1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Util
open Term
open Names
open Closure
open Esubst
(**** Call by value reduction ****)
(* The type of terms with closure. The meaning of the constructors and
* the invariants of this datatype are the following:
* VAL(k,c) represents the constr c with a delayed shift of k. c must be
* in normal form and neutral (i.e. not a lambda, a construct or a
* (co)fix, because they may produce redexes by applying them,
* or putting them in a case)
* STACK(k,v,stk) represents an irreductible value [v] in the stack [stk].
* [k] is a delayed shift to be applied to both the value and
* the stack.
* CBN(t,S) is the term [S]t. It is used to delay evaluation. For
* instance products are evaluated only when actually needed
* (CBN strategy).
* LAM(n,a,b,S) is the term [S]([x:a]b) where [a] is a list of bindings and
* [n] is the length of [a]. the environment [S] is propagated
* only when the abstraction is applied, and then we use the rule
* ([S]([x:a]b) c) --> [S.c]b
* This corresponds to the usual strategy of weak reduction
* FIXP(op,bd,S,args) is the fixpoint (Fix or Cofix) of bodies bd under
* the bindings S, and then applied to args. Here again,
* weak reduction.
* CONSTR(c,args) is the constructor [c] applied to [args].
*
*)
type cbv_value =
| VAL of int * constr
| STACK of int * cbv_value * cbv_stack
| CBN of constr * cbv_value subs
| LAM of int * (Name.t * constr) list * constr * cbv_value subs
| FIXP of fixpoint * cbv_value subs * cbv_value array
| COFIXP of cofixpoint * cbv_value subs * cbv_value array
| CONSTR of constructor * cbv_value array
(* type of terms with a hole. This hole can appear only under App or Case.
* TOP means the term is considered without context
* APP(v,stk) means the term is applied to v, and then the context stk
* (v.0 is the first argument).
* this corresponds to the application stack of the KAM.
* The members of l are values: we evaluate arguments before
calling the function.
* CASE(t,br,pat,S,stk) means the term is in a case (which is himself in stk
* t is the type of the case and br are the branches, all of them under
* the subs S, pat is information on the patterns of the Case
* (Weak reduction: we propagate the sub only when the selected branch
* is determined)
*
* Important remark: the APPs should be collapsed:
* (APP (l,(APP ...))) forbidden
*)
and cbv_stack =
| TOP
| APP of cbv_value array * cbv_stack
| CASE of constr * constr array * case_info * cbv_value subs * cbv_stack
(* les vars pourraient etre des constr,
cela permet de retarder les lift: utile ?? *)
(* relocation of a value; used when a value stored in a context is expanded
* in a larger context. e.g. [%k (S.t)](k+1) --> [^k]t (t is shifted of k)
*)
let rec shift_value n = function
| VAL (k,t) -> VAL (k+n,t)
| STACK(k,v,stk) -> STACK(k+n,v,stk)
| CBN (t,s) -> CBN(t,subs_shft(n,s))
| LAM (nlams,ctxt,b,s) -> LAM (nlams,ctxt,b,subs_shft (n,s))
| FIXP (fix,s,args) ->
FIXP (fix,subs_shft (n,s), Array.map (shift_value n) args)
| COFIXP (cofix,s,args) ->
COFIXP (cofix,subs_shft (n,s), Array.map (shift_value n) args)
| CONSTR (c,args) ->
CONSTR (c, Array.map (shift_value n) args)
let shift_value n v =
if Int.equal n 0 then v else shift_value n v
(* Contracts a fixpoint: given a fixpoint and a bindings,
* returns the corresponding fixpoint body, and the bindings in which
* it should be evaluated: its first variables are the fixpoint bodies
* (S, (fix Fi {F0 := T0 .. Fn-1 := Tn-1}))
* -> (S. [S]F0 . [S]F1 ... . [S]Fn-1, Ti)
*)
let contract_fixp env ((reci,i),(_,_,bds as bodies)) =
let make_body j = FIXP(((reci,j),bodies), env, [||]) in
let n = Array.length bds in
subs_cons(Array.init n make_body, env), bds.(i)
let contract_cofixp env (i,(_,_,bds as bodies)) =
let make_body j = COFIXP((j,bodies), env, [||]) in
let n = Array.length bds in
subs_cons(Array.init n make_body, env), bds.(i)
let make_constr_ref n = function
| RelKey p -> mkRel (n+p)
| VarKey id -> mkVar id
| ConstKey cst -> mkConst cst
(* Adds an application list. Collapse APPs! *)
let stack_app appl stack =
if Int.equal (Array.length appl) 0 then stack else
match stack with
| APP(args,stk) -> APP(Array.append appl args,stk)
| _ -> APP(appl, stack)
let rec stack_concat stk1 stk2 =
match stk1 with
TOP -> stk2
| APP(v,stk1') -> APP(v,stack_concat stk1' stk2)
| CASE(c,b,i,s,stk1') -> CASE(c,b,i,s,stack_concat stk1' stk2)
(* merge stacks when there is no shifts in between *)
let mkSTACK = function
v, TOP -> v
| STACK(0,v0,stk0), stk -> STACK(0,v0,stack_concat stk0 stk)
| v,stk -> STACK(0,v,stk)
(* Change: zeta reduction cannot be avoided in CBV *)
open RedFlags
let red_set_ref flags = function
| RelKey _ -> red_set flags fDELTA
| VarKey id -> red_set flags (fVAR id)
| ConstKey sp -> red_set flags (fCONST sp)
(* Transfer application lists from a value to the stack
* useful because fixpoints may be totally applied in several times.
* On the other hand, irreductible atoms absorb the full stack.
*)
let strip_appl head stack =
match head with
| FIXP (fix,env,app) -> (FIXP(fix,env,[||]), stack_app app stack)
| COFIXP (cofix,env,app) -> (COFIXP(cofix,env,[||]), stack_app app stack)
| CONSTR (c,app) -> (CONSTR(c,[||]), stack_app app stack)
| _ -> (head, stack)
(* Tests if fixpoint reduction is possible. *)
let fixp_reducible flgs ((reci,i),_) stk =
if red_set flgs fIOTA then
match stk with
| APP(appl,_) ->
Array.length appl > reci.(i) &&
(match appl.(reci.(i)) with
CONSTR _ -> true
| _ -> false)
| _ -> false
else
false
let cofixp_reducible flgs _ stk =
if red_set flgs fIOTA then
match stk with
| (CASE _ | APP(_,CASE _)) -> true
| _ -> false
else
false
(* The main recursive functions
*
* Go under applications and cases (pushed in the stack), expand head
* constants or substitued de Bruijn, and try to make appear a
* constructor, a lambda or a fixp in the head. If not, it is a value
* and is completely computed here. The head redexes are NOT reduced:
* the function returns the pair of a cbv_value and its stack. *
* Invariant: if the result of norm_head is CONSTR or (CO)FIXP, it last
* argument is []. Because we must put all the applied terms in the
* stack. *)
let rec norm_head info env t stack =
(* no reduction under binders *)
match kind_of_term t with
(* stack grows (remove casts) *)
| App (head,args) -> (* Applied terms are normalized immediately;
they could be computed when getting out of the stack *)
let nargs = Array.map (cbv_stack_term info TOP env) args in
norm_head info env head (stack_app nargs stack)
| Case (ci,p,c,v) -> norm_head info env c (CASE(p,v,ci,env,stack))
| Cast (ct,_,_) -> norm_head info env ct stack
(* constants, axioms
* the first pattern is CRUCIAL, n=0 happens very often:
* when reducing closed terms, n is always 0 *)
| Rel i ->
(match expand_rel i env with
| Inl (0,v) -> strip_appl v stack
| Inl (n,v) -> strip_appl (shift_value n v) stack
| Inr (n,None) -> (VAL(0, mkRel n), stack)
| Inr (n,Some p) -> norm_head_ref (n-p) info env stack (RelKey p))
| Var id -> norm_head_ref 0 info env stack (VarKey id)
| Const sp -> norm_head_ref 0 info env stack (ConstKey sp)
| LetIn (_, b, _, c) ->
(* zeta means letin are contracted; delta without zeta means we *)
(* allow bindings but leave let's in place *)
if red_set (info_flags info) fZETA then
(* New rule: for Cbv, Delta does not apply to locally bound variables
or red_set (info_flags info) fDELTA
*)
let env' = subs_cons ([|cbv_stack_term info TOP env b|],env) in
norm_head info env' c stack
else
(CBN(t,env), stack) (* Considérer une coupure commutative ? *)
| Evar ev ->
(match evar_value info ev with
Some c -> norm_head info env c stack
| None -> (VAL(0, t), stack))
(* non-neutral cases *)
| Lambda _ ->
let ctxt,b = decompose_lam t in
(LAM(List.length ctxt, List.rev ctxt,b,env), stack)
| Fix fix -> (FIXP(fix,env,[||]), stack)
| CoFix cofix -> (COFIXP(cofix,env,[||]), stack)
| Construct c -> (CONSTR(c, [||]), stack)
(* neutral cases *)
| (Sort _ | Meta _ | Ind _) -> (VAL(0, t), stack)
| Prod _ -> (CBN(t,env), stack)
and norm_head_ref k info env stack normt =
if red_set_ref (info_flags info) normt then
match ref_value_cache info normt with
| Some body -> strip_appl (shift_value k body) stack
| None -> (VAL(0,make_constr_ref k normt),stack)
else (VAL(0,make_constr_ref k normt),stack)
(* cbv_stack_term performs weak reduction on constr t under the subs
* env, with context stack, i.e. ([env]t stack). First computes weak
* head normal form of t and checks if a redex appears with the stack.
* If so, recursive call to reach the real head normal form. If not,
* we build a value.
*)
and cbv_stack_term info stack env t =
match norm_head info env t stack with
(* a lambda meets an application -> BETA *)
| (LAM (nlams,ctxt,b,env), APP (args, stk))
when red_set (info_flags info) fBETA ->
let nargs = Array.length args in
if nargs == nlams then
cbv_stack_term info stk (subs_cons(args,env)) b
else if nlams < nargs then
let env' = subs_cons(Array.sub args 0 nlams, env) in
let eargs = Array.sub args nlams (nargs-nlams) in
cbv_stack_term info (APP(eargs,stk)) env' b
else
let ctxt' = List.skipn nargs ctxt in
LAM(nlams-nargs,ctxt', b, subs_cons(args,env))
(* a Fix applied enough -> IOTA *)
| (FIXP(fix,env,[||]), stk)
when fixp_reducible (info_flags info) fix stk ->
let (envf,redfix) = contract_fixp env fix in
cbv_stack_term info stk envf redfix
(* constructor guard satisfied or Cofix in a Case -> IOTA *)
| (COFIXP(cofix,env,[||]), stk)
when cofixp_reducible (info_flags info) cofix stk->
let (envf,redfix) = contract_cofixp env cofix in
cbv_stack_term info stk envf redfix
(* constructor in a Case -> IOTA *)
| (CONSTR((sp,n),[||]), APP(args,CASE(_,br,ci,env,stk)))
when red_set (info_flags info) fIOTA ->
let cargs =
Array.sub args ci.ci_npar (Array.length args - ci.ci_npar) in
cbv_stack_term info (stack_app cargs stk) env br.(n-1)
(* constructor of arity 0 in a Case -> IOTA *)
| (CONSTR((_,n),[||]), CASE(_,br,_,env,stk))
when red_set (info_flags info) fIOTA ->
cbv_stack_term info stk env br.(n-1)
(* may be reduced later by application *)
| (FIXP(fix,env,[||]), APP(appl,TOP)) -> FIXP(fix,env,appl)
| (COFIXP(cofix,env,[||]), APP(appl,TOP)) -> COFIXP(cofix,env,appl)
| (CONSTR(c,[||]), APP(appl,TOP)) -> CONSTR(c,appl)
(* definitely a value *)
| (head,stk) -> mkSTACK(head, stk)
(* When we are sure t will never produce a redex with its stack, we
* normalize (even under binders) the applied terms and we build the
* final term
*)
let rec apply_stack info t = function
| TOP -> t
| APP (args,st) ->
apply_stack info (mkApp(t,Array.map (cbv_norm_value info) args)) st
| CASE (ty,br,ci,env,st) ->
apply_stack info
(mkCase (ci, cbv_norm_term info env ty, t,
Array.map (cbv_norm_term info env) br))
st
(* performs the reduction on a constr, and returns a constr *)
and cbv_norm_term info env t =
(* reduction under binders *)
cbv_norm_value info (cbv_stack_term info TOP env t)
(* reduction of a cbv_value to a constr *)
and cbv_norm_value info = function (* reduction under binders *)
| VAL (n,t) -> lift n t
| STACK (0,v,stk) ->
apply_stack info (cbv_norm_value info v) stk
| STACK (n,v,stk) ->
lift n (apply_stack info (cbv_norm_value info v) stk)
| CBN(t,env) ->
map_constr_with_binders subs_lift (cbv_norm_term info) env t
| LAM (n,ctxt,b,env) ->
let nctxt =
List.map_i (fun i (x,ty) ->
(x,cbv_norm_term info (subs_liftn i env) ty)) 0 ctxt in
compose_lam (List.rev nctxt) (cbv_norm_term info (subs_liftn n env) b)
| FIXP ((lij,(names,lty,bds)),env,args) ->
mkApp
(mkFix (lij,
(names,
Array.map (cbv_norm_term info env) lty,
Array.map (cbv_norm_term info
(subs_liftn (Array.length lty) env)) bds)),
Array.map (cbv_norm_value info) args)
| COFIXP ((j,(names,lty,bds)),env,args) ->
mkApp
(mkCoFix (j,
(names,Array.map (cbv_norm_term info env) lty,
Array.map (cbv_norm_term info
(subs_liftn (Array.length lty) env)) bds)),
Array.map (cbv_norm_value info) args)
| CONSTR (c,args) ->
mkApp(mkConstruct c, Array.map (cbv_norm_value info) args)
(* with profiling *)
let cbv_norm infos constr =
with_stats (lazy (cbv_norm_term infos (subs_id 0) constr))
type cbv_infos = cbv_value infos
(* constant bodies are normalized at the first expansion *)
let create_cbv_infos flgs env sigma =
create
(fun old_info c -> cbv_stack_term old_info TOP (subs_id 0) c)
flgs
env
(Reductionops.safe_evar_value sigma)
|