1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* $Id$ *)
open Util
open Pp
open Options
open Names
open Libnames
open Nametab
open Environ
open Libobject
open Library
open Declare
open Term
open Termops
open Rawterm
open Decl_kinds
(* usage qque peu general: utilise aussi dans record *)
(* A class is a type constructor, its type is an arity whose number of
arguments is cl_param (0 for CL_SORT and CL_FUN) *)
type cl_typ =
| CL_SORT
| CL_FUN
| CL_SECVAR of variable
| CL_CONST of constant
| CL_IND of inductive
type cl_info_typ = {
cl_strength : strength;
cl_param : int
}
type coe_typ = global_reference
type coe_info_typ = {
coe_value : unsafe_judgment;
coe_strength : strength;
coe_is_identity : bool;
coe_param : int }
type cl_index = int
type coe_index = int
type inheritance_path = coe_index list
(* table des classes, des coercions et graphe d'heritage *)
let class_tab =
(ref [] : (cl_index * (cl_typ * cl_info_typ)) list ref)
let coercion_tab =
(ref [] : (coe_index * (coe_typ * coe_info_typ)) list ref)
let inheritance_graph =
(ref [] : ((cl_index * cl_index) * inheritance_path) list ref)
let freeze () = (!class_tab, !coercion_tab, !inheritance_graph)
let unfreeze (fcl,fco,fig) =
class_tab:=fcl;
coercion_tab:=fco;
inheritance_graph:=fig
(* ajout de nouveaux "objets" *)
let newNum_class =
let num = ref 0 in
function () -> (num:=!num+1;!num)
let newNum_coercion =
let num = ref 0 in
function () -> (num:=!num+1;!num)
let add_new_class_num (n,(cl,s)) =
class_tab := (n,(cl,s))::(!class_tab)
let add_new_class (cl,s) =
add_new_class_num (newNum_class(),(cl,s))
let add_new_coercion_num (n,(coe,s)) =
coercion_tab := (n,(coe,s))::(!coercion_tab)
let add_new_coercion (coe,s) =
let n = newNum_coercion() in
add_new_coercion_num (n,(coe,s));n
let add_new_path x =
inheritance_graph := x::!inheritance_graph
let init () =
class_tab:= [];
add_new_class (CL_FUN, { cl_param = 0; cl_strength = Global });
add_new_class (CL_SORT, { cl_param = 0; cl_strength = Global });
coercion_tab:= [];
inheritance_graph:= []
let _ = init()
(* fonction de recherche *)
let search_info x l =
let rec aux = function
| [] -> raise Not_found
| (n,(x1,r))::l -> if x=x1 then (n,r) else aux l
in
aux l
(* class_info : cl_typ -> int * cl_info_typ *)
let class_info cl = search_info cl (!class_tab)
let class_exists cl =
try let _ = class_info cl in true
with Not_found -> false
(* class_info_from_index : int -> cl_typ * cl_info_typ *)
let class_info_from_index i = List.assoc i !class_tab
(* coercion_info : coe_typ -> int * coe_info_typ *)
let coercion_info coe = search_info coe !coercion_tab
let coercion_exists coe =
try let _ = coercion_info coe in true
with Not_found -> false
let coe_of_reference x = x
let coercion_params coe_info = coe_info.coe_param
(* coercion_info_from_index : int -> coe_typ * coe_info_typ *)
let coercion_info_from_index i =
List.assoc i !coercion_tab
let lookup_path_between (s,t) =
List.assoc (s,t) !inheritance_graph
let lookup_path_to_fun_from s =
lookup_path_between (s,fst(class_info CL_FUN))
let lookup_path_to_sort_from s =
lookup_path_between (s,fst(class_info CL_SORT))
let lookup_pattern_path_between (s,t) =
let l = List.assoc (s,t) !inheritance_graph in
List.map
(fun i ->
let coe = snd (coercion_info_from_index i) in
let c, _ =
Reductionops.whd_betadeltaiota_stack (Global.env()) Evd.empty
coe.coe_value.uj_val
in
match kind_of_term c with
| Construct sp -> (sp, coe.coe_param)
| _ -> raise Not_found) l
let subst_cl_typ subst ct = match ct with
CL_SORT
| CL_FUN
| CL_SECVAR _ -> ct
| CL_CONST kn ->
let kn' = subst_kn subst kn in
if kn' == kn then ct else
CL_CONST kn'
| CL_IND (kn,i) ->
let kn' = subst_kn subst kn in
if kn' == kn then ct else
CL_IND (kn',i)
let subst_coe_typ = subst_global
let subst_coe_info subst info =
let jud = info.coe_value in
let val' = subst_mps subst (j_val jud) in
let type' = subst_mps subst (j_type jud) in
if val' == j_val jud && type' == j_type jud then info else
{info with coe_value = make_judge val' type'}
(* library, summary *)
(*val inClass : (cl_typ * cl_info_typ) -> Libobject.object = <fun>
val outClass : Libobject.object -> (cl_typ * cl_info_typ) = <fun> *)
let cache_class (_,x) = add_new_class x
let subst_class (_,subst,(ct,ci as obj)) =
let ct' = subst_cl_typ subst ct in
if ct' == ct then obj else
(ct',ci)
let (inClass,outClass) =
declare_object {(default_object "CLASS") with
load_function = (fun _ o -> cache_class o);
cache_function = cache_class;
subst_function = subst_class;
classify_function = (fun (_,x) -> Substitute x);
export_function = (function x -> Some x) }
let declare_class (cl,stre,p) =
Lib.add_anonymous_leaf (inClass ((cl,{ cl_strength = stre; cl_param = p })))
let _ =
Summary.declare_summary "inh_graph"
{ Summary.freeze_function = freeze;
Summary.unfreeze_function = unfreeze;
Summary.init_function = init;
Summary.survive_section = false }
(* classe d'un terme *)
(* find_class_type : constr -> cl_typ * int *)
let find_class_type t =
let t', args = decompose_app (Reductionops.whd_betaiotazeta t) in
match kind_of_term t' with
| Var id -> CL_SECVAR id, args
| Const sp -> CL_CONST sp, args
| Ind ind_sp -> CL_IND ind_sp, args
| Prod (_,_,_) -> CL_FUN, []
| Sort _ -> CL_SORT, []
| _ -> raise Not_found
(* class_of : Term.constr -> int *)
let class_of env sigma t =
let (t, n1, i, args) =
try
let (cl,args) = find_class_type t in
let (i, { cl_param = n1 } ) = class_info cl in
(t, n1, i, args)
with Not_found ->
let t = Tacred.hnf_constr env sigma t in
let (cl, args) = find_class_type t in
let (i, { cl_param = n1 } ) = class_info cl in
(t, n1, i, args)
in
if List.length args = n1 then t, i else raise Not_found
let inductive_class_of ind = fst (class_info (CL_IND ind))
let class_args_of c = snd (decompose_app c)
let strength_of_cl = function
| CL_CONST kn -> constant_strength (sp_of_global None (ConstRef kn))
| CL_SECVAR sp -> variable_strength sp
| _ -> Global
let string_of_class = function
| CL_FUN -> "FUNCLASS"
| CL_SORT -> "SORTCLASS"
| CL_CONST sp ->
string_of_qualid (shortest_qualid_of_global None (ConstRef sp))
| CL_IND sp ->
string_of_qualid (shortest_qualid_of_global None (IndRef sp))
| CL_SECVAR sp ->
string_of_qualid (shortest_qualid_of_global None (VarRef sp))
(* coercion_value : coe_index -> unsafe_judgment * bool *)
let coercion_value i =
let { coe_value = j; coe_is_identity = b } = snd (coercion_info_from_index i)
in (j,b)
(* pretty-print functions are now in Pretty *)
(* rajouter une coercion dans le graphe *)
let path_printer = ref (fun _ -> str "<a class path>"
: (int * int) * inheritance_path -> std_ppcmds)
let install_path_printer f = path_printer := f
let print_path x = !path_printer x
let message_ambig l =
(str"Ambiguous paths:" ++ spc () ++
prlist_with_sep pr_fnl (fun ijp -> print_path ijp) l)
(* add_coercion_in_graph : coe_index * cl_index * cl_index -> unit
coercion,source,target *)
let different_class_params i j =
(snd (class_info_from_index i)).cl_param > 0
let add_coercion_in_graph (ic,source,target) =
let old_inheritance_graph = !inheritance_graph in
let ambig_paths =
(ref [] : ((cl_index * cl_index) * inheritance_path) list ref) in
let try_add_new_path (p,i,j) =
try
if i=j then begin
if different_class_params i j then begin
let _ = lookup_path_between (i,j) in
ambig_paths := ((i,j),p)::!ambig_paths
end
end else begin
let _ = lookup_path_between (i,j) in
ambig_paths := ((i,j),p)::!ambig_paths
end;
false
with Not_found -> begin
add_new_path ((i,j),p);
true
end
in
let try_add_new_path1 (p,i,j) =
let _ = try_add_new_path (p,i,j) in ()
in
if try_add_new_path ([ic],source,target) then begin
List.iter
(fun ((s,t),p) ->
if s<>t then begin
if t = source then begin
try_add_new_path1 (p @ [ ic ],s,target);
List.iter
(fun ((u,v),q) ->
if u<>v & (u = target) & (p <> q) then
try_add_new_path1 (p @ [ ic ] @ q,s,v))
old_inheritance_graph
end;
if s = target then try_add_new_path1 (ic::p,source,t)
end)
old_inheritance_graph
end;
if (!ambig_paths <> []) && is_verbose () then
ppnl (message_ambig !ambig_paths)
type coercion = (coe_typ * coe_info_typ) * cl_typ * cl_typ
let cache_coercion (_,((coe,xf),cls,clt)) =
let is,_ = class_info cls in
let it,_ = class_info clt in
let jf = add_new_coercion (coe,xf) in
add_coercion_in_graph (jf,is,it)
let subst_coercion (_,subst,((coe,xf),cls,clt as obj)) =
let coe' = subst_coe_typ subst coe in
let xf' = subst_coe_info subst xf in
let cls' = subst_cl_typ subst cls in
let clt' = subst_cl_typ subst clt in
if coe' == coe && xf' == xf && cls' == cls & clt' == clt then obj else
((coe',xf'),cls',clt')
(* val inCoercion : (coe_typ * coe_info_typ) * cl_typ * cl_typ ->
-> Libobject.object
val outCoercion : Libobject.object -> (coe_typ * coe_info_typ)
* cl_typ * cl_typ *)
let (inCoercion,outCoercion) =
declare_object {(default_object "COERCION") with
load_function = (fun _ o -> cache_coercion o);
cache_function = cache_coercion;
subst_function = subst_coercion;
classify_function = (fun (_,x) -> Substitute x);
export_function = (function x -> Some x) }
let declare_coercion coef v stre ~isid ~src:cls ~target:clt ~params:ps =
Lib.add_anonymous_leaf
(inCoercion
((coef,
{ coe_value = v;
coe_strength = stre;
coe_is_identity = isid;
coe_param = ps }),
cls, clt))
let coercion_strength v = v.coe_strength
let coercion_identity v = v.coe_is_identity
(* For printing purpose *)
let get_coercion_value v = v.coe_value.uj_val
let classes () = !class_tab
let coercions () = !coercion_tab
let inheritance_graph () = !inheritance_graph
let coercion_of_qualid qid =
let ref = Nametab.global qid in
let coe = coe_of_reference ref in
if not (coercion_exists coe) then
errorlabstrm "try_add_coercion"
(Nametab.pr_global_env None ref ++ str" is not a coercion");
coe
module CoercionPrinting =
struct
type t = coe_typ
let encode = coercion_of_qualid
let subst = subst_coe_typ
let printer x = pr_global_env None x
let key = Goptions.SecondaryTable ("Printing","Coercion")
let title = "Explicitly printed coercions: "
let member_message x b =
str "Explicit printing of coercion " ++ printer x ++
str (if b then " is set" else " is unset")
let synchronous = true
end
module PrintingCoercion = Goptions.MakeRefTable(CoercionPrinting)
let hide_coercion coe =
if not (PrintingCoercion.active coe) then
let _,coe_info = coercion_info coe in
Some coe_info.coe_param
else None
|