1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open CErrors
open Util
open Names
open Term
open Vars
open Inductiveops
open Environ
open Glob_term
open Glob_ops
open Termops
open Namegen
open Libnames
open Globnames
open Nametab
open Mod_subst
open Misctypes
open Decl_kinds
open Context.Named.Declaration
let dl = Loc.ghost
(** Should we keep details of universes during detyping ? *)
let print_universes = Flags.univ_print
(** If true, prints local context of evars, whatever print_arguments *)
let print_evar_arguments = ref false
let add_name na b t (nenv, env) =
let open Context.Rel.Declaration in
add_name na nenv, push_rel (match b with
| None -> LocalAssum (na,t)
| Some b -> LocalDef (na,b,t)
)
env
let add_name_opt na b t (nenv, env) =
match t with
| None -> Termops.add_name na nenv, env
| Some t -> add_name na b t (nenv, env)
(****************************************************************************)
(* Tools for printing of Cases *)
let encode_inductive r =
let indsp = global_inductive r in
let constr_lengths = constructors_nrealargs indsp in
(indsp,constr_lengths)
(* Parameterization of the translation from constr to ast *)
(* Tables for Cases printing under a "if" form, a "let" form, *)
let has_two_constructors lc =
Int.equal (Array.length lc) 2 (* & lc.(0) = 0 & lc.(1) = 0 *)
let isomorphic_to_tuple lc = Int.equal (Array.length lc) 1
let encode_bool r =
let (x,lc) = encode_inductive r in
if not (has_two_constructors lc) then
user_err ~loc:(loc_of_reference r) ~hdr:"encode_if"
(str "This type has not exactly two constructors.");
x
let encode_tuple r =
let (x,lc) = encode_inductive r in
if not (isomorphic_to_tuple lc) then
user_err ~loc:(loc_of_reference r) ~hdr:"encode_tuple"
(str "This type cannot be seen as a tuple type.");
x
module PrintingInductiveMake =
functor (Test : sig
val encode : reference -> inductive
val member_message : std_ppcmds -> bool -> std_ppcmds
val field : string
val title : string
end) ->
struct
type t = inductive
let compare = ind_ord
let encode = Test.encode
let subst subst obj = subst_ind subst obj
let printer ind = pr_global_env Id.Set.empty (IndRef ind)
let key = ["Printing";Test.field]
let title = Test.title
let member_message x = Test.member_message (printer x)
let synchronous = true
end
module PrintingCasesIf =
PrintingInductiveMake (struct
let encode = encode_bool
let field = "If"
let title = "Types leading to pretty-printing of Cases using a `if' form:"
let member_message s b =
str "Cases on elements of " ++ s ++
str
(if b then " are printed using a `if' form"
else " are not printed using a `if' form")
end)
module PrintingCasesLet =
PrintingInductiveMake (struct
let encode = encode_tuple
let field = "Let"
let title =
"Types leading to a pretty-printing of Cases using a `let' form:"
let member_message s b =
str "Cases on elements of " ++ s ++
str
(if b then " are printed using a `let' form"
else " are not printed using a `let' form")
end)
module PrintingIf = Goptions.MakeRefTable(PrintingCasesIf)
module PrintingLet = Goptions.MakeRefTable(PrintingCasesLet)
(* Flags.for printing or not wildcard and synthetisable types *)
open Goptions
let wildcard_value = ref true
let force_wildcard () = !wildcard_value
let _ = declare_bool_option
{ optsync = true;
optdepr = false;
optname = "forced wildcard";
optkey = ["Printing";"Wildcard"];
optread = force_wildcard;
optwrite = (:=) wildcard_value }
let synth_type_value = ref true
let synthetize_type () = !synth_type_value
let _ = declare_bool_option
{ optsync = true;
optdepr = false;
optname = "pattern matching return type synthesizability";
optkey = ["Printing";"Synth"];
optread = synthetize_type;
optwrite = (:=) synth_type_value }
let reverse_matching_value = ref true
let reverse_matching () = !reverse_matching_value
let _ = declare_bool_option
{ optsync = true;
optdepr = false;
optname = "pattern-matching reversibility";
optkey = ["Printing";"Matching"];
optread = reverse_matching;
optwrite = (:=) reverse_matching_value }
let print_primproj_params_value = ref true
let print_primproj_params () = !print_primproj_params_value
let _ = declare_bool_option
{ optsync = true;
optdepr = false;
optname = "printing of primitive projection parameters";
optkey = ["Printing";"Primitive";"Projection";"Parameters"];
optread = print_primproj_params;
optwrite = (:=) print_primproj_params_value }
let print_primproj_compatibility_value = ref true
let print_primproj_compatibility () = !print_primproj_compatibility_value
let _ = declare_bool_option
{ optsync = true;
optdepr = false;
optname = "backwards-compatible printing of primitive projections";
optkey = ["Printing";"Primitive";"Projection";"Compatibility"];
optread = print_primproj_compatibility;
optwrite = (:=) print_primproj_compatibility_value }
(* Auxiliary function for MutCase printing *)
(* [computable] tries to tell if the predicate typing the result is inferable*)
let computable p k =
(* We first remove as many lambda as the arity, then we look
if it remains a lambda for a dependent elimination. This function
works for normal eta-expanded term. For non eta-expanded or
non-normal terms, it may affirm the pred is synthetisable
because of an undetected ultimate dependent variable in the second
clause, or else, it may affirm the pred non synthetisable
because of a non normal term in the fourth clause.
A solution could be to store, in the MutCase, the eta-expanded
normal form of pred to decide if it depends on its variables
Lorsque le prédicat est dépendant de manière certaine, on
ne déclare pas le prédicat synthétisable (même si la
variable dépendante ne l'est pas effectivement) parce que
sinon on perd la réciprocité de la synthèse (qui, lui,
engendrera un prédicat non dépendant) *)
let sign,ccl = decompose_lam_assum p in
Int.equal (Context.Rel.length sign) (k + 1)
&&
noccur_between 1 (k+1) ccl
let lookup_name_as_displayed env t s =
let rec lookup avoid n c = match kind_of_term c with
| Prod (name,_,c') ->
(match compute_displayed_name_in RenamingForGoal avoid name c' with
| (Name id,avoid') -> if Id.equal id s then Some n else lookup avoid' (n+1) c'
| (Anonymous,avoid') -> lookup avoid' (n+1) (pop c'))
| LetIn (name,_,_,c') ->
(match compute_displayed_name_in RenamingForGoal avoid name c' with
| (Name id,avoid') -> if Id.equal id s then Some n else lookup avoid' (n+1) c'
| (Anonymous,avoid') -> lookup avoid' (n+1) (pop c'))
| Cast (c,_,_) -> lookup avoid n c
| _ -> None
in lookup (ids_of_named_context (named_context env)) 1 t
let lookup_index_as_renamed env t n =
let rec lookup n d c = match kind_of_term c with
| Prod (name,_,c') ->
(match compute_displayed_name_in RenamingForGoal [] name c' with
(Name _,_) -> lookup n (d+1) c'
| (Anonymous,_) ->
if Int.equal n 0 then
Some (d-1)
else if Int.equal n 1 then
Some d
else
lookup (n-1) (d+1) c')
| LetIn (name,_,_,c') ->
(match compute_displayed_name_in RenamingForGoal [] name c' with
| (Name _,_) -> lookup n (d+1) c'
| (Anonymous,_) ->
if Int.equal n 0 then
Some (d-1)
else if Int.equal n 1 then
Some d
else
lookup (n-1) (d+1) c'
)
| Cast (c,_,_) -> lookup n d c
| _ -> if Int.equal n 0 then Some (d-1) else None
in lookup n 1 t
(**********************************************************************)
(* Fragile algorithm to reverse pattern-matching compilation *)
let update_name na ((_,(e,_)),c) =
match na with
| Name _ when force_wildcard () && noccurn (List.index Name.equal na e) c ->
Anonymous
| _ ->
na
let rec decomp_branch tags nal b (avoid,env as e) c =
let flag = if b then RenamingForGoal else RenamingForCasesPattern (fst env,c) in
match tags with
| [] -> (List.rev nal,(e,c))
| b::tags ->
let na,c,f,body,t =
match kind_of_term (strip_outer_cast c), b with
| Lambda (na,t,c),false -> na,c,compute_displayed_let_name_in,None,Some t
| LetIn (na,b,t,c),true ->
na,c,compute_displayed_name_in,Some b,Some t
| _, false ->
Name default_dependent_ident,(applist (lift 1 c, [mkRel 1])),
compute_displayed_name_in,None,None
| _, true ->
Anonymous,lift 1 c,compute_displayed_name_in,None,None
in
let na',avoid' = f flag avoid na c in
decomp_branch tags (na'::nal) b
(avoid', add_name_opt na' body t env) c
let rec build_tree na isgoal e ci cl =
let mkpat n rhs pl = PatCstr(dl,(ci.ci_ind,n+1),pl,update_name na rhs) in
let cnl = ci.ci_pp_info.cstr_tags in
let cna = ci.ci_cstr_nargs in
List.flatten
(List.init (Array.length cl)
(fun i -> contract_branch isgoal e (cnl.(i),cna.(i),mkpat i,cl.(i))))
and align_tree nal isgoal (e,c as rhs) = match nal with
| [] -> [[],rhs]
| na::nal ->
match kind_of_term c with
| Case (ci,p,c,cl) when
eq_constr c (mkRel (List.index Name.equal na (fst (snd e))))
&& not (Int.equal (Array.length cl) 0)
&& (* don't contract if p dependent *)
computable p (List.length ci.ci_pp_info.ind_tags) (* FIXME: can do better *) ->
let clauses = build_tree na isgoal e ci cl in
List.flatten
(List.map (fun (pat,rhs) ->
let lines = align_tree nal isgoal rhs in
List.map (fun (hd,rest) -> pat::hd,rest) lines)
clauses)
| _ ->
let pat = PatVar(dl,update_name na rhs) in
let mat = align_tree nal isgoal rhs in
List.map (fun (hd,rest) -> pat::hd,rest) mat
and contract_branch isgoal e (cdn,can,mkpat,b) =
let nal,rhs = decomp_branch cdn [] isgoal e b in
let mat = align_tree nal isgoal rhs in
List.map (fun (hd,rhs) -> (mkpat rhs hd,rhs)) mat
(**********************************************************************)
(* Transform internal representation of pattern-matching into list of *)
(* clauses *)
let is_nondep_branch c l =
try
(* FIXME: do better using tags from l *)
let sign,ccl = decompose_lam_n_decls (List.length l) c in
noccur_between 1 (Context.Rel.length sign) ccl
with e when CErrors.noncritical e -> (* Not eta-expanded or not reduced *)
false
let extract_nondep_branches test c b l =
let rec strip l r =
match r,l with
| r, [] -> r
| GLambda (_,_,_,_,t), false::l -> strip l t
| GLetIn (_,_,_,t), true::l -> strip l t
(* FIXME: do we need adjustment? *)
| _,_ -> assert false in
if test c l then Some (strip l b) else None
let it_destRLambda_or_LetIn_names l c =
let rec aux l nal c =
match c, l with
| _, [] -> (List.rev nal,c)
| GLambda (_,na,_,_,c), false::l -> aux l (na::nal) c
| GLetIn (_,na,_,c), true::l -> aux l (na::nal) c
| _, true::l -> (* let-expansion *) aux l (Anonymous :: nal) c
| _, false::l ->
(* eta-expansion *)
let next l =
let x = next_ident_away default_dependent_ident l in
(* Not efficient but unusual and no function to get free glob_vars *)
(* if occur_glob_constr x c then next (x::l) else x in *)
x
in
let x = next (free_glob_vars c) in
let a = GVar (dl,x) in
aux l (Name x :: nal)
(match c with
| GApp (loc,p,l) -> GApp (loc,p,l@[a])
| _ -> (GApp (dl,c,[a])))
in aux l [] c
let detype_case computable detype detype_eqns testdep avoid data p c bl =
let (indsp,st,constagsl,k) = data in
let synth_type = synthetize_type () in
let tomatch = detype c in
let alias, aliastyp, pred=
if (not !Flags.raw_print) && synth_type && computable && not (Int.equal (Array.length bl) 0)
then
Anonymous, None, None
else
match Option.map detype p with
| None -> Anonymous, None, None
| Some p ->
let nl,typ = it_destRLambda_or_LetIn_names k p in
let n,typ = match typ with
| GLambda (_,x,_,t,c) -> x, c
| _ -> Anonymous, typ in
let aliastyp =
if List.for_all (Name.equal Anonymous) nl then None
else Some (dl,indsp,nl) in
n, aliastyp, Some typ
in
let constructs = Array.init (Array.length bl) (fun i -> (indsp,i+1)) in
let tag =
try
if !Flags.raw_print then
RegularStyle
else if st == LetPatternStyle then
st
else if PrintingLet.active indsp then
LetStyle
else if PrintingIf.active indsp then
IfStyle
else
st
with Not_found -> st
in
match tag, aliastyp with
| LetStyle, None ->
let bl' = Array.map detype bl in
let (nal,d) = it_destRLambda_or_LetIn_names constagsl.(0) bl'.(0) in
GLetTuple (dl,nal,(alias,pred),tomatch,d)
| IfStyle, None ->
let bl' = Array.map detype bl in
let nondepbrs =
Array.map3 (extract_nondep_branches testdep) bl bl' constagsl in
if Array.for_all ((!=) None) nondepbrs then
GIf (dl,tomatch,(alias,pred),
Option.get nondepbrs.(0),Option.get nondepbrs.(1))
else
let eqnl = detype_eqns constructs constagsl bl in
GCases (dl,tag,pred,[tomatch,(alias,aliastyp)],eqnl)
| _ ->
let eqnl = detype_eqns constructs constagsl bl in
GCases (dl,tag,pred,[tomatch,(alias,aliastyp)],eqnl)
let detype_sort sigma = function
| Prop Null -> GProp
| Prop Pos -> GSet
| Type u ->
GType
(if !print_universes
then [dl, Pp.string_of_ppcmds (Univ.Universe.pr_with (Evd.pr_evd_level sigma) u)]
else [])
type binder_kind = BProd | BLambda | BLetIn
(**********************************************************************)
(* Main detyping function *)
let detype_anonymous = ref (fun loc n -> anomaly ~label:"detype" (Pp.str "index to an anonymous variable"))
let set_detype_anonymous f = detype_anonymous := f
let detype_level sigma l =
GType (Some (dl, Pp.string_of_ppcmds (Evd.pr_evd_level sigma l)))
let detype_instance sigma l =
if Univ.Instance.is_empty l then None
else Some (List.map (detype_level sigma) (Array.to_list (Univ.Instance.to_array l)))
let rec detype flags avoid env sigma t =
match kind_of_term (collapse_appl t) with
| Rel n ->
(try match lookup_name_of_rel n (fst env) with
| Name id -> GVar (dl, id)
| Anonymous -> !detype_anonymous dl n
with Not_found ->
let s = "_UNBOUND_REL_"^(string_of_int n)
in GVar (dl, Id.of_string s))
| Meta n ->
(* Meta in constr are not user-parsable and are mapped to Evar *)
(* using numbers to be unparsable *)
GEvar (dl, Id.of_string ("M" ^ string_of_int n), [])
| Var id ->
(try let _ = Global.lookup_named id in GRef (dl, VarRef id, None)
with Not_found -> GVar (dl, id))
| Sort s -> GSort (dl,detype_sort sigma s)
| Cast (c1,REVERTcast,c2) when not !Flags.raw_print ->
detype flags avoid env sigma c1
| Cast (c1,k,c2) ->
let d1 = detype flags avoid env sigma c1 in
let d2 = detype flags avoid env sigma c2 in
let cast = match k with
| VMcast -> CastVM d2
| NATIVEcast -> CastNative d2
| _ -> CastConv d2
in
GCast(dl,d1,cast)
| Prod (na,ty,c) -> detype_binder flags BProd avoid env sigma na None ty c
| Lambda (na,ty,c) -> detype_binder flags BLambda avoid env sigma na None ty c
| LetIn (na,b,ty,c) -> detype_binder flags BLetIn avoid env sigma na (Some b) ty c
| App (f,args) ->
let mkapp f' args' =
match f' with
| GApp (dl',f',args'') ->
GApp (dl,f',args''@args')
| _ -> GApp (dl,f',args')
in
mkapp (detype flags avoid env sigma f)
(Array.map_to_list (detype flags avoid env sigma) args)
| Const (sp,u) -> GRef (dl, ConstRef sp, detype_instance sigma u)
| Proj (p,c) ->
let noparams () =
let pb = Environ.lookup_projection p (snd env) in
let pars = pb.Declarations.proj_npars in
let hole = GHole(Loc.ghost,Evar_kinds.InternalHole,Misctypes.IntroAnonymous,None) in
let args = List.make pars hole in
GApp (dl, GRef (dl, ConstRef (Projection.constant p), None),
(args @ [detype flags avoid env sigma c]))
in
if fst flags || !Flags.in_debugger || !Flags.in_toplevel then
try noparams ()
with _ ->
(* lax mode, used by debug printers only *)
GApp (dl, GRef (dl, ConstRef (Projection.constant p), None),
[detype flags avoid env sigma c])
else
if print_primproj_compatibility () && Projection.unfolded p then
(** Print the compatibility match version *)
let c' =
try
let pb = Environ.lookup_projection p (snd env) in
let body = pb.Declarations.proj_body in
let ty = Retyping.get_type_of (snd env) sigma c in
let ((ind,u), args) = Inductiveops.find_mrectype (snd env) sigma ty in
let body' = strip_lam_assum body in
let body' = subst_instance_constr u body' in
substl (c :: List.rev args) body'
with Retyping.RetypeError _ | Not_found ->
anomaly (str"Cannot detype an unfolded primitive projection.")
in detype flags avoid env sigma c'
else
if print_primproj_params () then
try
let c = Retyping.expand_projection (snd env) sigma p c [] in
detype flags avoid env sigma c
with Retyping.RetypeError _ -> noparams ()
else noparams ()
| Evar (evk,cl) ->
let bound_to_itself_or_letin decl c =
match decl with
| LocalDef _ -> true
| LocalAssum (id,_) ->
try let n = List.index Name.equal (Name id) (fst env) in
isRelN n c
with Not_found -> isVarId id c
in
let id,l =
try
let id = match Evd.evar_ident evk sigma with
| None -> Evd.pr_evar_suggested_name evk sigma
| Some id -> id
in
let l = Evd.evar_instance_array bound_to_itself_or_letin (Evd.find sigma evk) cl in
let fvs,rels = List.fold_left (fun (fvs,rels) (_,c) -> match kind_of_term c with Rel n -> (fvs,Int.Set.add n rels) | Var id -> (Id.Set.add id fvs,rels) | _ -> (fvs,rels)) (Id.Set.empty,Int.Set.empty) l in
let l = Evd.evar_instance_array (fun d c -> not !print_evar_arguments && (bound_to_itself_or_letin d c && not (isRel c && Int.Set.mem (destRel c) rels || isVar c && (Id.Set.mem (destVar c) fvs)))) (Evd.find sigma evk) cl in
id,l
with Not_found ->
Id.of_string ("X" ^ string_of_int (Evar.repr evk)),
(Array.map_to_list (fun c -> (Id.of_string "__",c)) cl)
in
GEvar (dl,id,
List.map (on_snd (detype flags avoid env sigma)) l)
| Ind (ind_sp,u) ->
GRef (dl, IndRef ind_sp, detype_instance sigma u)
| Construct (cstr_sp,u) ->
GRef (dl, ConstructRef cstr_sp, detype_instance sigma u)
| Case (ci,p,c,bl) ->
let comp = computable p (List.length (ci.ci_pp_info.ind_tags)) in
detype_case comp (detype flags avoid env sigma)
(detype_eqns flags avoid env sigma ci comp)
is_nondep_branch avoid
(ci.ci_ind,ci.ci_pp_info.style,
ci.ci_pp_info.cstr_tags,ci.ci_pp_info.ind_tags)
(Some p) c bl
| Fix (nvn,recdef) -> detype_fix flags avoid env sigma nvn recdef
| CoFix (n,recdef) -> detype_cofix flags avoid env sigma n recdef
and detype_fix flags avoid env sigma (vn,_ as nvn) (names,tys,bodies) =
let def_avoid, def_env, lfi =
Array.fold_left2
(fun (avoid, env, l) na ty ->
let id = next_name_away na avoid in
(id::avoid, add_name (Name id) None ty env, id::l))
(avoid, env, []) names tys in
let n = Array.length tys in
let v = Array.map3
(fun c t i -> share_names flags (i+1) [] def_avoid def_env sigma c (lift n t))
bodies tys vn in
GRec(dl,GFix (Array.map (fun i -> Some i, GStructRec) (fst nvn), snd nvn),Array.of_list (List.rev lfi),
Array.map (fun (bl,_,_) -> bl) v,
Array.map (fun (_,_,ty) -> ty) v,
Array.map (fun (_,bd,_) -> bd) v)
and detype_cofix flags avoid env sigma n (names,tys,bodies) =
let def_avoid, def_env, lfi =
Array.fold_left2
(fun (avoid, env, l) na ty ->
let id = next_name_away na avoid in
(id::avoid, add_name (Name id) None ty env, id::l))
(avoid, env, []) names tys in
let ntys = Array.length tys in
let v = Array.map2
(fun c t -> share_names flags 0 [] def_avoid def_env sigma c (lift ntys t))
bodies tys in
GRec(dl,GCoFix n,Array.of_list (List.rev lfi),
Array.map (fun (bl,_,_) -> bl) v,
Array.map (fun (_,_,ty) -> ty) v,
Array.map (fun (_,bd,_) -> bd) v)
and share_names flags n l avoid env sigma c t =
match kind_of_term c, kind_of_term t with
(* factorize even when not necessary to have better presentation *)
| Lambda (na,t,c), Prod (na',t',c') ->
let na = match (na,na') with
Name _, _ -> na
| _, Name _ -> na'
| _ -> na in
let t' = detype flags avoid env sigma t in
let id = next_name_away na avoid in
let avoid = id::avoid and env = add_name (Name id) None t env in
share_names flags (n-1) ((Name id,Explicit,None,t')::l) avoid env sigma c c'
(* May occur for fix built interactively *)
| LetIn (na,b,t',c), _ when n > 0 ->
let t'' = detype flags avoid env sigma t' in
let b' = detype flags avoid env sigma b in
let id = next_name_away na avoid in
let avoid = id::avoid and env = add_name (Name id) (Some b) t' env in
share_names flags n ((Name id,Explicit,Some b',t'')::l) avoid env sigma c (lift 1 t)
(* Only if built with the f/n notation or w/o let-expansion in types *)
| _, LetIn (_,b,_,t) when n > 0 ->
share_names flags n l avoid env sigma c (subst1 b t)
(* If it is an open proof: we cheat and eta-expand *)
| _, Prod (na',t',c') when n > 0 ->
let t'' = detype flags avoid env sigma t' in
let id = next_name_away na' avoid in
let avoid = id::avoid and env = add_name (Name id) None t' env in
let appc = mkApp (lift 1 c,[|mkRel 1|]) in
share_names flags (n-1) ((Name id,Explicit,None,t'')::l) avoid env sigma appc c'
(* If built with the f/n notation: we renounce to share names *)
| _ ->
if n>0 then Feedback.msg_debug (strbrk "Detyping.detype: cannot factorize fix enough");
let c = detype flags avoid env sigma c in
let t = detype flags avoid env sigma t in
(List.rev l,c,t)
and detype_eqns flags avoid env sigma ci computable constructs consnargsl bl =
try
if !Flags.raw_print || not (reverse_matching ()) then raise Exit;
let mat = build_tree Anonymous (snd flags) (avoid,env) ci bl in
List.map (fun (pat,((avoid,env),c)) -> (dl,[],[pat],detype flags avoid env sigma c))
mat
with e when CErrors.noncritical e ->
Array.to_list
(Array.map3 (detype_eqn flags avoid env sigma) constructs consnargsl bl)
and detype_eqn (lax,isgoal as flags) avoid env sigma constr construct_nargs branch =
let make_pat x avoid env b body ty ids =
if force_wildcard () && noccurn 1 b then
PatVar (dl,Anonymous),avoid,(add_name Anonymous body ty env),ids
else
let flag = if isgoal then RenamingForGoal else RenamingForCasesPattern (fst env,b) in
let na,avoid' = compute_displayed_name_in flag avoid x b in
PatVar (dl,na),avoid',(add_name na body ty env),add_vname ids na
in
let rec buildrec ids patlist avoid env l b =
match kind_of_term b, l with
| _, [] ->
(dl, Id.Set.elements ids,
[PatCstr(dl, constr, List.rev patlist,Anonymous)],
detype flags avoid env sigma b)
| Lambda (x,t,b), false::l ->
let pat,new_avoid,new_env,new_ids = make_pat x avoid env b None t ids in
buildrec new_ids (pat::patlist) new_avoid new_env l b
| LetIn (x,b,t,b'), true::l ->
let pat,new_avoid,new_env,new_ids = make_pat x avoid env b' (Some b) t ids in
buildrec new_ids (pat::patlist) new_avoid new_env l b'
| Cast (c,_,_), l -> (* Oui, il y a parfois des cast *)
buildrec ids patlist avoid env l c
| _, true::l ->
let pat = PatVar (dl,Anonymous) in
buildrec ids (pat::patlist) avoid env l b
| _, false::l ->
(* eta-expansion : n'arrivera plus lorsque tous les
termes seront construits à partir de la syntaxe Cases *)
(* nommage de la nouvelle variable *)
let new_b = applist (lift 1 b, [mkRel 1]) in
let pat,new_avoid,new_env,new_ids =
make_pat Anonymous avoid env new_b None mkProp ids in
buildrec new_ids (pat::patlist) new_avoid new_env l new_b
in
buildrec Id.Set.empty [] avoid env construct_nargs branch
and detype_binder (lax,isgoal as flags) bk avoid env sigma na body ty c =
let flag = if isgoal then RenamingForGoal else RenamingElsewhereFor (fst env,c) in
let na',avoid' = match bk with
| BLetIn -> compute_displayed_let_name_in flag avoid na c
| _ -> compute_displayed_name_in flag avoid na c in
let r = detype flags avoid' (add_name na' body ty env) sigma c in
match bk with
| BProd -> GProd (dl, na',Explicit,detype (lax,false) avoid env sigma ty, r)
| BLambda -> GLambda (dl, na',Explicit,detype (lax,false) avoid env sigma ty, r)
| BLetIn ->
let c = detype (lax,false) avoid env sigma (Option.get body) in
(* Heuristic: we display the type if in Prop *)
let s = try Retyping.get_sort_family_of (snd env) sigma ty with _ when !Flags.in_debugger || !Flags.in_toplevel -> InType (* Can fail because of sigma missing in debugger *) in
let c = if s != InProp then c else
GCast (dl, c, CastConv (detype (lax,false) avoid env sigma ty)) in
GLetIn (dl, na', c, r)
let detype_rel_context ?(lax=false) where avoid env sigma sign =
let where = Option.map (fun c -> it_mkLambda_or_LetIn c sign) where in
let rec aux avoid env = function
| [] -> []
| decl::rest ->
let open Context.Rel.Declaration in
let na = get_name decl in
let t = get_type decl in
let na',avoid' =
match where with
| None -> na,avoid
| Some c ->
if is_local_def decl then
compute_displayed_let_name_in
(RenamingElsewhereFor (fst env,c)) avoid na c
else
compute_displayed_name_in
(RenamingElsewhereFor (fst env,c)) avoid na c in
let b = match decl with
| LocalAssum _ -> None
| LocalDef (_,b,_) -> Some b
in
let b' = Option.map (detype (lax,false) avoid env sigma) b in
let t' = detype (lax,false) avoid env sigma t in
(na',Explicit,b',t') :: aux avoid' (add_name na' b t env) rest
in aux avoid env (List.rev sign)
let detype_names isgoal avoid nenv env sigma t =
detype (false,isgoal) avoid (nenv,env) sigma t
let detype ?(lax=false) isgoal avoid env sigma t =
detype (lax,isgoal) avoid (names_of_rel_context env, env) sigma t
let detype_closed_glob ?lax isgoal avoid env sigma t =
let convert_id cl id =
try Id.Map.find id cl.idents
with Not_found -> id
in
let convert_name cl = function
| Name id -> Name (convert_id cl id)
| Anonymous -> Anonymous
in
let rec detype_closed_glob cl = function
| GVar (loc,id) ->
(* if [id] is bound to a name. *)
begin try
GVar(loc,Id.Map.find id cl.idents)
(* if [id] is bound to a typed term *)
with Not_found -> try
(* assumes [detype] does not raise [Not_found] exceptions *)
let (b,c) = Id.Map.find id cl.typed in
(* spiwack: I'm not sure it is the right thing to do,
but I'm computing the detyping environment like
[Printer.pr_constr_under_binders_env] does. *)
let assums = List.map (fun id -> (Name id,(* dummy *) mkProp)) b in
let env = Termops.push_rels_assum assums env in
detype ?lax isgoal avoid env sigma c
(* if [id] is bound to a [closed_glob_constr]. *)
with Not_found -> try
let {closure;term} = Id.Map.find id cl.untyped in
detype_closed_glob closure term
(* Otherwise [id] stands for itself *)
with Not_found ->
GVar(loc,id)
end
| GLambda (loc,id,k,t,c) ->
let id = convert_name cl id in
GLambda(loc,id,k,detype_closed_glob cl t, detype_closed_glob cl c)
| GProd (loc,id,k,t,c) ->
let id = convert_name cl id in
GProd(loc,id,k,detype_closed_glob cl t, detype_closed_glob cl c)
| GLetIn (loc,id,b,e) ->
let id = convert_name cl id in
GLetIn(loc,id,detype_closed_glob cl b, detype_closed_glob cl e)
| GLetTuple (loc,ids,(n,r),b,e) ->
let ids = List.map (convert_name cl) ids in
let n = convert_name cl n in
GLetTuple (loc,ids,(n,r),detype_closed_glob cl b, detype_closed_glob cl e)
| GCases (loc,sty,po,tml,eqns) ->
let (tml,eqns) =
Glob_ops.map_pattern_binders (fun na -> convert_name cl na) tml eqns
in
let (tml,eqns) =
Glob_ops.map_pattern (fun c -> detype_closed_glob cl c) tml eqns
in
GCases(loc,sty,po,tml,eqns)
| c ->
Glob_ops.map_glob_constr (detype_closed_glob cl) c
in
detype_closed_glob t.closure t.term
(**********************************************************************)
(* Module substitution: relies on detyping *)
let rec subst_cases_pattern subst pat =
match pat with
| PatVar _ -> pat
| PatCstr (loc,((kn,i),j),cpl,n) ->
let kn' = subst_mind subst kn
and cpl' = List.smartmap (subst_cases_pattern subst) cpl in
if kn' == kn && cpl' == cpl then pat else
PatCstr (loc,((kn',i),j),cpl',n)
let (f_subst_genarg, subst_genarg_hook) = Hook.make ()
let rec subst_glob_constr subst raw =
match raw with
| GRef (loc,ref,u) ->
let ref',t = subst_global subst ref in
if ref' == ref then raw else
detype false [] (Global.env()) Evd.empty t
| GVar _ -> raw
| GEvar _ -> raw
| GPatVar _ -> raw
| GApp (loc,r,rl) ->
let r' = subst_glob_constr subst r
and rl' = List.smartmap (subst_glob_constr subst) rl in
if r' == r && rl' == rl then raw else
GApp(loc,r',rl')
| GLambda (loc,n,bk,r1,r2) ->
let r1' = subst_glob_constr subst r1 and r2' = subst_glob_constr subst r2 in
if r1' == r1 && r2' == r2 then raw else
GLambda (loc,n,bk,r1',r2')
| GProd (loc,n,bk,r1,r2) ->
let r1' = subst_glob_constr subst r1 and r2' = subst_glob_constr subst r2 in
if r1' == r1 && r2' == r2 then raw else
GProd (loc,n,bk,r1',r2')
| GLetIn (loc,n,r1,r2) ->
let r1' = subst_glob_constr subst r1 and r2' = subst_glob_constr subst r2 in
if r1' == r1 && r2' == r2 then raw else
GLetIn (loc,n,r1',r2')
| GCases (loc,sty,rtno,rl,branches) ->
let rtno' = Option.smartmap (subst_glob_constr subst) rtno
and rl' = List.smartmap (fun (a,x as y) ->
let a' = subst_glob_constr subst a in
let (n,topt) = x in
let topt' = Option.smartmap
(fun (loc,(sp,i),y as t) ->
let sp' = subst_mind subst sp in
if sp == sp' then t else (loc,(sp',i),y)) topt in
if a == a' && topt == topt' then y else (a',(n,topt'))) rl
and branches' = List.smartmap
(fun (loc,idl,cpl,r as branch) ->
let cpl' =
List.smartmap (subst_cases_pattern subst) cpl
and r' = subst_glob_constr subst r in
if cpl' == cpl && r' == r then branch else
(loc,idl,cpl',r'))
branches
in
if rtno' == rtno && rl' == rl && branches' == branches then raw else
GCases (loc,sty,rtno',rl',branches')
| GLetTuple (loc,nal,(na,po),b,c) ->
let po' = Option.smartmap (subst_glob_constr subst) po
and b' = subst_glob_constr subst b
and c' = subst_glob_constr subst c in
if po' == po && b' == b && c' == c then raw else
GLetTuple (loc,nal,(na,po'),b',c')
| GIf (loc,c,(na,po),b1,b2) ->
let po' = Option.smartmap (subst_glob_constr subst) po
and b1' = subst_glob_constr subst b1
and b2' = subst_glob_constr subst b2
and c' = subst_glob_constr subst c in
if c' == c && po' == po && b1' == b1 && b2' == b2 then raw else
GIf (loc,c',(na,po'),b1',b2')
| GRec (loc,fix,ida,bl,ra1,ra2) ->
let ra1' = Array.smartmap (subst_glob_constr subst) ra1
and ra2' = Array.smartmap (subst_glob_constr subst) ra2 in
let bl' = Array.smartmap
(List.smartmap (fun (na,k,obd,ty as dcl) ->
let ty' = subst_glob_constr subst ty in
let obd' = Option.smartmap (subst_glob_constr subst) obd in
if ty'==ty && obd'==obd then dcl else (na,k,obd',ty')))
bl in
if ra1' == ra1 && ra2' == ra2 && bl'==bl then raw else
GRec (loc,fix,ida,bl',ra1',ra2')
| GSort _ -> raw
| GHole (loc, knd, naming, solve) ->
let nknd = match knd with
| Evar_kinds.ImplicitArg (ref, i, b) ->
let nref, _ = subst_global subst ref in
if nref == ref then knd else Evar_kinds.ImplicitArg (nref, i, b)
| _ -> knd
in
let nsolve = Option.smartmap (Hook.get f_subst_genarg subst) solve in
if nsolve == solve && nknd == knd then raw
else GHole (loc, nknd, naming, nsolve)
| GCast (loc,r1,k) ->
let r1' = subst_glob_constr subst r1 in
let k' = Miscops.smartmap_cast_type (subst_glob_constr subst) k in
if r1' == r1 && k' == k then raw else GCast (loc,r1',k')
(* Utilities to transform kernel cases to simple pattern-matching problem *)
let simple_cases_matrix_of_branches ind brs =
List.map (fun (i,n,b) ->
let nal,c = it_destRLambda_or_LetIn_names n b in
let mkPatVar na = PatVar (Loc.ghost,na) in
let p = PatCstr (Loc.ghost,(ind,i+1),List.map mkPatVar nal,Anonymous) in
let map name = try Some (Nameops.out_name name) with Failure _ -> None in
let ids = List.map_filter map nal in
(Loc.ghost,ids,[p],c))
brs
let return_type_of_predicate ind nrealargs_tags pred =
let nal,p = it_destRLambda_or_LetIn_names (nrealargs_tags@[false]) pred in
(List.hd nal, Some (Loc.ghost, ind, List.tl nal)), Some p
|