1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Poor's man DECLARE PLUGIN *)
let __coq_plugin_name = "numbers_syntax_plugin"
let () = Mltop.add_known_module __coq_plugin_name
(* digit-based syntax for int31, bigN bigZ and bigQ *)
open Bigint
open Names
open Globnames
open Glob_term
(*** Constants for locating int31 / bigN / bigZ / bigQ constructors ***)
let make_dir l = DirPath.make (List.rev_map Id.of_string l)
let make_path dir id = Libnames.make_path (make_dir dir) (Id.of_string id)
let make_mind mp id = Names.MutInd.make2 mp (Label.make id)
let make_mind_mpfile dir id = make_mind (MPfile (make_dir dir)) id
let make_mind_mpdot dir modname id =
let mp = MPdot (MPfile (make_dir dir), Label.make modname)
in make_mind mp id
(* int31 stuff *)
let int31_module = ["Coq"; "Numbers"; "Cyclic"; "Int31"; "Int31"]
let int31_path = make_path int31_module "int31"
let int31_id = make_mind_mpfile int31_module
let int31_scope = "int31_scope"
let int31_construct = ConstructRef ((int31_id "int31",0),1)
let int31_0 = ConstructRef ((int31_id "digits",0),1)
let int31_1 = ConstructRef ((int31_id "digits",0),2)
(* bigN stuff*)
let zn2z_module = ["Coq"; "Numbers"; "Cyclic"; "DoubleCyclic"; "DoubleType"]
let zn2z_path = make_path zn2z_module "zn2z"
let zn2z_id = make_mind_mpfile zn2z_module
let zn2z_W0 = ConstructRef ((zn2z_id "zn2z",0),1)
let zn2z_WW = ConstructRef ((zn2z_id "zn2z",0),2)
let bigN_module = ["Coq"; "Numbers"; "Natural"; "BigN"; "BigN" ]
let bigN_path = make_path (bigN_module@["BigN"]) "t"
let bigN_t = make_mind_mpdot bigN_module "BigN" "t'"
let bigN_scope = "bigN_scope"
(* number of inlined level of bigN (actually the level 0 to n_inlined-1 are inlined) *)
let n_inlined = 7
let bigN_constructor i =
ConstructRef ((bigN_t,0),(min i n_inlined)+1)
(*bigZ stuff*)
let bigZ_module = ["Coq"; "Numbers"; "Integer"; "BigZ"; "BigZ" ]
let bigZ_path = make_path (bigZ_module@["BigZ"]) "t"
let bigZ_t = make_mind_mpdot bigZ_module "BigZ" "t_"
let bigZ_scope = "bigZ_scope"
let bigZ_pos = ConstructRef ((bigZ_t,0),1)
let bigZ_neg = ConstructRef ((bigZ_t,0),2)
(*bigQ stuff*)
let bigQ_module = ["Coq"; "Numbers"; "Rational"; "BigQ"; "BigQ"]
let bigQ_path = make_path (bigQ_module@["BigQ"]) "t"
let bigQ_t = make_mind_mpdot bigQ_module "BigQ" "t_"
let bigQ_scope = "bigQ_scope"
let bigQ_z = ConstructRef ((bigQ_t,0),1)
(*** Definition of the Non_closed exception, used in the pretty printing ***)
exception Non_closed
(*** Parsing for int31 in digital notation ***)
(* parses a *non-negative* integer (from bigint.ml) into an int31
wraps modulo 2^31 *)
let int31_of_pos_bigint ?loc n =
let ref_construct = CAst.make ?loc @@ GRef (int31_construct, None) in
let ref_0 = CAst.make ?loc @@ GRef (int31_0, None) in
let ref_1 = CAst.make ?loc @@ GRef (int31_1, None) in
let rec args counter n =
if counter <= 0 then
[]
else
let (q,r) = div2_with_rest n in
(if r then ref_1 else ref_0)::(args (counter-1) q)
in
CAst.make ?loc @@ GApp (ref_construct, List.rev (args 31 n))
let error_negative ?loc =
CErrors.user_err ?loc ~hdr:"interp_int31" (Pp.str "int31 are only non-negative numbers.")
let interp_int31 ?loc n =
if is_pos_or_zero n then
int31_of_pos_bigint ?loc n
else
error_negative ?loc
(* Pretty prints an int31 *)
let bigint_of_int31 =
let rec args_parsing args cur =
match args with
| [] -> cur
| { CAst.v = GRef (b,_) }::l when eq_gr b int31_0 -> args_parsing l (mult_2 cur)
| { CAst.v = GRef (b,_) }::l when eq_gr b int31_1 -> args_parsing l (add_1 (mult_2 cur))
| _ -> raise Non_closed
in
function
| { CAst.v = GApp ({ CAst.v = GRef (c, _)}, args) } when eq_gr c int31_construct -> args_parsing args zero
| _ -> raise Non_closed
let uninterp_int31 i =
try
Some (bigint_of_int31 i)
with Non_closed ->
None
(* Actually declares the interpreter for int31 *)
let _ = Notation.declare_numeral_interpreter int31_scope
(int31_path, int31_module)
interp_int31
([CAst.make @@ GRef (int31_construct, None)],
uninterp_int31,
true)
(*** Parsing for bigN in digital notation ***)
(* the base for bigN (in Coq) that is 2^31 in our case *)
let base = pow two 31
(* base of the bigN of height N : (2^31)^(2^n) *)
let rank n =
let rec rk n pow2 =
if n <= 0 then pow2
else rk (n-1) (mult pow2 pow2)
in rk n base
(* splits a number bi at height n, that is the rest needs 2^n int31 to be stored
it is expected to be used only when the quotient would also need 2^n int31 to be
stored *)
let split_at n bi =
euclid bi (rank (n-1))
(* search the height of the Coq bigint needed to represent the integer bi *)
let height bi =
let rec hght n pow2 =
if less_than bi pow2 then n
else hght (n+1) (mult pow2 pow2)
in hght 0 base
(* n must be a non-negative integer (from bigint.ml) *)
let word_of_pos_bigint ?loc hght n =
let ref_W0 = CAst.make ?loc @@ GRef (zn2z_W0, None) in
let ref_WW = CAst.make ?loc @@ GRef (zn2z_WW, None) in
let rec decomp hgt n =
if hgt <= 0 then
int31_of_pos_bigint ?loc n
else if equal n zero then
CAst.make ?loc @@ GApp (ref_W0, [CAst.make ?loc @@ GHole (Evar_kinds.InternalHole, Misctypes.IntroAnonymous, None)])
else
let (h,l) = split_at hgt n in
CAst.make ?loc @@ GApp (ref_WW, [CAst.make ?loc @@ GHole (Evar_kinds.InternalHole, Misctypes.IntroAnonymous, None);
decomp (hgt-1) h;
decomp (hgt-1) l])
in
decomp hght n
let bigN_of_pos_bigint ?loc n =
let h = height n in
let ref_constructor = CAst.make ?loc @@ GRef (bigN_constructor h, None) in
let word = word_of_pos_bigint ?loc h n in
let args =
if h < n_inlined then [word]
else [Nat_syntax_plugin.Nat_syntax.nat_of_int ?loc (of_int (h-n_inlined));word]
in
CAst.make ?loc @@ GApp (ref_constructor, args)
let bigN_error_negative ?loc =
CErrors.user_err ?loc ~hdr:"interp_bigN" (Pp.str "bigN are only non-negative numbers.")
let interp_bigN ?loc n =
if is_pos_or_zero n then
bigN_of_pos_bigint ?loc n
else
bigN_error_negative ?loc
(* Pretty prints a bigN *)
let bigint_of_word =
let rec get_height rc =
match rc with
| { CAst.v = GApp ({ CAst.v = GRef(c,_)}, [_;lft;rght]) } when eq_gr c zn2z_WW ->
1+max (get_height lft) (get_height rght)
| _ -> 0
in
let rec transform hght rc =
match rc with
| { CAst.v = GApp ({ CAst.v = GRef(c,_)},_)} when eq_gr c zn2z_W0-> zero
| { CAst.v = GApp ({ CAst.v = GRef(c,_)}, [_;lft;rght]) } when eq_gr c zn2z_WW->
let new_hght = hght-1 in
add (mult (rank new_hght)
(transform new_hght lft))
(transform new_hght rght)
| _ -> bigint_of_int31 rc
in
fun rc ->
let hght = get_height rc in
transform hght rc
let bigint_of_bigN rc =
match rc with
| { CAst.v = GApp (_,[one_arg]) } -> bigint_of_word one_arg
| { CAst.v = GApp (_,[_;second_arg]) } -> bigint_of_word second_arg
| _ -> raise Non_closed
let uninterp_bigN rc =
try
Some (bigint_of_bigN rc)
with Non_closed ->
None
(* declare the list of constructors of bigN used in the declaration of the
numeral interpreter *)
let bigN_list_of_constructors =
let rec build i =
if i < n_inlined+1 then
(CAst.make @@ GRef (bigN_constructor i,None))::(build (i+1))
else
[]
in
build 0
(* Actually declares the interpreter for bigN *)
let _ = Notation.declare_numeral_interpreter bigN_scope
(bigN_path, bigN_module)
interp_bigN
(bigN_list_of_constructors,
uninterp_bigN,
true)
(*** Parsing for bigZ in digital notation ***)
let interp_bigZ ?loc n =
let ref_pos = CAst.make ?loc @@ GRef (bigZ_pos, None) in
let ref_neg = CAst.make ?loc @@ GRef (bigZ_neg, None) in
if is_pos_or_zero n then
CAst.make ?loc @@ GApp (ref_pos, [bigN_of_pos_bigint ?loc n])
else
CAst.make ?loc @@ GApp (ref_neg, [bigN_of_pos_bigint ?loc (neg n)])
(* pretty printing functions for bigZ *)
let bigint_of_bigZ = function
| { CAst.v = GApp ({ CAst.v = GRef(c,_) }, [one_arg])} when eq_gr c bigZ_pos -> bigint_of_bigN one_arg
| { CAst.v = GApp ({ CAst.v = GRef(c,_) }, [one_arg])} when eq_gr c bigZ_neg ->
let opp_val = bigint_of_bigN one_arg in
if equal opp_val zero then
raise Non_closed
else
neg opp_val
| _ -> raise Non_closed
let uninterp_bigZ rc =
try
Some (bigint_of_bigZ rc)
with Non_closed ->
None
(* Actually declares the interpreter for bigZ *)
let _ = Notation.declare_numeral_interpreter bigZ_scope
(bigZ_path, bigZ_module)
interp_bigZ
([CAst.make @@ GRef (bigZ_pos, None);
CAst.make @@ GRef (bigZ_neg, None)],
uninterp_bigZ,
true)
(*** Parsing for bigQ in digital notation ***)
let interp_bigQ ?loc n =
let ref_z = CAst.make ?loc @@ GRef (bigQ_z, None) in
CAst.make ?loc @@ GApp (ref_z, [interp_bigZ ?loc n])
let uninterp_bigQ rc =
try match rc with
| { CAst.v = GApp ({ CAst.v = GRef(c,_)}, [one_arg]) } when eq_gr c bigQ_z ->
Some (bigint_of_bigZ one_arg)
| _ -> None (* we don't pretty-print yet fractions *)
with Non_closed -> None
(* Actually declares the interpreter for bigQ *)
let _ = Notation.declare_numeral_interpreter bigQ_scope
(bigQ_path, bigQ_module)
interp_bigQ
([CAst.make @@ GRef (bigQ_z, None)], uninterp_bigQ,
true)
|