd,rhs)) mat
(**********************************************************************)
(* Transform internal representation of pattern-matching into list of *)
(* clauses *)
let is_nondep_branch c n =
try
let _,ccl = decompose_lam_n_assum n c in
noccur_between 1 n ccl
with _ -> (* Not eta-expanded or not reduced *)
false
let extract_nondep_branches test c b n =
let rec strip n r = if n=0 then r else
match r with
| RLambda (_,_,_,t) -> strip (n-1) t
| RLetIn (_,_,_,t) -> strip (n-1) t
| _ -> assert false in
if test c n then Some (strip n b) else None
let it_destRLambda_or_LetIn_names n c =
let rec aux n nal c =
if n=0 then (List.rev nal,c) else match c with
| RLambda (_,na,_,c) -> aux (n-1) (na::nal) c
| RLetIn (_,na,_,c) -> aux (n-1) (na::nal) c
| _ ->
(* eta-expansion *)
let rec next l =
let x = Nameops.next_ident_away (id_of_string "x") l in
(* Not efficient but unusual and no function to get free rawvars *)
(* if occur_rawconstr x c then next (x::l) else x in *)
x
in
let x = next (free_rawvars c) in
let a = RVar (dl,x) in
aux (n-1) (Name x :: nal)
(match c with
| RApp (loc,p,l) -> RApp (loc,c,l@[a])
| _ -> (RApp (dl,c,[a])))
in aux n [] c
let detype_case computable detype detype_eqns testdep avoid data p c bl =
let (indsp,st,nparams,consnargsl,k) = data in
let synth_type = synthetize_type () in
let tomatch = detype c in
let alias, aliastyp, pred=
if (not !Flags.raw_print) & synth_type & computable & Array.length bl<>0
then
Anonymous, None, None
else
match Option.map detype p with
| None -> Anonymous, None, None
| Some p ->
let nl,typ = it_destRLambda_or_LetIn_names k p in
let n,typ = match typ with
| RLambda (_,x,t,c) -> x, c
| _ -> Anonymous, typ in
let aliastyp =
if List.for_all ((=) Anonymous) nl then None
else Some (dl,indsp,nparams,nl) in
n, aliastyp, Some typ
in
let constructs = Array.init (Array.length bl) (fun i -> (indsp,i+1)) in
let eqnl = detype_eqns constructs consnargsl bl in
let tag =
try
if !Flags.raw_print then
RegularStyle
else if PrintingLet.active (indsp,consnargsl) then
LetStyle
else if PrintingIf.active (indsp,consnargsl) then
IfStyle
else
st
with Not_found -> st
in
match tag with
| LetStyle when aliastyp = None ->
let bl' = Array.map detype bl in
let (nal,d) = it_destRLambda_or_LetIn_names consnargsl.(0) bl'.(0) in
RLetTuple (dl,nal,(alias,pred),tomatch,d)
| IfStyle when aliastyp = None ->
let bl' = Array.map detype bl in
let nondepbrs =
array_map3 (extract_nondep_branches testdep) bl bl' consnargsl in
if array_for_all ((<>) None) nondepbrs then
RIf (dl,tomatch,(alias,pred),
Option.get nondepbrs.(0),Option.get nondepbrs.(1))
else
RCases (dl,pred,[tomatch,(alias,aliastyp)],eqnl)
| _ ->
RCases (dl,pred,[tomatch,(alias,aliastyp)],eqnl)
let detype_sort = function
| Prop c -> RProp c
| Type u -> RType (Some u)
(**********************************************************************)
(* Main detyping function *)
let detype_anonymous = ref (fun loc n -> anomaly "detype: index to an anonymous variable")
let set_detype_anonymous f = detype_anonymous := f
let rec detype (isgoal:bool) avoid env t =
match kind_of_term (collapse_appl t) with
| Rel n ->
(try match lookup_name_of_rel n env with
| Name id -> RVar (dl, id)
| Anonymous -> !detype_anonymous dl n
with Not_found ->
let s = "_UNBOUND_REL_"^(string_of_int n)
in RVar (dl, id_of_string s))
| Meta n ->
(* Meta in constr are not user-parsable and are mapped to Evar *)
REvar (dl, n, None)
| Var id ->
(try
let _ = Global.lookup_named id in RRef (dl, VarRef id)
with _ ->
RVar (dl, id))
| Sort s -> RSort (dl,detype_sort s)
| Cast (c1,k,c2) ->
RCast(dl,detype isgoal avoid env c1, CastConv (k, detype isgoal avoid env c2))
| Prod (na,ty,c) -> detype_binder isgoal BProd avoid env na ty c
| Lambda (na,ty,c) -> detype_binder isgoal BLambda avoid env na ty c
| LetIn (na,b,_,c) -> detype_binder isgoal BLetIn avoid env na b c
| App (f,args) ->
RApp (dl,detype isgoal avoid env f,
array_map_to_list (detype isgoal avoid env) args)
| Const sp -> RRef (dl, ConstRef sp)
| Evar (ev,cl) ->
REvar (dl, ev,
Some (List.map (detype isgoal avoid env) (Array.to_list cl)))
| Ind ind_sp ->
RRef (dl, IndRef ind_sp)
| Construct cstr_sp ->
RRef (dl, ConstructRef cstr_sp)
| Case (ci,p,c,bl) ->
let comp = computable p (ci.ci_pp_info.ind_nargs) in
detype_case comp (detype isgoal avoid env)
(detype_eqns isgoal avoid env ci comp)
is_nondep_branch avoid
(ci.ci_ind,ci.ci_pp_info.style,ci.ci_npar,
ci.ci_cstr_nargs,ci.ci_pp_info.ind_nargs)
(Some p) c bl
| Fix (nvn,recdef) -> detype_fix isgoal avoid env nvn recdef
| CoFix (n,recdef) -> detype_cofix isgoal avoid env n recdef
and detype_fix isgoal avoid env (vn,_ as nvn) (names,tys,bodies) =
let def_avoid, def_env, lfi =
Array.fold_left
(fun (avoid, env, l) na ->
let id = next_name_away na avoid in
(id::avoid, add_name (Name id) env, id::l))
(avoid, env, []) names in
let n = Array.length tys in
let v = array_map3
(fun c t i -> share_names isgoal (i+1) [] def_avoid def_env c (lift n t))
bodies tys vn in
RRec(dl,RFix (Array.map (fun i -> Some i, RStructRec) (fst nvn), snd nvn),Array.of_list (List.rev lfi),
Array.map (fun (bl,_,_) -> bl) v,
Array.map (fun (_,_,ty) -> ty) v,
Array.map (fun (_,bd,_) -> bd) v)
and detype_cofix isgoal avoid env n (names,tys,bodies) =
let def_avoid, def_env, lfi =
Array.fold_left
(fun (avoid, env, l) na ->
let id = next_name_away na avoid in
(id::avoid, add_name (Name id) env, id::l))
(avoid, env, []) names in
let ntys = Array.length tys in
let v = array_map2
(fun c t -> share_names isgoal 0 [] def_avoid def_env c (lift ntys t))
bodies tys in
RRec(dl,RCoFix n,Array.of_list (List.rev lfi),
Array.map (fun (bl,_,_) -> bl) v,
Array.map (fun (_,_,ty) -> ty) v,
Array.map (fun (_,bd,_) -> bd) v)
and share_names isgoal n l avoid env c t =
match kind_of_term c, kind_of_term t with
(* factorize even when not necessary to have better presentation *)
| Lambda (na,t,c), Prod (na',t',c') ->
let na = match (na,na') with
Name _, _ -> na
| _, Name _ -> na'
| _ -> na in
let t = detype isgoal avoid env t in
let id = next_name_away na avoid in
let avoid = id::avoid and env = add_name (Name id) env in
share_names isgoal (n-1) ((Name id,None,t)::l) avoid env c c'
(* May occur for fix built interactively *)
| LetIn (na,b,t',c), _ when n > 0 ->
let t' = detype isgoal avoid env t' in
let b = detype isgoal avoid env b in
let id = next_name_away na avoid in
let avoid = id::avoid and env = add_name (Name id) env in
share_names isgoal n ((Name id,Some b,t')::l) avoid env c t
(* Only if built with the f/n notation or w/o let-expansion in types *)
| _, LetIn (_,b,_,t) when n > 0 ->
share_names isgoal n l avoid env c (subst1 b t)
(* If it is an open proof: we cheat and eta-expand *)
| _, Prod (na',t',c') when n > 0 ->
let t' = detype isgoal avoid env t' in
let id = next_name_away na' avoid in
let avoid = id::avoid and env = add_name (Name id) env in
let appc = mkApp (lift 1 c,[|mkRel 1|]) in
share_names isgoal (n-1) ((Name id,None,t')::l) avoid env appc c'
(* If built with the f/n notation: we renounce to share names *)
| _ ->
if n>0 then warning "Detyping.detype: cannot factorize fix enough";
let c = detype isgoal avoid env c in
let t = detype isgoal avoid env t in
(List.rev l,c,t)
and detype_eqns isgoal avoid env ci computable constructs consnargsl bl =
try
if !Flags.raw_print or not (reverse_matching ()) then raise Exit;
let mat = build_tree Anonymous isgoal (avoid,env) ci bl in
List.map (fun (pat,((avoid,env),c)) -> (dl,[],[pat],detype isgoal avoid env c))
mat
with _ ->
Array.to_list
(array_map3 (detype_eqn isgoal avoid env) constructs consnargsl bl)
and detype_eqn isgoal avoid env constr construct_nargs branch =
let make_pat x avoid env b ids =
if force_wildcard () & noccurn 1 b then
PatVar (dl,Anonymous),avoid,(add_name Anonymous env),ids
else
let id = next_name_away_in_cases_pattern x avoid in
PatVar (dl,Name id),id::avoid,(add_name (Name id) env),id::ids
in
let rec buildrec ids patlist avoid env n b =
if n=0 then
(dl, ids,
[PatCstr(dl, constr, List.rev patlist,Anonymous)],
detype isgoal avoid env b)
else
match kind_of_term b with
| Lambda (x,_,b) ->
let pat,new_avoid,new_env,new_ids = make_pat x avoid env b ids in
buildrec new_ids (pat::patlist) new_avoid new_env (n-1) b
| LetIn (x,_,_,b) ->
let pat,new_avoid,new_env,new_ids = make_pat x avoid env b ids in
buildrec new_ids (pat::patlist) new_avoid new_env (n-1) b
| Cast (c,_,_) -> (* Oui, il y a parfois des cast *)
buildrec ids patlist avoid env n c
| _ -> (* eta-expansion : n'arrivera plus lorsque tous les
termes seront construits à partir de la syntaxe Cases *)
(* nommage de la nouvelle variable *)
let new_b = applist (lift 1 b, [mkRel 1]) in
let pat,new_avoid,new_env,new_ids =
make_pat Anonymous avoid env new_b ids in
buildrec new_ids (pat::patlist) new_avoid new_env (n-1) new_b
in
buildrec [] [] avoid env construct_nargs branch
and detype_binder isgoal bk avoid env na ty c =
let na',avoid' =
if bk = BLetIn then
concrete_let_name (avoid_flag isgoal) avoid env na c
else
concrete_name (avoid_flag isgoal) avoid env na c in
let r = detype isgoal avoid' (add_name na' env) c in
match bk with
| BProd -> RProd (dl, na',detype isgoal avoid env ty, r)
| BLambda -> RLambda (dl, na',detype isgoal avoid env ty, r)
| BLetIn -> RLetIn (dl, na',detype isgoal avoid env ty, r)
let rec detype_rel_context where avoid env sign =
let where = Option.map (fun c -> it_mkLambda_or_LetIn c sign) where in
let rec aux avoid env = function
| [] -> []
| (na,b,t)::rest ->
let na',avoid' =
match where with
| None -> na,avoid
| Some c ->
if b<>None then concrete_let_name None avoid env na c
else concrete_name None avoid env na c in
let b = Option.map (detype false avoid env) b in
let t = detype false avoid env t in
(na',b,t) :: aux avoid' (add_name na' env) rest
in aux avoid env (List.rev sign)
(**********************************************************************)
(* Module substitution: relies on detyping *)
let rec subst_cases_pattern subst pat =
match pat with
| PatVar _ -> pat
| PatCstr (loc,((kn,i),j),cpl,n) ->
let kn' = subst_kn subst kn
and cpl' = list_smartmap (subst_cases_pattern subst) cpl in
if kn' == kn && cpl' == cpl then pat else
PatCstr (loc,((kn',i),j),cpl',n)
let rec subst_rawconstr subst raw =
match raw with
| RRef (loc,ref) ->
let ref',t = subst_global subst ref in
if ref' == ref then raw else
detype false [] [] t
| RVar _ -> raw
| REvar _ -> raw
| RPatVar _ -> raw
| RApp (loc,r,rl) ->
let r' = subst_rawconstr subst r
and rl' = list_smartmap (subst_rawconstr subst) rl in
if r' == r && rl' == rl then raw else
RApp(loc,r',rl')
| RLambda (loc,n,r1,r2) ->
let r1' = subst_rawconstr subst r1 and r2' = subst_rawconstr subst r2 in
if r1' == r1 && r2' == r2 then raw else
RLambda (loc,n,r1',r2')
| RProd (loc,n,r1,r2) ->
let r1' = subst_rawconstr subst r1 and r2' = subst_rawconstr subst r2 in
if r1' == r1 && r2' == r2 then raw else
RProd (loc,n,r1',r2')
| RLetIn (loc,n,r1,r2) ->
let r1' = subst_rawconstr subst r1 and r2' = subst_rawconstr subst r2 in
if r1' == r1 && r2' == r2 then raw else
RLetIn (loc,n,r1',r2')
| RCases (loc,rtno,rl,branches) ->
let rtno' = Option.smartmap (subst_rawconstr subst) rtno
and rl' = list_smartmap (fun (a,x as y) ->
let a' = subst_rawconstr subst a in
let (n,topt) = x in
let topt' = Option.smartmap
(fun (loc,(sp,i),x,y as t) ->
let sp' = subst_kn subst sp in
if sp == sp' then t else (loc,(sp',i),x,y)) topt in
if a == a' && topt == topt' then y else (a',(n,topt'))) rl
and branches' = list_smartmap
(fun (loc,idl,cpl,r as branch) ->
let cpl' =
list_smartmap (subst_cases_pattern subst) cpl
and r' = subst_rawconstr subst r in
if cpl' == cpl && r' == r then branch else
(loc,idl,cpl',r'))
branches
in
if rtno' == rtno && rl' == rl && branches' == branches then raw else
RCases (loc,rtno',rl',branches')
| RLetTuple (loc,nal,(na,po),b,c) ->
let po' = Option.smartmap (subst_rawconstr subst) po
and b' = subst_rawconstr subst b
and c' = subst_rawconstr subst c in
if po' == po && b' == b && c' == c then raw else
RLetTuple (loc,nal,(na,po'),b',c')
| RIf (loc,c,(na,po),b1,b2) ->
let po' = Option.smartmap (subst_rawconstr subst) po
and b1' = subst_rawconstr subst b1
and b2' = subst_rawconstr subst b2
and c' = subst_rawconstr subst c in
if c' == c & po' == po && b1' == b1 && b2' == b2 then raw else
RIf (loc,c',(na,po'),b1',b2')
| RRec (loc,fix,ida,bl,ra1,ra2) ->
let ra1' = array_smartmap (subst_rawconstr subst) ra1
and ra2' = array_smartmap (subst_rawconstr subst) ra2 in
let bl' = array_smartmap
(list_smartmap (fun (na,obd,ty as dcl) ->
let ty' = subst_rawconstr subst ty in
let obd' = Option.smartmap (subst_rawconstr subst) obd in
if ty'==ty & obd'==obd then dcl else (na,obd',ty')))
bl in
if ra1' == ra1 && ra2' == ra2 && bl'==bl then raw else
RRec (loc,fix,ida,bl',ra1',ra2')
| RSort _ -> raw
| RHole (loc,ImplicitArg (ref,i)) ->
let ref',_ = subst_global subst ref in
if ref' == ref then raw else
RHole (loc,InternalHole)
| RHole (loc, (BinderType _ | QuestionMark _ | CasesType |
InternalHole | TomatchTypeParameter _ | GoalEvar)) -> raw
| RCast (loc,r1,k) ->
(match k with
CastConv (k,r2) ->
let r1' = subst_rawconstr subst r1 and r2' = subst_rawconstr subst r2 in
if r1' == r1 && r2' == r2 then raw else
RCast (loc,r1', CastConv (k,r2'))
| CastCoerce ->
let r1' = subst_rawconstr subst r1 in
if r1' == r1 then raw else RCast (loc,r1',k))
| RDynamic _ -> raw
(* Utilities to transform kernel cases to simple pattern-matching problem *)
let simple_cases_matrix_of_branches ind brns brs =
list_map2_i (fun i n b ->
let nal,c = it_destRLambda_or_LetIn_names n b in
let mkPatVar na = PatVar (dummy_loc,na) in
let p = PatCstr (dummy_loc,(ind,i+1),List.map mkPatVar nal,Anonymous) in
let ids = map_succeed Nameops.out_name nal in
(dummy_loc,ids,[p],c))
0 brns brs
let return_type_of_predicate ind nparams n pred =
let nal,p = it_destRLambda_or_LetIn_names (n+1) pred in
(List.hd nal, Some (dummy_loc, ind, nparams, List.tl nal)), Some p
|