1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i*)
open Pp
open CErrors
open Util
open Names
open Globnames
open Nameops
open Termops
open Reductionops
open Term
open EConstr
open Vars
open Pattern
open Patternops
open Misctypes
open Context.Rel.Declaration
(*i*)
(* Given a term with second-order variables in it,
represented by Meta's, and possibly applied using [SOAPP] to
terms, this function will perform second-order, binding-preserving,
matching, in the case where the pattern is a pattern in the sense
of Dale Miller.
ALGORITHM:
Given a pattern, we decompose it, flattening Cast's and apply's,
recursing on all operators, and pushing the name of the binder each
time we descend a binder.
When we reach a first-order variable, we ask that the corresponding
term's free-rels all be higher than the depth of the current stack.
When we reach a second-order application, we ask that the
intersection of the free-rels of the term and the current stack be
contained in the arguments of the application, and in that case, we
construct a LAMBDA with the names on the stack.
*)
type binding_bound_vars = Id.Set.t
type bound_ident_map = Id.t Id.Map.t
exception PatternMatchingFailure
let warn_meta_collision =
CWarnings.create ~name:"meta-collision" ~category:"ltac"
(fun name ->
strbrk "Collision between bound variable " ++ pr_id name ++
strbrk " and a metavariable of same name.")
let constrain sigma n (ids, m) (names, terms as subst) =
let open EConstr in
try
let (ids', m') = Id.Map.find n terms in
if List.equal Id.equal ids ids' && eq_constr sigma m m' then subst
else raise PatternMatchingFailure
with Not_found ->
let () = if Id.Map.mem n names then warn_meta_collision n in
(names, Id.Map.add n (ids, m) terms)
let add_binders na1 na2 binding_vars (names, terms as subst) =
match na1, na2 with
| Name id1, Name id2 when Id.Set.mem id1 binding_vars ->
if Id.Map.mem id1 names then
let () = Glob_ops.warn_variable_collision id1 in
(names, terms)
else
let names = Id.Map.add id1 id2 names in
let () = if Id.Map.mem id1 terms then
warn_meta_collision id1 in
(names, terms)
| _ -> subst
let rec build_lambda sigma vars ctx m = match vars with
| [] ->
if Vars.closed0 sigma m then m else raise PatternMatchingFailure
| n :: vars ->
(* change [ x1 ... xn y z1 ... zm |- t ] into
[ x1 ... xn z1 ... zm |- lam y. t ] *)
let pre, suf = List.chop (pred n) ctx in
let (na, t, suf) = match suf with
| [] -> assert false
| (_, na, t) :: suf -> (na, t, suf)
in
(** Check that the abstraction is legal by generating a transitive closure of
its dependencies. *)
let is_nondep t clear = match clear with
| [] -> true
| _ ->
let rels = free_rels sigma t in
let check i b = b || not (Int.Set.mem i rels) in
List.for_all_i check 1 clear
in
let fold (_, _, t) clear = is_nondep t clear :: clear in
(** Produce a list of booleans: true iff we keep the hypothesis *)
let clear = List.fold_right fold pre [false] in
let clear = List.drop_last clear in
(** If the conclusion depends on a variable we cleared, failure *)
let () = if not (is_nondep m clear) then raise PatternMatchingFailure in
(** Create the abstracted term *)
let fold (k, accu) keep =
if keep then
let k = succ k in
(k, Some k :: accu)
else (k, None :: accu)
in
let keep, shift = List.fold_left fold (0, []) clear in
let shift = List.rev shift in
let map = function
| None -> mkProp (** dummy term *)
| Some i -> mkRel (i + 1)
in
(** [x1 ... xn y z1 ... zm] -> [x1 ... xn f(z1) ... f(zm) y] *)
let subst =
List.map map shift @
mkRel 1 ::
List.mapi (fun i _ -> mkRel (i + keep + 2)) suf
in
let map i (id, na, c) =
let i = succ i in
let subst = List.skipn i subst in
let subst = List.map (fun c -> Vars.lift (- i) c) subst in
(id, na, substl subst c)
in
let pre = List.mapi map pre in
let pre = List.filter_with clear pre in
let m = substl subst m in
let map i =
if i > n then i - n + keep
else match List.nth shift (i - 1) with
| None ->
(** We cleared a variable that we wanted to abstract! *)
raise PatternMatchingFailure
| Some k -> k
in
let vars = List.map map vars in
(** Create the abstraction *)
let m = mkLambda (na, Vars.lift keep t, m) in
build_lambda sigma vars (pre @ suf) m
let rec extract_bound_aux k accu frels ctx = match ctx with
| [] -> accu
| (na1, na2, _) :: ctx ->
if Int.Set.mem k frels then
begin match na1 with
| Name id ->
let () = assert (match na2 with Anonymous -> false | Name _ -> true) in
let () = if Id.Set.mem id accu then raise PatternMatchingFailure in
extract_bound_aux (k + 1) (Id.Set.add id accu) frels ctx
| Anonymous -> raise PatternMatchingFailure
end
else extract_bound_aux (k + 1) accu frels ctx
let extract_bound_vars frels ctx =
extract_bound_aux 1 Id.Set.empty frels ctx
let dummy_constr = EConstr.mkProp
let make_renaming ids = function
| (Name id, Name _, _) ->
begin
try EConstr.mkRel (List.index Id.equal id ids)
with Not_found -> dummy_constr
end
| _ -> dummy_constr
let to_fix (idx, (nas, cs, ts)) =
let inj = EConstr.of_constr in
(idx, (nas, Array.map inj cs, Array.map inj ts))
let merge_binding sigma allow_bound_rels ctx n cT subst =
let c = match ctx with
| [] -> (* Optimization *)
([], cT)
| _ ->
let frels = free_rels sigma cT in
if allow_bound_rels then
let vars = extract_bound_vars frels ctx in
let ordered_vars = Id.Set.elements vars in
let rename binding = make_renaming ordered_vars binding in
let renaming = List.map rename ctx in
(ordered_vars, Vars.substl renaming cT)
else
let depth = List.length ctx in
let min_elt = try Int.Set.min_elt frels with Not_found -> succ depth in
if depth < min_elt then
([], Vars.lift (- depth) cT)
else raise PatternMatchingFailure
in
constrain sigma n c subst
let matches_core env sigma convert allow_partial_app allow_bound_rels
(binding_vars,pat) c =
let open EConstr in
let convref ref c =
match ref, EConstr.kind sigma c with
| VarRef id, Var id' -> Names.id_eq id id'
| ConstRef c, Const (c',_) -> Names.eq_constant c c'
| IndRef i, Ind (i', _) -> Names.eq_ind i i'
| ConstructRef c, Construct (c',u) -> Names.eq_constructor c c'
| _, _ ->
(if convert then
let sigma,c' = Evd.fresh_global env sigma ref in
is_conv env sigma (EConstr.of_constr c') c
else false)
in
let rec sorec ctx env subst p t =
let cT = strip_outer_cast sigma t in
match p, EConstr.kind sigma cT with
| PSoApp (n,args),m ->
let fold (ans, seen) = function
| PRel n ->
let () = if Int.Set.mem n seen then user_err (str "Non linear second-order pattern") in
(n :: ans, Int.Set.add n seen)
| _ -> user_err (str "Only bound indices allowed in second order pattern matching.")
in
let relargs, relset = List.fold_left fold ([], Int.Set.empty) args in
let frels = free_rels sigma cT in
if Int.Set.subset frels relset then
constrain sigma n ([], build_lambda sigma relargs ctx cT) subst
else
raise PatternMatchingFailure
| PMeta (Some n), m -> merge_binding sigma allow_bound_rels ctx n cT subst
| PMeta None, m -> subst
| PRef (VarRef v1), Var v2 when Id.equal v1 v2 -> subst
| PVar v1, Var v2 when Id.equal v1 v2 -> subst
| PRef ref, _ when convref ref cT -> subst
| PRel n1, Rel n2 when Int.equal n1 n2 -> subst
| PSort ps, Sort s ->
begin match ps, ESorts.kind sigma s with
| GProp, Prop Null -> subst
| GSet, Prop Pos -> subst
| GType _, Type _ -> subst
| _ -> raise PatternMatchingFailure
end
| PApp (p, [||]), _ -> sorec ctx env subst p t
| PApp (PApp (h, a1), a2), _ ->
sorec ctx env subst (PApp(h,Array.append a1 a2)) t
| PApp (PMeta meta,args1), App (c2,args2) when allow_partial_app ->
(let diff = Array.length args2 - Array.length args1 in
if diff >= 0 then
let args21, args22 = Array.chop diff args2 in
let c = mkApp(c2,args21) in
let subst =
match meta with
| None -> subst
| Some n -> merge_binding sigma allow_bound_rels ctx n c subst in
Array.fold_left2 (sorec ctx env) subst args1 args22
else (* Might be a projection on the right *)
match EConstr.kind sigma c2 with
| Proj (pr, c) when not (Projection.unfolded pr) ->
(try let term = Retyping.expand_projection env sigma pr c (Array.to_list args2) in
sorec ctx env subst p term
with Retyping.RetypeError _ -> raise PatternMatchingFailure)
| _ -> raise PatternMatchingFailure)
| PApp (c1,arg1), App (c2,arg2) ->
(match c1, EConstr.kind sigma c2 with
| PRef (ConstRef r), Proj (pr,c) when not (eq_constant r (Projection.constant pr))
|| Projection.unfolded pr ->
raise PatternMatchingFailure
| PProj (pr1,c1), Proj (pr,c) ->
if Projection.equal pr1 pr then
try Array.fold_left2 (sorec ctx env) (sorec ctx env subst c1 c) arg1 arg2
with Invalid_argument _ -> raise PatternMatchingFailure
else raise PatternMatchingFailure
| _, Proj (pr,c) when not (Projection.unfolded pr) ->
(try let term = Retyping.expand_projection env sigma pr c (Array.to_list arg2) in
sorec ctx env subst p term
with Retyping.RetypeError _ -> raise PatternMatchingFailure)
| _, _ ->
try Array.fold_left2 (sorec ctx env) (sorec ctx env subst c1 c2) arg1 arg2
with Invalid_argument _ -> raise PatternMatchingFailure)
| PApp (PRef (ConstRef c1), _), Proj (pr, c2)
when Projection.unfolded pr || not (eq_constant c1 (Projection.constant pr)) ->
raise PatternMatchingFailure
| PApp (c, args), Proj (pr, c2) ->
(try let term = Retyping.expand_projection env sigma pr c2 [] in
sorec ctx env subst p term
with Retyping.RetypeError _ -> raise PatternMatchingFailure)
| PProj (p1,c1), Proj (p2,c2) when Projection.equal p1 p2 ->
sorec ctx env subst c1 c2
| PProd (na1,c1,d1), Prod(na2,c2,d2) ->
sorec ((na1,na2,c2)::ctx) (EConstr.push_rel (LocalAssum (na2,c2)) env)
(add_binders na1 na2 binding_vars (sorec ctx env subst c1 c2)) d1 d2
| PLambda (na1,c1,d1), Lambda(na2,c2,d2) ->
sorec ((na1,na2,c2)::ctx) (EConstr.push_rel (LocalAssum (na2,c2)) env)
(add_binders na1 na2 binding_vars (sorec ctx env subst c1 c2)) d1 d2
| PLetIn (na1,c1,Some t1,d1), LetIn(na2,c2,t2,d2) ->
sorec ((na1,na2,t2)::ctx) (EConstr.push_rel (LocalDef (na2,c2,t2)) env)
(add_binders na1 na2 binding_vars (sorec ctx env (sorec ctx env subst c1 c2) t1 t2)) d1 d2
| PLetIn (na1,c1,None,d1), LetIn(na2,c2,t2,d2) ->
sorec ((na1,na2,t2)::ctx) (EConstr.push_rel (LocalDef (na2,c2,t2)) env)
(add_binders na1 na2 binding_vars (sorec ctx env subst c1 c2)) d1 d2
| PIf (a1,b1,b1'), Case (ci,_,a2,[|b2;b2'|]) ->
let ctx_b2,b2 = decompose_lam_n_decls sigma ci.ci_cstr_ndecls.(0) b2 in
let ctx_b2',b2' = decompose_lam_n_decls sigma ci.ci_cstr_ndecls.(1) b2' in
let n = Context.Rel.length ctx_b2 in
let n' = Context.Rel.length ctx_b2' in
if Vars.noccur_between sigma 1 n b2 && Vars.noccur_between sigma 1 n' b2' then
let f l (LocalAssum (na,t) | LocalDef (na,_,t)) = (Anonymous,na,t)::l in
let ctx_br = List.fold_left f ctx ctx_b2 in
let ctx_br' = List.fold_left f ctx ctx_b2' in
let b1 = lift_pattern n b1 and b1' = lift_pattern n' b1' in
sorec ctx_br' (push_rel_context ctx_b2' env)
(sorec ctx_br (push_rel_context ctx_b2 env)
(sorec ctx env subst a1 a2) b1 b2) b1' b2'
else
raise PatternMatchingFailure
| PCase (ci1,p1,a1,br1), Case (ci2,p2,a2,br2) ->
let n2 = Array.length br2 in
let () = match ci1.cip_ind with
| None -> ()
| Some ind1 ->
(** ppedrot: Something spooky going here. The comparison used to be
the generic one, so I may have broken something. *)
if not (eq_ind ind1 ci2.ci_ind) then raise PatternMatchingFailure
in
let () =
if not ci1.cip_extensible && not (Int.equal (List.length br1) n2)
then raise PatternMatchingFailure
in
let chk_branch subst (j,n,c) =
(* (ind,j+1) is normally known to be a correct constructor
and br2 a correct match over the same inductive *)
assert (j < n2);
sorec ctx env subst c br2.(j)
in
let chk_head = sorec ctx env (sorec ctx env subst a1 a2) p1 p2 in
List.fold_left chk_branch chk_head br1
| PFix c1, Fix _ when eq_constr sigma (mkFix (to_fix c1)) cT -> subst
| PCoFix c1, CoFix _ when eq_constr sigma (mkCoFix (to_fix c1)) cT -> subst
| PEvar (c1,args1), Evar (c2,args2) when Evar.equal c1 c2 ->
Array.fold_left2 (sorec ctx env) subst args1 args2
| _ -> raise PatternMatchingFailure
in
sorec [] env (Id.Map.empty, Id.Map.empty) pat c
let matches_core_closed env sigma convert allow_partial_app pat c =
let names, subst = matches_core env sigma convert allow_partial_app false pat c in
(names, Id.Map.map snd subst)
let extended_matches env sigma = matches_core env sigma false true true
let matches env sigma pat c =
snd (matches_core_closed env sigma false true (Id.Set.empty,pat) c)
let special_meta = (-1)
type matching_result =
{ m_sub : bound_ident_map * patvar_map;
m_ctx : constr; }
let mkresult s c n = IStream.Cons ( { m_sub=s; m_ctx=c; } , (IStream.thunk n) )
let isPMeta = function PMeta _ -> true | _ -> false
let matches_head env sigma pat c =
let open EConstr in
let head =
match pat, EConstr.kind sigma c with
| PApp (c1,arg1), App (c2,arg2) ->
if isPMeta c1 then c else
let n1 = Array.length arg1 in
if n1 < Array.length arg2 then mkApp (c2,Array.sub arg2 0 n1) else c
| c1, App (c2,arg2) when not (isPMeta c1) -> c2
| _ -> c in
matches env sigma pat head
(* Tells if it is an authorized occurrence and if the instance is closed *)
let authorized_occ env sigma partial_app closed pat c mk_ctx =
try
let subst = matches_core_closed env sigma false partial_app pat c in
if closed && Id.Map.exists (fun _ c -> not (closed0 sigma c)) (snd subst)
then (fun next -> next ())
else (fun next -> mkresult subst (mk_ctx (mkMeta special_meta)) next)
with PatternMatchingFailure -> (fun next -> next ())
let subargs env v = Array.map_to_list (fun c -> (env, c)) v
(* Tries to match a subterm of [c] with [pat] *)
let sub_match ?(partial_app=false) ?(closed=true) env sigma pat c =
let open EConstr in
let rec aux env c mk_ctx next =
let here = authorized_occ env sigma partial_app closed pat c mk_ctx in
let next () = match EConstr.kind sigma c with
| Cast (c1,k,c2) ->
let next_mk_ctx = function
| [c1] -> mk_ctx (mkCast (c1, k, c2))
| _ -> assert false
in
try_aux [env, c1] next_mk_ctx next
| Lambda (x,c1,c2) ->
let next_mk_ctx = function
| [c1; c2] -> mk_ctx (mkLambda (x, c1, c2))
| _ -> assert false
in
let env' = EConstr.push_rel (LocalAssum (x,c1)) env in
try_aux [(env, c1); (env', c2)] next_mk_ctx next
| Prod (x,c1,c2) ->
let next_mk_ctx = function
| [c1; c2] -> mk_ctx (mkProd (x, c1, c2))
| _ -> assert false
in
let env' = EConstr.push_rel (LocalAssum (x,c1)) env in
try_aux [(env, c1); (env', c2)] next_mk_ctx next
| LetIn (x,c1,t,c2) ->
let next_mk_ctx = function
| [c1; c2] -> mk_ctx (mkLetIn (x, c1, t, c2))
| _ -> assert false
in
let env' = EConstr.push_rel (LocalDef (x,c1,t)) env in
try_aux [(env, c1); (env', c2)] next_mk_ctx next
| App (c1,lc) ->
let topdown = true in
if partial_app then
if topdown then
let lc1 = Array.sub lc 0 (Array.length lc - 1) in
let app = mkApp (c1,lc1) in
let mk_ctx = function
| [app';c] -> mk_ctx (mkApp (app',[|c|]))
| _ -> assert false in
try_aux [(env, app); (env, Array.last lc)] mk_ctx next
else
let rec aux2 app args next =
match args with
| [] ->
let mk_ctx le =
mk_ctx (mkApp (List.hd le, Array.of_list (List.tl le))) in
let sub = (env, c1) :: subargs env lc in
try_aux sub mk_ctx next
| arg :: args ->
let app = mkApp (app,[|arg|]) in
let next () = aux2 app args next in
let mk_ctx ce = mk_ctx (mkApp (ce, Array.of_list args)) in
aux env app mk_ctx next in
aux2 c1 (Array.to_list lc) next
else
let mk_ctx le =
mk_ctx (mkApp (List.hd le, Array.of_list (List.tl le))) in
let sub = (env, c1) :: subargs env lc in
try_aux sub mk_ctx next
| Case (ci,hd,c1,lc) ->
let next_mk_ctx = function
| c1 :: hd :: lc -> mk_ctx (mkCase (ci,hd,c1,Array.of_list lc))
| _ -> assert false
in
let sub = (env, c1) :: (env, hd) :: subargs env lc in
try_aux sub next_mk_ctx next
| Fix (indx,(names,types,bodies)) ->
let nb_fix = Array.length types in
let next_mk_ctx le =
let (ntypes,nbodies) = CList.chop nb_fix le in
mk_ctx (mkFix (indx,(names, Array.of_list ntypes, Array.of_list nbodies))) in
let sub = subargs env types @ subargs env bodies in
try_aux sub next_mk_ctx next
| CoFix (i,(names,types,bodies)) ->
let nb_fix = Array.length types in
let next_mk_ctx le =
let (ntypes,nbodies) = CList.chop nb_fix le in
mk_ctx (mkCoFix (i,(names, Array.of_list ntypes, Array.of_list nbodies))) in
let sub = subargs env types @ subargs env bodies in
try_aux sub next_mk_ctx next
| Proj (p,c') ->
let next_mk_ctx le = mk_ctx (mkProj (p,List.hd le)) in
if partial_app then
try
let term = Retyping.expand_projection env sigma p c' [] in
aux env term mk_ctx next
with Retyping.RetypeError _ -> next ()
else
try_aux [env, c'] next_mk_ctx next
| Construct _| Ind _|Evar _|Const _ | Rel _|Meta _|Var _|Sort _ ->
next ()
in
here next
(* Tries [sub_match] for all terms in the list *)
and try_aux lc mk_ctx next =
let rec try_sub_match_rec lacc lc =
match lc with
| [] -> next ()
| (env, c) :: tl ->
let mk_ctx ce = mk_ctx (List.rev_append lacc (ce :: List.map snd tl)) in
let next () = try_sub_match_rec (c :: lacc) tl in
aux env c mk_ctx next
in
try_sub_match_rec [] lc in
let lempty () = IStream.Nil in
let result () = aux env c (fun x -> x) lempty in
IStream.thunk result
let match_subterm env sigma pat c = sub_match env sigma (Id.Set.empty,pat) c
let match_appsubterm env sigma pat c =
sub_match ~partial_app:true env sigma (Id.Set.empty,pat) c
let match_subterm_gen env sigma app pat c =
sub_match ~partial_app:app env sigma pat c
let is_matching env sigma pat c =
try let _ = matches env sigma pat c in true
with PatternMatchingFailure -> false
let is_matching_head env sigma pat c =
try let _ = matches_head env sigma pat c in true
with PatternMatchingFailure -> false
let is_matching_appsubterm ?(closed=true) env sigma pat c =
let pat = (Id.Set.empty,pat) in
let results = sub_match ~partial_app:true ~closed env sigma pat c in
not (IStream.is_empty results)
let matches_conv env sigma p c =
snd (matches_core_closed env sigma true false (Id.Set.empty,p) c)
let is_matching_conv env sigma pat n =
try let _ = matches_conv env sigma pat n in true
with PatternMatchingFailure -> false
|