1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Util
open Pp
open Flags
open Names
open Libnames
open Nametab
open Environ
open Libobject
open Library
open Term
open Termops
open Glob_term
open Decl_kinds
open Mod_subst
(* usage qque peu general: utilise aussi dans record *)
(* A class is a type constructor, its type is an arity whose number of
arguments is cl_param (0 for CL_SORT and CL_FUN) *)
type cl_typ =
| CL_SORT
| CL_FUN
| CL_SECVAR of variable
| CL_CONST of constant
| CL_IND of inductive
type cl_info_typ = {
cl_param : int
}
type coe_typ = global_reference
type coe_info_typ = {
coe_value : constr;
coe_type : types;
coe_strength : locality;
coe_is_identity : bool;
coe_param : int }
let coe_info_typ_equal c1 c2 =
eq_constr c1.coe_value c2.coe_value &&
eq_constr c1.coe_type c2.coe_type &&
c1.coe_strength = c2.coe_strength &&
c1.coe_is_identity = c2.coe_is_identity &&
c1.coe_param = c2.coe_param
type cl_index = int
type coe_index = coe_info_typ
type inheritance_path = coe_index list
(* table des classes, des coercions et graphe d'heritage *)
module Bijint = struct
type ('a,'b) t = { v : ('a * 'b) array; s : int; inv : ('a,int) Gmap.t }
let empty = { v = [||]; s = 0; inv = Gmap.empty }
let mem y b = Gmap.mem y b.inv
let map x b = if 0 <= x & x < b.s then b.v.(x) else raise Not_found
let revmap y b = let n = Gmap.find y b.inv in (n, snd (b.v.(n)))
let add x y b =
let v =
if b.s = Array.length b.v then
(let v = Array.make (b.s + 8) (x,y) in Array.blit b.v 0 v 0 b.s; v)
else b.v in
v.(b.s) <- (x,y); { v = v; s = b.s+1; inv = Gmap.add x b.s b.inv }
let dom b = Gmap.dom b.inv
end
let class_tab =
ref (Bijint.empty : (cl_typ, cl_info_typ) Bijint.t)
let coercion_tab =
ref (Gmap.empty : (coe_typ, coe_info_typ) Gmap.t)
let inheritance_graph =
ref (Gmap.empty : (cl_index * cl_index, inheritance_path) Gmap.t)
let freeze () = (!class_tab, !coercion_tab, !inheritance_graph)
let unfreeze (fcl,fco,fig) =
class_tab:=fcl;
coercion_tab:=fco;
inheritance_graph:=fig
(* ajout de nouveaux "objets" *)
let add_new_class cl s =
if not (Bijint.mem cl !class_tab) then
class_tab := Bijint.add cl s !class_tab
let add_new_coercion coe s =
coercion_tab := Gmap.add coe s !coercion_tab
let add_new_path x y =
inheritance_graph := Gmap.add x y !inheritance_graph
let init () =
class_tab:= Bijint.empty;
add_new_class CL_FUN { cl_param = 0 };
add_new_class CL_SORT { cl_param = 0 };
coercion_tab:= Gmap.empty;
inheritance_graph:= Gmap.empty
let _ =
Summary.declare_summary "inh_graph"
{ Summary.freeze_function = freeze;
Summary.unfreeze_function = unfreeze;
Summary.init_function = init }
let _ = init()
(* class_info : cl_typ -> int * cl_info_typ *)
let class_info cl = Bijint.revmap cl !class_tab
let class_exists cl = Bijint.mem cl !class_tab
(* class_info_from_index : int -> cl_typ * cl_info_typ *)
let class_info_from_index i = Bijint.map i !class_tab
let cl_fun_index = fst(class_info CL_FUN)
let cl_sort_index = fst(class_info CL_SORT)
(* coercion_info : coe_typ -> coe_info_typ *)
let coercion_info coe = Gmap.find coe !coercion_tab
let coercion_exists coe = Gmap.mem coe !coercion_tab
(* find_class_type : evar_map -> constr -> cl_typ * constr list *)
let find_class_type sigma t =
let t', args = Reductionops.whd_betaiotazeta_stack sigma t in
match kind_of_term t' with
| Var id -> CL_SECVAR id, args
| Const sp -> CL_CONST sp, args
| Ind ind_sp -> CL_IND ind_sp, args
| Prod (_,_,_) -> CL_FUN, []
| Sort _ -> CL_SORT, []
| _ -> raise Not_found
let subst_cl_typ subst ct = match ct with
CL_SORT
| CL_FUN
| CL_SECVAR _ -> ct
| CL_CONST kn ->
let kn',t = subst_con subst kn in
if kn' == kn then ct else
fst (find_class_type Evd.empty t)
| CL_IND (kn,i) ->
let kn' = subst_ind subst kn in
if kn' == kn then ct else
CL_IND (kn',i)
(*CSC: here we should change the datatype for coercions: it should be possible
to declare any term as a coercion *)
let subst_coe_typ subst t = fst (subst_global subst t)
(* class_of : Term.constr -> int *)
let class_of env sigma t =
let (t, n1, i, args) =
try
let (cl,args) = find_class_type sigma t in
let (i, { cl_param = n1 } ) = class_info cl in
(t, n1, i, args)
with Not_found ->
let t = Tacred.hnf_constr env sigma t in
let (cl, args) = find_class_type sigma t in
let (i, { cl_param = n1 } ) = class_info cl in
(t, n1, i, args)
in
if List.length args = n1 then t, i else raise Not_found
let inductive_class_of ind = fst (class_info (CL_IND ind))
let class_args_of env sigma c = snd (find_class_type sigma c)
let string_of_class = function
| CL_FUN -> "Funclass"
| CL_SORT -> "Sortclass"
| CL_CONST sp ->
string_of_qualid (shortest_qualid_of_global Idset.empty (ConstRef sp))
| CL_IND sp ->
string_of_qualid (shortest_qualid_of_global Idset.empty (IndRef sp))
| CL_SECVAR sp ->
string_of_qualid (shortest_qualid_of_global Idset.empty (VarRef sp))
let pr_class x = str (string_of_class x)
(* lookup paths *)
let lookup_path_between_class (s,t) =
Gmap.find (s,t) !inheritance_graph
let lookup_path_to_fun_from_class s =
lookup_path_between_class (s,cl_fun_index)
let lookup_path_to_sort_from_class s =
lookup_path_between_class (s,cl_sort_index)
(* advanced path lookup *)
let apply_on_class_of env sigma t cont =
try
let (cl,args) = find_class_type sigma t in
let (i, { cl_param = n1 } ) = class_info cl in
if List.length args <> n1 then raise Not_found;
t, cont i
with Not_found ->
(* Is it worth to be more incremental on the delta steps? *)
let t = Tacred.hnf_constr env sigma t in
let (cl, args) = find_class_type sigma t in
let (i, { cl_param = n1 } ) = class_info cl in
if List.length args <> n1 then raise Not_found;
t, cont i
let lookup_path_between env sigma (s,t) =
let (s,(t,p)) =
apply_on_class_of env sigma s (fun i ->
apply_on_class_of env sigma t (fun j ->
lookup_path_between_class (i,j))) in
(s,t,p)
let lookup_path_to_fun_from env sigma s =
apply_on_class_of env sigma s lookup_path_to_fun_from_class
let lookup_path_to_sort_from env sigma s =
apply_on_class_of env sigma s lookup_path_to_sort_from_class
let get_coercion_constructor coe =
let c, _ =
Reductionops.whd_betadeltaiota_stack (Global.env()) Evd.empty coe.coe_value
in
match kind_of_term c with
| Construct cstr ->
(cstr, Inductiveops.constructor_nrealargs (Global.env()) cstr -1)
| _ ->
raise Not_found
let lookup_pattern_path_between (s,t) =
let i = inductive_class_of s in
let j = inductive_class_of t in
List.map get_coercion_constructor (Gmap.find (i,j) !inheritance_graph)
(* coercion_value : coe_index -> unsafe_judgment * bool *)
let coercion_value { coe_value = c; coe_type = t; coe_is_identity = b } =
(make_judge c t, b)
(* pretty-print functions are now in Pretty *)
(* rajouter une coercion dans le graphe *)
let path_printer = ref (fun _ -> str "<a class path>"
: (int * int) * inheritance_path -> std_ppcmds)
let install_path_printer f = path_printer := f
let print_path x = !path_printer x
let message_ambig l =
(str"Ambiguous paths:" ++ spc () ++
prlist_with_sep pr_fnl (fun ijp -> print_path ijp) l)
(* add_coercion_in_graph : coe_index * cl_index * cl_index -> unit
coercion,source,target *)
let different_class_params i j =
(snd (class_info_from_index i)).cl_param > 0
let add_coercion_in_graph (ic,source,target) =
let old_inheritance_graph = !inheritance_graph in
let ambig_paths =
(ref [] : ((cl_index * cl_index) * inheritance_path) list ref) in
let try_add_new_path (i,j as ij) p =
try
if i=j then begin
if different_class_params i j then begin
let _ = lookup_path_between_class ij in
ambig_paths := (ij,p)::!ambig_paths
end
end else begin
let _ = lookup_path_between_class (i,j) in
ambig_paths := (ij,p)::!ambig_paths
end;
false
with Not_found -> begin
add_new_path ij p;
true
end
in
let try_add_new_path1 ij p =
let _ = try_add_new_path ij p in ()
in
if try_add_new_path (source,target) [ic] then begin
Gmap.iter
(fun (s,t) p ->
if s<>t then begin
if t = source then begin
try_add_new_path1 (s,target) (p@[ic]);
Gmap.iter
(fun (u,v) q ->
if u<>v & u = target && not (list_equal coe_info_typ_equal p q) then
try_add_new_path1 (s,v) (p@[ic]@q))
old_inheritance_graph
end;
if s = target then try_add_new_path1 (source,t) (ic::p)
end)
old_inheritance_graph
end;
if (!ambig_paths <> []) && is_verbose () then
ppnl (message_ambig !ambig_paths)
type coercion = coe_typ * locality * bool * cl_typ * cl_typ * int
(* Calcul de l'arité d'une classe *)
let reference_arity_length ref =
let t = Global.type_of_global ref in
List.length (fst (Reductionops.splay_arity (Global.env()) Evd.empty t))
let class_params = function
| CL_FUN | CL_SORT -> 0
| CL_CONST sp -> reference_arity_length (ConstRef sp)
| CL_SECVAR sp -> reference_arity_length (VarRef sp)
| CL_IND sp -> reference_arity_length (IndRef sp)
(* add_class : cl_typ -> locality_flag option -> bool -> unit *)
let add_class cl =
add_new_class cl { cl_param = class_params cl }
let automatically_import_coercions = ref false
open Goptions
let _ =
declare_bool_option
{ optsync = true;
optname = "automatic import of coercions";
optkey = ["Automatic";"Coercions";"Import"];
optread = (fun () -> !automatically_import_coercions);
optwrite = (:=) automatically_import_coercions }
let cache_coercion (_,(coe,stre,isid,cls,clt,ps)) =
add_class cls;
add_class clt;
let is,_ = class_info cls in
let it,_ = class_info clt in
let xf =
{ coe_value = constr_of_global coe;
coe_type = Global.type_of_global coe;
coe_strength = stre;
coe_is_identity = isid;
coe_param = ps } in
add_new_coercion coe xf;
add_coercion_in_graph (xf,is,it)
let load_coercion _ o =
if
!automatically_import_coercions || Flags.version_less_or_equal Flags.V8_2
then
cache_coercion o
let open_coercion _ o =
if not
(!automatically_import_coercions || Flags.version_less_or_equal Flags.V8_2)
then
cache_coercion o
let subst_coercion (subst,(coe,stre,isid,cls,clt,ps as obj)) =
let coe' = subst_coe_typ subst coe in
let cls' = subst_cl_typ subst cls in
let clt' = subst_cl_typ subst clt in
if coe' == coe && cls' == cls & clt' == clt then obj else
(coe',stre,isid,cls',clt',ps)
let discharge_cl = function
| CL_CONST kn -> CL_CONST (Lib.discharge_con kn)
| CL_IND ind -> CL_IND (Lib.discharge_inductive ind)
| cl -> cl
let discharge_coercion (_,(coe,stre,isid,cls,clt,ps)) =
if stre = Local then None else
let n = try Array.length (Lib.section_instance coe) with Not_found -> 0 in
Some (Lib.discharge_global coe,
stre,
isid,
discharge_cl cls,
discharge_cl clt,
n + ps)
let classify_coercion (coe,stre,isid,cls,clt,ps as obj) =
if stre = Local then Dispose else Substitute obj
type coercion_obj =
coe_typ * Decl_kinds.locality * bool * cl_typ * cl_typ * int
let inCoercion : coercion_obj -> obj =
declare_object {(default_object "COERCION") with
open_function = open_coercion;
load_function = load_coercion;
cache_function = cache_coercion;
subst_function = subst_coercion;
classify_function = classify_coercion;
discharge_function = discharge_coercion }
let declare_coercion coef stre ~isid ~src:cls ~target:clt ~params:ps =
Lib.add_anonymous_leaf (inCoercion (coef,stre,isid,cls,clt,ps))
(* For printing purpose *)
let get_coercion_value v = v.coe_value
let pr_cl_index n = int n
let classes () = Bijint.dom !class_tab
let coercions () = Gmap.rng !coercion_tab
let inheritance_graph () = Gmap.to_list !inheritance_graph
let coercion_of_reference r =
let ref = Nametab.global r in
if not (coercion_exists ref) then
errorlabstrm "try_add_coercion"
(Nametab.pr_global_env Idset.empty ref ++ str" is not a coercion.");
ref
module CoercionPrinting =
struct
type t = coe_typ
let encode = coercion_of_reference
let subst = subst_coe_typ
let printer x = pr_global_env Idset.empty x
let key = ["Printing";"Coercion"]
let title = "Explicitly printed coercions: "
let member_message x b =
str "Explicit printing of coercion " ++ printer x ++
str (if b then " is set" else " is unset")
let synchronous = true
end
module PrintingCoercion = Goptions.MakeRefTable(CoercionPrinting)
let hide_coercion coe =
if not (PrintingCoercion.active coe) then
let coe_info = coercion_info coe in
Some coe_info.coe_param
else None
|