1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* This file is (C) Copyright 2006-2015 Microsoft Corporation and Inria. *)
open API
open Grammar_API
(* Defining grammar rules with "xx" in it automatically declares keywords too,
* we thus save the lexer to restore it at the end of the file *)
let frozen_lexer = CLexer.get_keyword_state () ;;
(*i camlp4use: "pa_extend.cmo" i*)
(*i camlp4deps: "grammar/grammar.cma" i*)
open Ltac_plugin
open Names
open Pp
open Pcoq
open Genarg
open Stdarg
open Term
open Vars
open Libnames
open Tactics
open Tacticals
open Termops
open Recordops
open Tacmach
open Glob_term
open Util
open Evd
open Tacexpr
open Tacinterp
open Pretyping
open Constr
open Ppconstr
open Printer
open Globnames
open Misctypes
open Decl_kinds
open Evar_kinds
open Constrexpr
open Constrexpr_ops
DECLARE PLUGIN "ssrmatching_plugin"
let errorstrm = CErrors.user_err ~hdr:"ssrmatching"
let loc_error loc msg = CErrors.user_err ?loc ~hdr:msg (str msg)
let ppnl = Feedback.msg_info
(* 0 cost pp function. Active only if env variable SSRDEBUG is set *)
(* or if SsrDebug is Set *)
let pp_ref = ref (fun _ -> ())
let ssr_pp s = Feedback.msg_debug (str"SSR: "++Lazy.force s)
let _ =
try ignore(Sys.getenv "SSRMATCHINGDEBUG"); pp_ref := ssr_pp
with Not_found -> ()
let debug b =
if b then pp_ref := ssr_pp else pp_ref := fun _ -> ()
let _ =
Goptions.declare_bool_option
{ Goptions.optname = "ssrmatching debugging";
Goptions.optkey = ["Debug";"SsrMatching"];
Goptions.optdepr = false;
Goptions.optread = (fun _ -> !pp_ref == ssr_pp);
Goptions.optwrite = debug }
let pp s = !pp_ref s
(** Utils {{{ *****************************************************************)
let env_size env = List.length (Environ.named_context env)
let safeDestApp c =
match kind_of_term c with App (f, a) -> f, a | _ -> c, [| |]
(* Toplevel constr must be globalized twice ! *)
let glob_constr ist genv = function
| _, Some ce ->
let vars = Id.Map.fold (fun x _ accu -> Id.Set.add x accu) ist.lfun Id.Set.empty in
let ltacvars = { Constrintern.empty_ltac_sign with Constrintern.ltac_vars = vars } in
Constrintern.intern_gen WithoutTypeConstraint ~ltacvars:ltacvars genv ce
| rc, None -> rc
(* Term printing utilities functions for deciding bracketing. *)
let pr_paren prx x = hov 1 (str "(" ++ prx x ++ str ")")
(* String lexing utilities *)
let skip_wschars s =
let rec loop i = match s.[i] with '\n'..' ' -> loop (i + 1) | _ -> i in loop
(* We also guard characters that might interfere with the ssreflect *)
(* tactic syntax. *)
let guard_term ch1 s i = match s.[i] with
| '(' -> false
| '{' | '/' | '=' -> true
| _ -> ch1 = '('
(* The call 'guard s i' should return true if the contents of s *)
(* starting at i need bracketing to avoid ambiguities. *)
let pr_guarded guard prc c =
let s = Pp.string_of_ppcmds (prc c) ^ "$" in
if guard s (skip_wschars s 0) then pr_paren prc c else prc c
(* More sensible names for constr printers *)
let pr_constr = pr_constr
let prl_glob_constr c = pr_lglob_constr_env (Global.env ()) c
let pr_glob_constr c = pr_glob_constr_env (Global.env ()) c
let prl_constr_expr = pr_lconstr_expr
let pr_constr_expr = pr_constr_expr
let prl_glob_constr_and_expr = function
| _, Some c -> prl_constr_expr c
| c, None -> prl_glob_constr c
let pr_glob_constr_and_expr = function
| _, Some c -> pr_constr_expr c
| c, None -> pr_glob_constr c
let pr_term (k, c) = pr_guarded (guard_term k) pr_glob_constr_and_expr c
let prl_term (k, c) = pr_guarded (guard_term k) prl_glob_constr_and_expr c
(** Adding a new uninterpreted generic argument type *)
let add_genarg tag pr =
let wit = Genarg.make0 tag in
let tag = Geninterp.Val.create tag in
let glob ist x = (ist, x) in
let subst _ x = x in
let interp ist x = Ftactic.return (Geninterp.Val.Dyn (tag, x)) in
let gen_pr _ _ _ = pr in
let () = Genintern.register_intern0 wit glob in
let () = Genintern.register_subst0 wit subst in
let () = Geninterp.register_interp0 wit interp in
let () = Geninterp.register_val0 wit (Some (Geninterp.Val.Base tag)) in
Pptactic.declare_extra_genarg_pprule wit gen_pr gen_pr gen_pr;
wit
(** Constructors for cast type *)
let dC t = CastConv t
(** Constructors for constr_expr *)
let isCVar = function { CAst.v = CRef (Ident _, _) } -> true | _ -> false
let destCVar = function { CAst.v = CRef (Ident (_, id), _) } -> id | _ ->
CErrors.anomaly (str"not a CRef.")
let mkCHole ~loc = CAst.make ?loc @@ CHole (None, IntroAnonymous, None)
let mkCLambda ?loc name ty t = CAst.make ?loc @@
CLambdaN ([[Loc.tag ?loc name], Default Explicit, ty], t)
let mkCLetIn ?loc name bo t = CAst.make ?loc @@
CLetIn ((Loc.tag ?loc name), bo, None, t)
let mkCCast ?loc t ty = CAst.make ?loc @@ CCast (t, dC ty)
(** Constructors for rawconstr *)
let mkRHole = CAst.make @@ GHole (InternalHole, IntroAnonymous, None)
let mkRApp f args = if args = [] then f else CAst.make @@ GApp (f, args)
let mkRCast rc rt = CAst.make @@ GCast (rc, dC rt)
let mkRLambda n s t = CAst.make @@ GLambda (n, Explicit, s, t)
(* ssrterm conbinators *)
let combineCG t1 t2 f g = match t1, t2 with
| (x, (t1, None)), (_, (t2, None)) -> x, (g t1 t2, None)
| (x, (_, Some t1)), (_, (_, Some t2)) -> x, (mkRHole, Some (f t1 t2))
| _, (_, (_, None)) -> CErrors.anomaly (str"have: mixed C-G constr.")
| _ -> CErrors.anomaly (str"have: mixed G-C constr.")
let loc_ofCG = function
| (_, (s, None)) -> Glob_ops.loc_of_glob_constr s
| (_, (_, Some s)) -> Constrexpr_ops.constr_loc s
let mk_term k c = k, (mkRHole, Some c)
let mk_lterm = mk_term ' '
let pf_type_of gl t = let sigma, ty = pf_type_of gl t in re_sig (sig_it gl) sigma, ty
let nf_evar sigma c =
EConstr.Unsafe.to_constr (Evarutil.nf_evar sigma (EConstr.of_constr c))
(* }}} *)
(** Profiling {{{ *************************************************************)
type profiler = {
profile : 'a 'b. ('a -> 'b) -> 'a -> 'b;
reset : unit -> unit;
print : unit -> unit }
let profile_now = ref false
let something_profiled = ref false
let profilers = ref []
let add_profiler f = profilers := f :: !profilers;;
let profile b =
profile_now := b;
if b then List.iter (fun f -> f.reset ()) !profilers;
if not b then List.iter (fun f -> f.print ()) !profilers
;;
let _ =
Goptions.declare_bool_option
{ Goptions.optname = "ssrmatching profiling";
Goptions.optkey = ["SsrMatchingProfiling"];
Goptions.optread = (fun _ -> !profile_now);
Goptions.optdepr = false;
Goptions.optwrite = profile }
let () =
let prof_total =
let init = ref 0.0 in {
profile = (fun f x -> assert false);
reset = (fun () -> init := Unix.gettimeofday ());
print = (fun () -> if !something_profiled then
prerr_endline
(Printf.sprintf "!! %-39s %10d %9.4f %9.4f %9.4f"
"total" 0 (Unix.gettimeofday() -. !init) 0.0 0.0)) } in
let prof_legenda = {
profile = (fun f x -> assert false);
reset = (fun () -> ());
print = (fun () -> if !something_profiled then begin
prerr_endline
(Printf.sprintf "!! %39s ---------- --------- --------- ---------"
(String.make 39 '-'));
prerr_endline
(Printf.sprintf "!! %-39s %10s %9s %9s %9s"
"function" "#calls" "total" "max" "average") end) } in
add_profiler prof_legenda;
add_profiler prof_total
;;
let mk_profiler s =
let total, calls, max = ref 0.0, ref 0, ref 0.0 in
let reset () = total := 0.0; calls := 0; max := 0.0 in
let profile f x =
if not !profile_now then f x else
let before = Unix.gettimeofday () in
try
incr calls;
let res = f x in
let after = Unix.gettimeofday () in
let delta = after -. before in
total := !total +. delta;
if delta > !max then max := delta;
res
with exc ->
let after = Unix.gettimeofday () in
let delta = after -. before in
total := !total +. delta;
if delta > !max then max := delta;
raise exc in
let print () =
if !calls <> 0 then begin
something_profiled := true;
prerr_endline
(Printf.sprintf "!! %-39s %10d %9.4f %9.4f %9.4f"
s !calls !total !max (!total /. (float_of_int !calls))) end in
let prof = { profile = profile; reset = reset; print = print } in
add_profiler prof;
prof
;;
(* }}} *)
exception NoProgress
(** Unification procedures. *)
(* To enforce the rigidity of the rooted match we always split *)
(* top applications, so the unification procedures operate on *)
(* arrays of patterns and terms. *)
(* We perform three kinds of unification: *)
(* EQ: exact conversion check *)
(* FO: first-order unification of evars, without conversion *)
(* HO: higher-order unification with conversion *)
(* The subterm unification strategy is to find the first FO *)
(* match, if possible, and the first HO match otherwise, then *)
(* compute all the occurrences that are EQ matches for the *)
(* relevant subterm. *)
(* Additional twists: *)
(* - If FO/HO fails then we attempt to fill evars using *)
(* typeclasses before raising an outright error. We also *)
(* fill typeclasses even after a successful match, since *)
(* beta-reduction and canonical instances may leave *)
(* undefined evars. *)
(* - We do postchecks to rule out matches that are not *)
(* closed or that assign to a global evar; these can be *)
(* disabled for rewrite or dependent family matches. *)
(* - We do a full FO scan before turning to HO, as the FO *)
(* comparison can be much faster than the HO one. *)
let unif_EQ env sigma p c =
let evars = existential_opt_value sigma, Evd.universes sigma in
try let _ = Reduction.conv env p ~evars c in true with _ -> false
let unif_EQ_args env sigma pa a =
let n = Array.length pa in
let rec loop i = (i = n) || unif_EQ env sigma pa.(i) a.(i) && loop (i + 1) in
loop 0
let prof_unif_eq_args = mk_profiler "unif_EQ_args";;
let unif_EQ_args env sigma pa a =
prof_unif_eq_args.profile (unif_EQ_args env sigma pa) a
;;
let unif_HO env ise p c = Evarconv.the_conv_x env p c ise
let unif_HO_args env ise0 pa i ca =
let n = Array.length pa in
let rec loop ise j =
if j = n then ise else loop (unif_HO env ise (EConstr.of_constr pa.(j)) (EConstr.of_constr ca.(i + j))) (j + 1) in
loop ise0 0
(* FO unification should boil down to calling w_unify with no_delta, but *)
(* alas things are not so simple: w_unify does partial type-checking, *)
(* which breaks down when the no-delta flag is on (as the Coq type system *)
(* requires full convertibility. The workaround here is to convert all *)
(* evars into metas, since 8.2 does not TC metas. This means some lossage *)
(* for HO evars, though hopefully Miller patterns can pick up some of *)
(* those cases, and HO matching will mop up the rest. *)
let flags_FO =
let flags =
{ (Unification.default_no_delta_unify_flags ()).Unification.core_unify_flags
with
Unification.modulo_conv_on_closed_terms = None;
Unification.modulo_eta = true;
Unification.modulo_betaiota = true;
Unification.modulo_delta_types = full_transparent_state}
in
{ Unification.core_unify_flags = flags;
Unification.merge_unify_flags = flags;
Unification.subterm_unify_flags = flags;
Unification.allow_K_in_toplevel_higher_order_unification = false;
Unification.resolve_evars =
(Unification.default_no_delta_unify_flags ()).Unification.resolve_evars
}
let unif_FO env ise p c =
Unification.w_unify env ise Reduction.CONV ~flags:flags_FO (EConstr.of_constr p) (EConstr.of_constr c)
(* Perform evar substitution in main term and prune substitution. *)
let nf_open_term sigma0 ise c =
let c = EConstr.Unsafe.to_constr c in
let s = ise and s' = ref sigma0 in
let rec nf c' = match kind_of_term c' with
| Evar ex ->
begin try nf (existential_value s ex) with _ ->
let k, a = ex in let a' = Array.map nf a in
if not (Evd.mem !s' k) then
s' := Evd.add !s' k (Evarutil.nf_evar_info s (Evd.find s k));
mkEvar (k, a')
end
| _ -> map_constr nf c' in
let copy_def k evi () =
if evar_body evi != Evd.Evar_empty then () else
match Evd.evar_body (Evd.find s k) with
| Evar_defined c' -> s' := Evd.define k (nf c') !s'
| _ -> () in
let c' = nf c in let _ = Evd.fold copy_def sigma0 () in
!s', Evd.evar_universe_context s, EConstr.of_constr c'
let unif_end env sigma0 ise0 pt ok =
let ise = Evarconv.solve_unif_constraints_with_heuristics env ise0 in
let s, uc, t = nf_open_term sigma0 ise pt in
let ise1 = create_evar_defs s in
let ise1 = Evd.set_universe_context ise1 uc in
let ise2 = Typeclasses.resolve_typeclasses ~fail:true env ise1 in
if not (ok ise) then raise NoProgress else
if ise2 == ise1 then (s, uc, t)
else
let s, uc', t = nf_open_term sigma0 ise2 t in
s, Evd.union_evar_universe_context uc uc', t
let unify_HO env sigma0 t1 t2 =
let sigma = unif_HO env sigma0 t1 t2 in
let sigma, uc, _ = unif_end env sigma0 sigma t2 (fun _ -> true) in
Evd.set_universe_context sigma uc
let pf_unify_HO gl t1 t2 =
let env, sigma0, si = pf_env gl, project gl, sig_it gl in
let sigma = unify_HO env sigma0 t1 t2 in
re_sig si sigma
(* This is what the definition of iter_constr should be... *)
let iter_constr_LR f c = match kind_of_term c with
| Evar (k, a) -> Array.iter f a
| Cast (cc, _, t) -> f cc; f t
| Prod (_, t, b) | Lambda (_, t, b) -> f t; f b
| LetIn (_, v, t, b) -> f v; f t; f b
| App (cf, a) -> f cf; Array.iter f a
| Case (_, p, v, b) -> f v; f p; Array.iter f b
| Fix (_, (_, t, b)) | CoFix (_, (_, t, b)) ->
for i = 0 to Array.length t - 1 do f t.(i); f b.(i) done
| Proj(_,a) -> f a
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _) -> ()
(* The comparison used to determine which subterms matches is KEYED *)
(* CONVERSION. This looks for convertible terms that either have the same *)
(* same head constant as pat if pat is an application (after beta-iota), *)
(* or start with the same constr constructor (esp. for LetIn); this is *)
(* disregarded if the head term is let x := ... in x, and casts are always *)
(* ignored and removed). *)
(* Record projections get special treatment: in addition to the projection *)
(* constant itself, ssreflect also recognizes head constants of canonical *)
(* projections. *)
exception NoMatch
type ssrdir = L2R | R2L
let pr_dir_side = function L2R -> str "LHS" | R2L -> str "RHS"
let inv_dir = function L2R -> R2L | R2L -> L2R
type pattern_class =
| KpatFixed
| KpatConst
| KpatEvar of existential_key
| KpatLet
| KpatLam
| KpatRigid
| KpatFlex
| KpatProj of Constant.t
type tpattern = {
up_k : pattern_class;
up_FO : constr;
up_f : constr;
up_a : constr array;
up_t : constr; (* equation proof term or matched term *)
up_dir : ssrdir; (* direction of the rule *)
up_ok : constr -> evar_map -> bool; (* progress test for rewrite *)
}
let all_ok _ _ = true
let proj_nparams c =
try 1 + Recordops.find_projection_nparams (ConstRef c) with _ -> 0
let isRigid c = match kind_of_term c with
| Prod _ | Sort _ | Lambda _ | Case _ | Fix _ | CoFix _ -> true
| _ -> false
let hole_var = mkVar (Id.of_string "_")
let pr_constr_pat c0 =
let rec wipe_evar c =
if isEvar c then hole_var else map_constr wipe_evar c in
pr_constr (wipe_evar c0)
(* Turn (new) evars into metas *)
let evars_for_FO ~hack env sigma0 (ise0:evar_map) c0 =
let ise = ref ise0 in
let sigma = ref ise0 in
let nenv = env_size env + if hack then 1 else 0 in
let rec put c = match kind_of_term c with
| Evar (k, a as ex) ->
begin try put (existential_value !sigma ex)
with NotInstantiatedEvar ->
if Evd.mem sigma0 k then map_constr put c else
let evi = Evd.find !sigma k in
let dc = List.firstn (max 0 (Array.length a - nenv)) (evar_filtered_context evi) in
let abs_dc (d, c) = function
| Context.Named.Declaration.LocalDef (x, b, t) ->
d, mkNamedLetIn x (put b) (put t) c
| Context.Named.Declaration.LocalAssum (x, t) ->
mkVar x :: d, mkNamedProd x (put t) c in
let a, t =
Context.Named.fold_inside abs_dc ~init:([], (put evi.evar_concl)) dc in
let m = Evarutil.new_meta () in
ise := meta_declare m t !ise;
sigma := Evd.define k (applistc (mkMeta m) a) !sigma;
put (existential_value !sigma ex)
end
| _ -> map_constr put c in
let c1 = put c0 in !ise, c1
(* Compile a match pattern from a term; t is the term to fill. *)
(* p_origin can be passed to obtain a better error message *)
let mk_tpattern ?p_origin ?(hack=false) env sigma0 (ise, t) ok dir p =
let k, f, a =
let f, a = Reductionops.whd_betaiota_stack ise (EConstr.of_constr p) in
let f = EConstr.Unsafe.to_constr f in
let a = List.map EConstr.Unsafe.to_constr a in
match kind_of_term f with
| Const (p,_) ->
let np = proj_nparams p in
if np = 0 || np > List.length a then KpatConst, f, a else
let a1, a2 = List.chop np a in KpatProj p, (applistc f a1), a2
| Proj (p,arg) -> KpatProj (Projection.constant p), f, a
| Var _ | Ind _ | Construct _ -> KpatFixed, f, a
| Evar (k, _) ->
if Evd.mem sigma0 k then KpatEvar k, f, a else
if a <> [] then KpatFlex, f, a else
(match p_origin with None -> CErrors.user_err Pp.(str "indeterminate pattern")
| Some (dir, rule) ->
errorstrm (str "indeterminate " ++ pr_dir_side dir
++ str " in " ++ pr_constr_pat rule))
| LetIn (_, v, _, b) ->
if b <> mkRel 1 then KpatLet, f, a else KpatFlex, v, a
| Lambda _ -> KpatLam, f, a
| _ -> KpatRigid, f, a in
let aa = Array.of_list a in
let ise', p' = evars_for_FO ~hack env sigma0 ise (mkApp (f, aa)) in
ise',
{ up_k = k; up_FO = p'; up_f = f;
up_a = aa; up_ok = ok; up_dir = dir; up_t = t}
(* Specialize a pattern after a successful match: assign a precise head *)
(* kind and arity for Proj and Flex patterns. *)
let ungen_upat lhs (sigma, uc, t) u =
let f, a = safeDestApp lhs in
let k = match kind_of_term f with
| Var _ | Ind _ | Construct _ -> KpatFixed
| Const _ -> KpatConst
| Evar (k, _) -> if is_defined sigma k then raise NoMatch else KpatEvar k
| LetIn _ -> KpatLet
| Lambda _ -> KpatLam
| _ -> KpatRigid in
sigma, uc, {u with up_k = k; up_FO = lhs; up_f = f; up_a = a; up_t = t}
let nb_cs_proj_args pc f u =
let na k =
List.length (snd (lookup_canonical_conversion (ConstRef pc, k))).o_TCOMPS in
try match kind_of_term f with
| Prod _ -> na Prod_cs
| Sort s -> na (Sort_cs (family_of_sort s))
| Const (c',_) when Constant.equal c' pc ->
begin match kind_of_term u.up_f with
| App(_,args) -> Array.length args
| Proj _ -> 0 (* if splay_app calls expand_projection, this has to be
the number of arguments including the projected *)
| _ -> assert false
end
| Var _ | Ind _ | Construct _ | Const _ -> na (Const_cs (global_of_constr f))
| _ -> -1
with Not_found -> -1
let isEvar_k k f =
match kind_of_term f with Evar (k', _) -> k = k' | _ -> false
let nb_args c =
match kind_of_term c with App (_, a) -> Array.length a | _ -> 0
let mkSubArg i a = if i = Array.length a then a else Array.sub a 0 i
let mkSubApp f i a = if i = 0 then f else mkApp (f, mkSubArg i a)
let splay_app ise =
let rec loop c a = match kind_of_term c with
| App (f, a') -> loop f (Array.append a' a)
| Cast (c', _, _) -> loop c' a
| Evar ex ->
(try loop (existential_value ise ex) a with _ -> c, a)
| _ -> c, a in
fun c -> match kind_of_term c with
| App (f, a) -> loop f a
| Cast _ | Evar _ -> loop c [| |]
| _ -> c, [| |]
let filter_upat i0 f n u fpats =
let na = Array.length u.up_a in
if n < na then fpats else
let np = match u.up_k with
| KpatConst when Term.eq_constr u.up_f f -> na
| KpatFixed when Term.eq_constr u.up_f f -> na
| KpatEvar k when isEvar_k k f -> na
| KpatLet when isLetIn f -> na
| KpatLam when isLambda f -> na
| KpatRigid when isRigid f -> na
| KpatFlex -> na
| KpatProj pc ->
let np = na + nb_cs_proj_args pc f u in if n < np then -1 else np
| _ -> -1 in
if np < na then fpats else
let () = if !i0 < np then i0 := n in (u, np) :: fpats
let eq_prim_proj c t = match kind_of_term t with
| Proj(p,_) -> Constant.equal (Projection.constant p) c
| _ -> false
let filter_upat_FO i0 f n u fpats =
let np = nb_args u.up_FO in
if n < np then fpats else
let ok = match u.up_k with
| KpatConst -> Term.eq_constr u.up_f f
| KpatFixed -> Term.eq_constr u.up_f f
| KpatEvar k -> isEvar_k k f
| KpatLet -> isLetIn f
| KpatLam -> isLambda f
| KpatRigid -> isRigid f
| KpatProj pc -> Term.eq_constr f (mkConst pc) || eq_prim_proj pc f
| KpatFlex -> i0 := n; true in
if ok then begin if !i0 < np then i0 := np; (u, np) :: fpats end else fpats
exception FoundUnif of (evar_map * UState.t * tpattern)
(* Note: we don't update env as we descend into the term, as the primitive *)
(* unification procedure always rejects subterms with bound variables. *)
let dont_impact_evars_in cl =
let evs_in_cl = Evd.evars_of_term cl in
fun sigma -> Evar.Set.for_all (fun k ->
try let _ = Evd.find_undefined sigma k in true
with Not_found -> false) evs_in_cl
(* We are forced to duplicate code between the FO/HO matching because we *)
(* have to work around several kludges in unify.ml: *)
(* - w_unify drops into second-order unification when the pattern is an *)
(* application whose head is a meta. *)
(* - w_unify tries to unify types without subsumption when the pattern *)
(* head is an evar or meta (e.g., it fails on ?1 = nat when ?1 : Type). *)
(* - w_unify expands let-in (zeta conversion) eagerly, whereas we want to *)
(* match a head let rigidly. *)
let match_upats_FO upats env sigma0 ise orig_c =
let dont_impact_evars = dont_impact_evars_in orig_c in
let rec loop c =
let f, a = splay_app ise c in let i0 = ref (-1) in
let fpats =
List.fold_right (filter_upat_FO i0 f (Array.length a)) upats [] in
while !i0 >= 0 do
let i = !i0 in i0 := -1;
let c' = mkSubApp f i a in
let one_match (u, np) =
let skip =
if i <= np then i < np else
if u.up_k == KpatFlex then begin i0 := i - 1; false end else
begin if !i0 < np then i0 := np; true end in
if skip || not (closed0 c') then () else try
let _ = match u.up_k with
| KpatFlex ->
let kludge v = mkLambda (Anonymous, mkProp, v) in
unif_FO env ise (kludge u.up_FO) (kludge c')
| KpatLet ->
let kludge vla =
let vl, a = safeDestApp vla in
let x, v, t, b = destLetIn vl in
mkApp (mkLambda (x, t, b), Array.cons v a) in
unif_FO env ise (kludge u.up_FO) (kludge c')
| _ -> unif_FO env ise u.up_FO c' in
let ise' = (* Unify again using HO to assign evars *)
let p = mkApp (u.up_f, u.up_a) in
try unif_HO env ise (EConstr.of_constr p) (EConstr.of_constr c') with e when CErrors.noncritical e -> raise NoMatch in
let lhs = mkSubApp f i a in
let pt' = unif_end env sigma0 ise' (EConstr.of_constr u.up_t) (u.up_ok lhs) in
let pt' = pi1 pt', pi2 pt', EConstr.Unsafe.to_constr (pi3 pt') in
raise (FoundUnif (ungen_upat lhs pt' u))
with FoundUnif (s,_,_) as sig_u when dont_impact_evars s -> raise sig_u
| Not_found -> CErrors.anomaly (str"incomplete ise in match_upats_FO.")
| e when CErrors.noncritical e -> () in
List.iter one_match fpats
done;
iter_constr_LR loop f; Array.iter loop a in
try loop orig_c with Invalid_argument _ -> CErrors.anomaly (str"IN FO.")
let prof_FO = mk_profiler "match_upats_FO";;
let match_upats_FO upats env sigma0 ise c =
prof_FO.profile (match_upats_FO upats env sigma0) ise c
;;
let match_upats_HO ~on_instance upats env sigma0 ise c =
let dont_impact_evars = dont_impact_evars_in c in
let it_did_match = ref false in
let failed_because_of_TC = ref false in
let rec aux upats env sigma0 ise c =
let f, a = splay_app ise c in let i0 = ref (-1) in
let fpats = List.fold_right (filter_upat i0 f (Array.length a)) upats [] in
while !i0 >= 0 do
let i = !i0 in i0 := -1;
let one_match (u, np) =
let skip =
if i <= np then i < np else
if u.up_k == KpatFlex then begin i0 := i - 1; false end else
begin if !i0 < np then i0 := np; true end in
if skip then () else try
let ise' = match u.up_k with
| KpatFixed | KpatConst -> ise
| KpatEvar _ ->
let _, pka = destEvar u.up_f and _, ka = destEvar f in
unif_HO_args env ise pka 0 ka
| KpatLet ->
let x, v, t, b = destLetIn f in
let _, pv, _, pb = destLetIn u.up_f in
let ise' = unif_HO env ise (EConstr.of_constr pv) (EConstr.of_constr v) in
unif_HO
(Environ.push_rel (Context.Rel.Declaration.LocalAssum(x, t)) env)
ise' (EConstr.of_constr pb) (EConstr.of_constr b)
| KpatFlex | KpatProj _ ->
unif_HO env ise (EConstr.of_constr u.up_f) (EConstr.of_constr(mkSubApp f (i - Array.length u.up_a) a))
| _ -> unif_HO env ise (EConstr.of_constr u.up_f) (EConstr.of_constr f) in
let ise'' = unif_HO_args env ise' u.up_a (i - Array.length u.up_a) a in
let lhs = mkSubApp f i a in
let pt' = unif_end env sigma0 ise'' (EConstr.of_constr u.up_t) (u.up_ok lhs) in
let pt' = pi1 pt', pi2 pt', EConstr.Unsafe.to_constr (pi3 pt') in
on_instance (ungen_upat lhs pt' u)
with FoundUnif (s,_,_) as sig_u when dont_impact_evars s -> raise sig_u
| NoProgress -> it_did_match := true
| Pretype_errors.PretypeError
(_,_,Pretype_errors.UnsatisfiableConstraints _) ->
failed_because_of_TC:=true
| e when CErrors.noncritical e -> () in
List.iter one_match fpats
done;
iter_constr_LR (aux upats env sigma0 ise) f;
Array.iter (aux upats env sigma0 ise) a
in
aux upats env sigma0 ise c;
if !it_did_match then raise NoProgress;
!failed_because_of_TC
let prof_HO = mk_profiler "match_upats_HO";;
let match_upats_HO ~on_instance upats env sigma0 ise c =
prof_HO.profile (match_upats_HO ~on_instance upats env sigma0) ise c
;;
let fixed_upat = function
| {up_k = KpatFlex | KpatEvar _ | KpatProj _} -> false
| {up_t = t} -> not (occur_existential Evd.empty (EConstr.of_constr t)) (** FIXME *)
let do_once r f = match !r with Some _ -> () | None -> r := Some (f ())
let assert_done r =
match !r with Some x -> x | None -> CErrors.anomaly (str"do_once never called.")
let assert_done_multires r =
match !r with
| None -> CErrors.anomaly (str"do_once never called.")
| Some (n, xs) ->
r := Some (n+1,xs);
try List.nth xs n with Failure _ -> raise NoMatch
type subst = Environ.env -> constr -> constr -> int -> constr
type find_P =
Environ.env -> constr -> int ->
k:subst ->
constr
type conclude = unit ->
constr * ssrdir * (Evd.evar_map * UState.t * constr)
(* upats_origin makes a better error message only *)
let mk_tpattern_matcher ?(all_instances=false)
?(raise_NoMatch=false) ?upats_origin sigma0 occ (ise, upats)
=
let nocc = ref 0 and skip_occ = ref false in
let use_occ, occ_list = match occ with
| Some (true, ol) -> ol = [], ol
| Some (false, ol) -> ol <> [], ol
| None -> false, [] in
let max_occ = List.fold_right max occ_list 0 in
let subst_occ =
let occ_set = Array.make max_occ (not use_occ) in
let _ = List.iter (fun i -> occ_set.(i - 1) <- use_occ) occ_list in
let _ = if max_occ = 0 then skip_occ := use_occ in
fun () -> incr nocc;
if !nocc = max_occ then skip_occ := use_occ;
if !nocc <= max_occ then occ_set.(!nocc - 1) else not use_occ in
let upat_that_matched = ref None in
let match_EQ env sigma u =
match u.up_k with
| KpatLet ->
let x, pv, t, pb = destLetIn u.up_f in
let env' =
Environ.push_rel (Context.Rel.Declaration.LocalAssum(x, t)) env in
let match_let f = match kind_of_term f with
| LetIn (_, v, _, b) -> unif_EQ env sigma pv v && unif_EQ env' sigma pb b
| _ -> false in match_let
| KpatFixed -> Term.eq_constr u.up_f
| KpatConst -> Term.eq_constr u.up_f
| KpatLam -> fun c ->
(match kind_of_term c with
| Lambda _ -> unif_EQ env sigma u.up_f c
| _ -> false)
| _ -> unif_EQ env sigma u.up_f in
let p2t p = mkApp(p.up_f,p.up_a) in
let source () = match upats_origin, upats with
| None, [p] ->
(if fixed_upat p then str"term " else str"partial term ") ++
pr_constr_pat (p2t p) ++ spc()
| Some (dir,rule), [p] -> str"The " ++ pr_dir_side dir ++ str" of " ++
pr_constr_pat rule ++ fnl() ++ ws 4 ++ pr_constr_pat (p2t p) ++ fnl()
| Some (dir,rule), _ -> str"The " ++ pr_dir_side dir ++ str" of " ++
pr_constr_pat rule ++ spc()
| _, [] | None, _::_::_ ->
CErrors.anomaly (str"mk_tpattern_matcher with no upats_origin.") in
let on_instance, instances =
let instances = ref [] in
(fun x ->
if all_instances then instances := !instances @ [x]
else raise (FoundUnif x)),
(fun () -> !instances) in
let rec uniquize = function
| [] -> []
| (sigma,_,{ up_f = f; up_a = a; up_t = t } as x) :: xs ->
let t = nf_evar sigma t in
let f = nf_evar sigma f in
let a = Array.map (nf_evar sigma) a in
let neq (sigma1,_,{ up_f = f1; up_a = a1; up_t = t1 }) =
let t1 = nf_evar sigma1 t1 in
let f1 = nf_evar sigma1 f1 in
let a1 = Array.map (nf_evar sigma1) a1 in
not (Term.eq_constr t t1 &&
Term.eq_constr f f1 && CArray.for_all2 Term.eq_constr a a1) in
x :: uniquize (List.filter neq xs) in
((fun env c h ~k ->
do_once upat_that_matched (fun () ->
let failed_because_of_TC = ref false in
try
if not all_instances then match_upats_FO upats env sigma0 ise c;
failed_because_of_TC:=match_upats_HO ~on_instance upats env sigma0 ise c;
raise NoMatch
with FoundUnif sigma_u -> 0,[sigma_u]
| (NoMatch|NoProgress) when all_instances && instances () <> [] ->
0, uniquize (instances ())
| NoMatch when (not raise_NoMatch) ->
if !failed_because_of_TC then
errorstrm (source ()++strbrk"matches but type classes inference fails")
else
errorstrm (source () ++ str "does not match any subterm of the goal")
| NoProgress when (not raise_NoMatch) ->
let dir = match upats_origin with Some (d,_) -> d | _ ->
CErrors.anomaly (str"mk_tpattern_matcher with no upats_origin.") in
errorstrm (str"all matches of "++source()++
str"are equal to the " ++ pr_dir_side (inv_dir dir))
| NoProgress -> raise NoMatch);
let sigma, _, ({up_f = pf; up_a = pa} as u) =
if all_instances then assert_done_multires upat_that_matched
else List.hd (snd(assert_done upat_that_matched)) in
(* pp(lazy(str"sigma@tmatch=" ++ pr_evar_map None sigma)); *)
if !skip_occ then ((*ignore(k env u.up_t 0);*) c) else
let match_EQ = match_EQ env sigma u in
let pn = Array.length pa in
let rec subst_loop (env,h as acc) c' =
if !skip_occ then c' else
let f, a = splay_app sigma c' in
if Array.length a >= pn && match_EQ f && unif_EQ_args env sigma pa a then
let a1, a2 = Array.chop (Array.length pa) a in
let fa1 = mkApp (f, a1) in
let f' = if subst_occ () then k env u.up_t fa1 h else fa1 in
mkApp (f', Array.map_left (subst_loop acc) a2)
else
(* TASSI: clear letin values to avoid unfolding *)
let inc_h rd (env,h') =
let ctx_item =
match rd with
| Context.Rel.Declaration.LocalAssum _ as x -> x
| Context.Rel.Declaration.LocalDef (x,_,y) ->
Context.Rel.Declaration.LocalAssum(x,y) in
EConstr.push_rel ctx_item env, h' + 1 in
let self acc c = EConstr.of_constr (subst_loop acc (EConstr.Unsafe.to_constr c)) in
let f = EConstr.of_constr f in
let f' = map_constr_with_binders_left_to_right sigma inc_h self acc f in
let f' = EConstr.Unsafe.to_constr f' in
mkApp (f', Array.map_left (subst_loop acc) a) in
subst_loop (env,h) c) : find_P),
((fun () ->
let sigma, uc, ({up_f = pf; up_a = pa} as u) =
match !upat_that_matched with
| Some (_,x) -> List.hd x | None when raise_NoMatch -> raise NoMatch
| None -> CErrors.anomaly (str"companion function never called.") in
let p' = mkApp (pf, pa) in
if max_occ <= !nocc then p', u.up_dir, (sigma, uc, u.up_t)
else errorstrm (str"Only " ++ int !nocc ++ str" < " ++ int max_occ ++
str(String.plural !nocc " occurence") ++ match upats_origin with
| None -> str" of" ++ spc() ++ pr_constr_pat p'
| Some (dir,rule) -> str" of the " ++ pr_dir_side dir ++ fnl() ++
ws 4 ++ pr_constr_pat p' ++ fnl () ++
str"of " ++ pr_constr_pat rule)) : conclude)
type ('ident, 'term) ssrpattern =
| T of 'term
| In_T of 'term
| X_In_T of 'ident * 'term
| In_X_In_T of 'ident * 'term
| E_In_X_In_T of 'term * 'ident * 'term
| E_As_X_In_T of 'term * 'ident * 'term
let pr_pattern = function
| T t -> prl_term t
| In_T t -> str "in " ++ prl_term t
| X_In_T (x,t) -> prl_term x ++ str " in " ++ prl_term t
| In_X_In_T (x,t) -> str "in " ++ prl_term x ++ str " in " ++ prl_term t
| E_In_X_In_T (e,x,t) ->
prl_term e ++ str " in " ++ prl_term x ++ str " in " ++ prl_term t
| E_As_X_In_T (e,x,t) ->
prl_term e ++ str " as " ++ prl_term x ++ str " in " ++ prl_term t
let pr_pattern_w_ids = function
| T t -> prl_term t
| In_T t -> str "in " ++ prl_term t
| X_In_T (x,t) -> pr_id x ++ str " in " ++ prl_term t
| In_X_In_T (x,t) -> str "in " ++ pr_id x ++ str " in " ++ prl_term t
| E_In_X_In_T (e,x,t) ->
prl_term e ++ str " in " ++ pr_id x ++ str " in " ++ prl_term t
| E_As_X_In_T (e,x,t) ->
prl_term e ++ str " as " ++ pr_id x ++ str " in " ++ prl_term t
let pr_pattern_aux pr_constr = function
| T t -> pr_constr t
| In_T t -> str "in " ++ pr_constr t
| X_In_T (x,t) -> pr_constr x ++ str " in " ++ pr_constr t
| In_X_In_T (x,t) -> str "in " ++ pr_constr x ++ str " in " ++ pr_constr t
| E_In_X_In_T (e,x,t) ->
pr_constr e ++ str " in " ++ pr_constr x ++ str " in " ++ pr_constr t
| E_As_X_In_T (e,x,t) ->
pr_constr e ++ str " as " ++ pr_constr x ++ str " in " ++ pr_constr t
let pp_pattern (sigma, p) =
pr_pattern_aux (fun t -> pr_constr_pat (EConstr.Unsafe.to_constr (pi3 (nf_open_term sigma sigma (EConstr.of_constr t))))) p
let pr_cpattern = pr_term
let pr_rpattern _ _ _ = pr_pattern
let wit_rpatternty = add_genarg "rpatternty" pr_pattern
let glob_ssrterm gs = function
| k, (_, Some c) -> k,
let x = Tacintern.intern_constr gs c in
fst x, Some c
| ct -> ct
(* This piece of code asserts the following notations are reserved *)
(* Reserved Notation "( a 'in' b )" (at level 0). *)
(* Reserved Notation "( a 'as' b )" (at level 0). *)
(* Reserved Notation "( a 'in' b 'in' c )" (at level 0). *)
(* Reserved Notation "( a 'as' b 'in' c )" (at level 0). *)
let glob_cpattern gs p =
pp(lazy(str"globbing pattern: " ++ pr_term p));
let glob x = snd (glob_ssrterm gs (mk_lterm x)) in
let encode k s l =
let name = Name (Id.of_string ("_ssrpat_" ^ s)) in
k, (mkRCast mkRHole (mkRLambda name mkRHole (mkRApp mkRHole l)), None) in
let bind_in t1 t2 =
let mkCHole = mkCHole ~loc:None in let n = Name (destCVar t1) in
fst (glob (mkCCast mkCHole (mkCLambda n mkCHole t2))) in
let check_var t2 = if not (isCVar t2) then
loc_error (constr_loc t2) "Only identifiers are allowed here" in
match p with
| _, (_, None) as x -> x
| k, (v, Some t) as orig ->
if k = 'x' then glob_ssrterm gs ('(', (v, Some t)) else
match t.CAst.v with
| CNotation("( _ in _ )", ([t1; t2], [], [])) ->
(try match glob t1, glob t2 with
| (r1, None), (r2, None) -> encode k "In" [r1;r2]
| (r1, Some _), (r2, Some _) when isCVar t1 ->
encode k "In" [r1; r2; bind_in t1 t2]
| (r1, Some _), (r2, Some _) -> encode k "In" [r1; r2]
| _ -> CErrors.anomaly (str"where are we?.")
with _ when isCVar t1 -> encode k "In" [bind_in t1 t2])
| CNotation("( _ in _ in _ )", ([t1; t2; t3], [], [])) ->
check_var t2; encode k "In" [fst (glob t1); bind_in t2 t3]
| CNotation("( _ as _ )", ([t1; t2], [], [])) ->
encode k "As" [fst (glob t1); fst (glob t2)]
| CNotation("( _ as _ in _ )", ([t1; t2; t3], [], [])) ->
check_var t2; encode k "As" [fst (glob t1); bind_in t2 t3]
| _ -> glob_ssrterm gs orig
;;
let glob_rpattern s p =
match p with
| T t -> T (glob_cpattern s t)
| In_T t -> In_T (glob_ssrterm s t)
| X_In_T(x,t) -> X_In_T (x,glob_ssrterm s t)
| In_X_In_T(x,t) -> In_X_In_T (x,glob_ssrterm s t)
| E_In_X_In_T(e,x,t) -> E_In_X_In_T (glob_ssrterm s e,x,glob_ssrterm s t)
| E_As_X_In_T(e,x,t) -> E_As_X_In_T (glob_ssrterm s e,x,glob_ssrterm s t)
let subst_ssrterm s (k, c) = k, Tacsubst.subst_glob_constr_and_expr s c
let subst_rpattern s = function
| T t -> T (subst_ssrterm s t)
| In_T t -> In_T (subst_ssrterm s t)
| X_In_T(x,t) -> X_In_T (x,subst_ssrterm s t)
| In_X_In_T(x,t) -> In_X_In_T (x,subst_ssrterm s t)
| E_In_X_In_T(e,x,t) -> E_In_X_In_T (subst_ssrterm s e,x,subst_ssrterm s t)
| E_As_X_In_T(e,x,t) -> E_As_X_In_T (subst_ssrterm s e,x,subst_ssrterm s t)
ARGUMENT EXTEND rpattern
TYPED AS rpatternty
PRINTED BY pr_rpattern
GLOBALIZED BY glob_rpattern
SUBSTITUTED BY subst_rpattern
| [ lconstr(c) ] -> [ T (mk_lterm c) ]
| [ "in" lconstr(c) ] -> [ In_T (mk_lterm c) ]
| [ lconstr(x) "in" lconstr(c) ] ->
[ X_In_T (mk_lterm x, mk_lterm c) ]
| [ "in" lconstr(x) "in" lconstr(c) ] ->
[ In_X_In_T (mk_lterm x, mk_lterm c) ]
| [ lconstr(e) "in" lconstr(x) "in" lconstr(c) ] ->
[ E_In_X_In_T (mk_lterm e, mk_lterm x, mk_lterm c) ]
| [ lconstr(e) "as" lconstr(x) "in" lconstr(c) ] ->
[ E_As_X_In_T (mk_lterm e, mk_lterm x, mk_lterm c) ]
END
type cpattern = char * glob_constr_and_expr
let tag_of_cpattern = fst
let loc_of_cpattern = loc_ofCG
let cpattern_of_term t = t
type occ = (bool * int list) option
type rpattern = (cpattern, cpattern) ssrpattern
let pr_rpattern = pr_pattern
type pattern = Evd.evar_map * (constr, constr) ssrpattern
let id_of_cpattern = let open CAst in function
| _,(_,Some { v = CRef (Ident (_, x), _) } ) -> Some x
| _,(_,Some { v = CAppExpl ((_, Ident (_, x), _), []) } ) -> Some x
| _,({ v = GRef (VarRef x, _)} ,None) -> Some x
| _ -> None
let id_of_Cterm t = match id_of_cpattern t with
| Some x -> x
| None -> loc_error (loc_of_cpattern t) "Only identifiers are allowed here"
let of_ftactic ftac gl =
let r = ref None in
let tac = Ftactic.run ftac (fun ans -> r := Some ans; Proofview.tclUNIT ()) in
let tac = Proofview.V82.of_tactic tac in
let { sigma = sigma } = tac gl in
let ans = match !r with
| None -> assert false (** If the tactic failed we should not reach this point *)
| Some ans -> ans
in
(sigma, ans)
let interp_wit wit ist gl x =
let globarg = in_gen (glbwit wit) x in
let arg = interp_genarg ist globarg in
let (sigma, arg) = of_ftactic arg gl in
sigma, Value.cast (topwit wit) arg
let interp_open_constr ist gl gc =
interp_wit wit_open_constr ist gl gc
let pf_intern_term ist gl (_, c) = glob_constr ist (pf_env gl) c
let interp_term ist gl (_, c) = on_snd EConstr.Unsafe.to_constr (interp_open_constr ist gl c)
let pr_ssrterm _ _ _ = pr_term
let input_ssrtermkind strm = match stream_nth 0 strm with
| Tok.KEYWORD "(" -> '('
| Tok.KEYWORD "@" -> '@'
| _ -> ' '
let ssrtermkind = Gram.Entry.of_parser "ssrtermkind" input_ssrtermkind
let interp_ssrterm _ gl t = Tacmach.project gl, t
ARGUMENT EXTEND cpattern
PRINTED BY pr_ssrterm
INTERPRETED BY interp_ssrterm
GLOBALIZED BY glob_cpattern SUBSTITUTED BY subst_ssrterm
RAW_PRINTED BY pr_ssrterm
GLOB_PRINTED BY pr_ssrterm
| [ "Qed" constr(c) ] -> [ mk_lterm c ]
END
GEXTEND Gram
GLOBAL: cpattern;
cpattern: [[ k = ssrtermkind; c = constr ->
let pattern = mk_term k c in
if loc_ofCG pattern <> Some !@loc && k = '(' then mk_term 'x' c else pattern ]];
END
ARGUMENT EXTEND lcpattern
TYPED AS cpattern
PRINTED BY pr_ssrterm
INTERPRETED BY interp_ssrterm
GLOBALIZED BY glob_cpattern SUBSTITUTED BY subst_ssrterm
RAW_PRINTED BY pr_ssrterm
GLOB_PRINTED BY pr_ssrterm
| [ "Qed" lconstr(c) ] -> [ mk_lterm c ]
END
GEXTEND Gram
GLOBAL: lcpattern;
lcpattern: [[ k = ssrtermkind; c = lconstr ->
let pattern = mk_term k c in
if loc_ofCG pattern <> Some !@loc && k = '(' then mk_term 'x' c else pattern ]];
END
let thin id sigma goal =
let ids = Id.Set.singleton id in
let env = Goal.V82.env sigma goal in
let cl = Goal.V82.concl sigma goal in
let evdref = ref (Evd.clear_metas sigma) in
let ans =
try Some (Evarutil.clear_hyps_in_evi env evdref (Environ.named_context_val env) cl ids)
with Evarutil.ClearDependencyError _ -> None
in
match ans with
| None -> sigma
| Some (hyps, concl) ->
let sigma = !evdref in
let (gl,ev,sigma) = Goal.V82.mk_goal sigma hyps concl (Goal.V82.extra sigma goal) in
let sigma = Goal.V82.partial_solution_to sigma goal gl ev in
sigma
let pr_ist { lfun= lfun } =
prlist_with_sep spc
(fun (id, Geninterp.Val.Dyn(ty,_)) ->
pr_id id ++ str":" ++ Geninterp.Val.pr ty) (Id.Map.bindings lfun)
let interp_pattern ?wit_ssrpatternarg ist gl red redty =
pp(lazy(str"interpreting: " ++ pr_pattern red));
pp(lazy(str" in ist: " ++ pr_ist ist));
let xInT x y = X_In_T(x,y) and inXInT x y = In_X_In_T(x,y) in
let inT x = In_T x and eInXInT e x t = E_In_X_In_T(e,x,t) in
let eAsXInT e x t = E_As_X_In_T(e,x,t) in
let mkG ?(k=' ') x = k,(x,None) in
let decode ist t ?reccall f g =
let open CAst in
try match (pf_intern_term ist gl t) with
| { v = GCast({ v = GHole _},CastConv({ v = GLambda(Name x,_,_,c)})) } -> f x (' ',(c,None))
| { v = GVar id }
when Id.Map.mem id ist.lfun &&
not(Option.is_empty reccall) &&
not(Option.is_empty wit_ssrpatternarg) ->
let v = Id.Map.find id ist.lfun in
Option.get reccall
(Value.cast (topwit (Option.get wit_ssrpatternarg)) v)
| it -> g t with e when CErrors.noncritical e -> g t in
let decodeG t f g = decode ist (mkG t) f g in
let bad_enc id _ = CErrors.anomaly (str"bad encoding for pattern "++str id++str".") in
let cleanup_XinE h x rp sigma =
let h_k = match kind_of_term h with Evar (k,_) -> k | _ -> assert false in
let to_clean, update = (* handle rename if x is already used *)
let ctx = pf_hyps gl in
let len = Context.Named.length ctx in
let name = ref None in
try ignore(Context.Named.lookup x ctx); (name, fun k ->
if !name = None then
let nctx = Evd.evar_context (Evd.find sigma k) in
let nlen = Context.Named.length nctx in
if nlen > len then begin
name := Some (Context.Named.Declaration.get_id (List.nth nctx (nlen - len - 1)))
end)
with Not_found -> ref (Some x), fun _ -> () in
let sigma0 = project gl in
let new_evars =
let rec aux acc t = match kind_of_term t with
| Evar (k,_) ->
if k = h_k || List.mem k acc || Evd.mem sigma0 k then acc else
(update k; k::acc)
| _ -> fold_constr aux acc t in
aux [] (nf_evar sigma rp) in
let sigma =
List.fold_left (fun sigma e ->
if Evd.is_defined sigma e then sigma else (* clear may be recursive *)
if Option.is_empty !to_clean then sigma else
let name = Option.get !to_clean in
pp(lazy(pr_id name));
thin name sigma e)
sigma new_evars in
sigma in
let red = let rec decode_red (ist,red) = let open CAst in match red with
| T(k,({ v = GCast ({ v = GHole _ },CastConv({ v = GLambda (Name id,_,_,t)}))},None))
when let id = Id.to_string id in let len = String.length id in
(len > 8 && String.sub id 0 8 = "_ssrpat_") ->
let id = Id.to_string id in let len = String.length id in
(match String.sub id 8 (len - 8), t with
| "In", { v = GApp( _, [t]) } -> decodeG t xInT (fun x -> T x)
| "In", { v = GApp( _, [e; t]) } -> decodeG t (eInXInT (mkG e)) (bad_enc id)
| "In", { v = GApp( _, [e; t; e_in_t]) } ->
decodeG t (eInXInT (mkG e))
(fun _ -> decodeG e_in_t xInT (fun _ -> assert false))
| "As", { v = GApp(_, [e; t]) } -> decodeG t (eAsXInT (mkG e)) (bad_enc id)
| _ -> bad_enc id ())
| T t -> decode ist ~reccall:decode_red t xInT (fun x -> T x)
| In_T t -> decode ist t inXInT inT
| X_In_T (e,t) -> decode ist t (eInXInT e) (fun x -> xInT (id_of_Cterm e) x)
| In_X_In_T (e,t) -> inXInT (id_of_Cterm e) t
| E_In_X_In_T (e,x,rp) -> eInXInT e (id_of_Cterm x) rp
| E_As_X_In_T (e,x,rp) -> eAsXInT e (id_of_Cterm x) rp in
decode_red (ist,red) in
pp(lazy(str"decoded as: " ++ pr_pattern_w_ids red));
let red = match redty with None -> red | Some ty -> let ty = ' ', ty in
match red with
| T t -> T (combineCG t ty (mkCCast ?loc:(loc_ofCG t)) mkRCast)
| X_In_T (x,t) ->
let ty = pf_intern_term ist gl ty in
E_As_X_In_T (mkG (mkRCast mkRHole ty), x, t)
| E_In_X_In_T (e,x,t) ->
let ty = mkG (pf_intern_term ist gl ty) in
E_In_X_In_T (combineCG e ty (mkCCast ?loc:(loc_ofCG t)) mkRCast, x, t)
| E_As_X_In_T (e,x,t) ->
let ty = mkG (pf_intern_term ist gl ty) in
E_As_X_In_T (combineCG e ty (mkCCast ?loc:(loc_ofCG t)) mkRCast, x, t)
| red -> red in
pp(lazy(str"typed as: " ++ pr_pattern_w_ids red));
let mkXLetIn ?loc x (a,(g,c)) = match c with
| Some b -> a,(g,Some (mkCLetIn ?loc x (mkCHole ~loc) b))
| None -> a,(CAst.make ?loc @@ GLetIn (x, CAst.make ?loc @@ GHole (BinderType x, IntroAnonymous, None), None, g), None) in
match red with
| T t -> let sigma, t = interp_term ist gl t in sigma, T t
| In_T t -> let sigma, t = interp_term ist gl t in sigma, In_T t
| X_In_T (x, rp) | In_X_In_T (x, rp) ->
let mk x p = match red with X_In_T _ -> X_In_T(x,p) | _ -> In_X_In_T(x,p) in
let rp = mkXLetIn (Name x) rp in
let sigma, rp = interp_term ist gl rp in
let _, h, _, rp = destLetIn rp in
let sigma = cleanup_XinE h x rp sigma in
let rp = subst1 h (nf_evar sigma rp) in
sigma, mk h rp
| E_In_X_In_T(e, x, rp) | E_As_X_In_T (e, x, rp) ->
let mk e x p =
match red with E_In_X_In_T _ ->E_In_X_In_T(e,x,p)|_->E_As_X_In_T(e,x,p) in
let rp = mkXLetIn (Name x) rp in
let sigma, rp = interp_term ist gl rp in
let _, h, _, rp = destLetIn rp in
let sigma = cleanup_XinE h x rp sigma in
let rp = subst1 h (nf_evar sigma rp) in
let sigma, e = interp_term ist (re_sig (sig_it gl) sigma) e in
sigma, mk e h rp
;;
let interp_cpattern ist gl red redty = interp_pattern ist gl (T red) redty;;
let interp_rpattern ~wit_ssrpatternarg ist gl red = interp_pattern ~wit_ssrpatternarg ist gl red None;;
let id_of_pattern = function
| _, T t -> (match kind_of_term t with Var id -> Some id | _ -> None)
| _ -> None
(* The full occurrence set *)
let noindex = Some(false,[])
(* calls do_subst on every sub-term identified by (pattern,occ) *)
let eval_pattern ?raise_NoMatch env0 sigma0 concl0 pattern occ do_subst =
let fs sigma x = nf_evar sigma x in
let pop_evar sigma e p =
let { Evd.evar_body = e_body } as e_def = Evd.find sigma e in
let e_body = match e_body with Evar_defined c -> c
| _ -> errorstrm (str "Matching the pattern " ++ pr_constr p ++
str " did not instantiate ?" ++ int (Evar.repr e) ++ spc () ++
str "Does the variable bound by the \"in\" construct occur "++
str "in the pattern?") in
let sigma =
Evd.add (Evd.remove sigma e) e {e_def with Evd.evar_body = Evar_empty} in
sigma, e_body in
let ex_value hole =
match kind_of_term hole with Evar (e,_) -> e | _ -> assert false in
let mk_upat_for ?hack env sigma0 (sigma, t) ?(p=t) ok =
let sigma,pat= mk_tpattern ?hack env sigma0 (sigma,p) ok L2R (fs sigma t) in
sigma, [pat] in
match pattern with
| None -> do_subst env0 concl0 concl0 1
| Some (sigma, (T rp | In_T rp)) ->
let rp = fs sigma rp in
let ise = create_evar_defs sigma in
let occ = match pattern with Some (_, T _) -> occ | _ -> noindex in
let rp = mk_upat_for env0 sigma0 (ise, rp) all_ok in
let find_T, end_T = mk_tpattern_matcher ?raise_NoMatch sigma0 occ rp in
let concl = find_T env0 concl0 1 ~k:do_subst in
let _ = end_T () in
concl
| Some (sigma, (X_In_T (hole, p) | In_X_In_T (hole, p))) ->
let p = fs sigma p in
let occ = match pattern with Some (_, X_In_T _) -> occ | _ -> noindex in
let ex = ex_value hole in
let rp = mk_upat_for ~hack:true env0 sigma0 (sigma, p) all_ok in
let find_T, end_T = mk_tpattern_matcher sigma0 noindex rp in
(* we start from sigma, so hole is considered a rigid head *)
let holep = mk_upat_for env0 sigma (sigma, hole) all_ok in
let find_X, end_X = mk_tpattern_matcher ?raise_NoMatch sigma occ holep in
let concl = find_T env0 concl0 1 ~k:(fun env c _ h ->
let p_sigma = unify_HO env (create_evar_defs sigma) (EConstr.of_constr c) (EConstr.of_constr p) in
let sigma, e_body = pop_evar p_sigma ex p in
fs p_sigma (find_X env (fs sigma p) h
~k:(fun env _ -> do_subst env e_body))) in
let _ = end_X () in let _ = end_T () in
concl
| Some (sigma, E_In_X_In_T (e, hole, p)) ->
let p, e = fs sigma p, fs sigma e in
let ex = ex_value hole in
let rp = mk_upat_for ~hack:true env0 sigma0 (sigma, p) all_ok in
let find_T, end_T = mk_tpattern_matcher sigma0 noindex rp in
let holep = mk_upat_for env0 sigma (sigma, hole) all_ok in
let find_X, end_X = mk_tpattern_matcher sigma noindex holep in
let re = mk_upat_for env0 sigma0 (sigma, e) all_ok in
let find_E, end_E = mk_tpattern_matcher ?raise_NoMatch sigma0 occ re in
let concl = find_T env0 concl0 1 ~k:(fun env c _ h ->
let p_sigma = unify_HO env (create_evar_defs sigma) (EConstr.of_constr c) (EConstr.of_constr p) in
let sigma, e_body = pop_evar p_sigma ex p in
fs p_sigma (find_X env (fs sigma p) h ~k:(fun env c _ h ->
find_E env e_body h ~k:do_subst))) in
let _ = end_E () in let _ = end_X () in let _ = end_T () in
concl
| Some (sigma, E_As_X_In_T (e, hole, p)) ->
let p, e = fs sigma p, fs sigma e in
let ex = ex_value hole in
let rp =
let e_sigma = unify_HO env0 sigma (EConstr.of_constr hole) (EConstr.of_constr e) in
e_sigma, fs e_sigma p in
let rp = mk_upat_for ~hack:true env0 sigma0 rp all_ok in
let find_TE, end_TE = mk_tpattern_matcher sigma0 noindex rp in
let holep = mk_upat_for env0 sigma (sigma, hole) all_ok in
let find_X, end_X = mk_tpattern_matcher sigma occ holep in
let concl = find_TE env0 concl0 1 ~k:(fun env c _ h ->
let p_sigma = unify_HO env (create_evar_defs sigma) (EConstr.of_constr c) (EConstr.of_constr p) in
let sigma, e_body = pop_evar p_sigma ex p in
fs p_sigma (find_X env (fs sigma p) h ~k:(fun env c _ h ->
let e_sigma = unify_HO env sigma (EConstr.of_constr e_body) (EConstr.of_constr e) in
let e_body = fs e_sigma e in
do_subst env e_body e_body h))) in
let _ = end_X () in let _ = end_TE () in
concl
;;
let redex_of_pattern ?(resolve_typeclasses=false) env (sigma, p) =
let e = match p with
| In_T _ | In_X_In_T _ -> CErrors.anomaly (str"pattern without redex.")
| T e | X_In_T (e, _) | E_As_X_In_T (e, _, _) | E_In_X_In_T (e, _, _) -> e in
let sigma =
if not resolve_typeclasses then sigma
else Typeclasses.resolve_typeclasses ~fail:false env sigma in
nf_evar sigma e, Evd.evar_universe_context sigma
let fill_occ_pattern ?raise_NoMatch env sigma cl pat occ h =
let do_make_rel, occ =
if occ = Some(true,[]) then false, Some(false,[1]) else true, occ in
let find_R, conclude =
let r = ref None in
(fun env c _ h' ->
do_once r (fun () -> c, Evd.empty_evar_universe_context);
if do_make_rel then mkRel (h'+h-1) else c),
(fun _ -> if !r = None then redex_of_pattern env pat else assert_done r) in
let cl = eval_pattern ?raise_NoMatch env sigma cl (Some pat) occ find_R in
let e = conclude cl in
e, cl
;;
(* clenup interface for external use *)
let mk_tpattern ?p_origin env sigma0 sigma_t f dir c =
mk_tpattern ?p_origin env sigma0 sigma_t f dir c
;;
let pf_fill_occ env concl occ sigma0 p (sigma, t) ok h =
let p = EConstr.Unsafe.to_constr p in
let concl = EConstr.Unsafe.to_constr concl in
let ise = create_evar_defs sigma in
let ise, u = mk_tpattern env sigma0 (ise,EConstr.Unsafe.to_constr t) ok L2R p in
let find_U, end_U =
mk_tpattern_matcher ~raise_NoMatch:true sigma0 occ (ise,[u]) in
let concl = find_U env concl h ~k:(fun _ _ _ -> mkRel) in
let rdx, _, (sigma, uc, p) = end_U () in
sigma, uc, EConstr.of_constr p, EConstr.of_constr concl, EConstr.of_constr rdx
let fill_occ_term env cl occ sigma0 (sigma, t) =
try
let sigma',uc,t',cl,_= pf_fill_occ env cl occ sigma0 t (sigma, t) all_ok 1 in
if sigma' != sigma0 then CErrors.user_err Pp.(str "matching impacts evars")
else cl, (Evd.merge_universe_context sigma' uc, t')
with NoMatch -> try
let sigma', uc, t' =
unif_end env sigma0 (create_evar_defs sigma) t (fun _ -> true) in
if sigma' != sigma0 then raise NoMatch
else cl, (Evd.merge_universe_context sigma' uc, t')
with _ ->
errorstrm (str "partial term " ++ pr_constr_pat (EConstr.Unsafe.to_constr t)
++ str " does not match any subterm of the goal")
let pf_fill_occ_term gl occ t =
let sigma0 = project gl and env = pf_env gl and concl = pf_concl gl in
let cl,(_,t) = fill_occ_term env concl occ sigma0 t in
cl, t
let cpattern_of_id id = ' ', (CAst.make @@ GRef (VarRef id, None), None)
let is_wildcard : cpattern -> bool = function
| _,(_,Some { CAst.v = CHole _ } | { CAst.v = GHole _ } ,None) -> true
| _ -> false
(* "ssrpattern" *)
let pr_ssrpatternarg _ _ _ (_,cpat) = pr_rpattern cpat
let pr_ssrpatternarg_glob _ _ _ cpat = pr_rpattern cpat
let interp_ssrpatternarg ist gl p = project gl, (ist, p)
ARGUMENT EXTEND ssrpatternarg
PRINTED BY pr_ssrpatternarg
INTERPRETED BY interp_ssrpatternarg
GLOBALIZED BY glob_rpattern
RAW_PRINTED BY pr_ssrpatternarg_glob
GLOB_PRINTED BY pr_ssrpatternarg_glob
| [ rpattern(pat) ] -> [ pat ]
END
let pf_merge_uc uc gl =
re_sig (sig_it gl) (Evd.merge_universe_context (project gl) uc)
let pf_unsafe_merge_uc uc gl =
re_sig (sig_it gl) (Evd.set_universe_context (project gl) uc)
let interp_rpattern ist gl red = interp_rpattern ~wit_ssrpatternarg ist gl red
let ssrpatterntac _ist (arg_ist,arg) gl =
let pat = interp_rpattern arg_ist gl arg in
let sigma0 = project gl in
let concl0 = pf_concl gl in
let concl0 = EConstr.Unsafe.to_constr concl0 in
let (t, uc), concl_x =
fill_occ_pattern (Global.env()) sigma0 concl0 pat noindex 1 in
let t = EConstr.of_constr t in
let concl_x = EConstr.of_constr concl_x in
let gl, tty = pf_type_of gl t in
let concl = EConstr.mkLetIn (Name (Id.of_string "selected"), t, tty, concl_x) in
Proofview.V82.of_tactic (convert_concl concl DEFAULTcast) gl
(* Register "ssrpattern" tactic *)
let () =
let mltac _ ist =
let arg =
let v = Id.Map.find (Names.Id.of_string "pattern") ist.lfun in
Value.cast (topwit wit_ssrpatternarg) v in
Proofview.V82.tactic (ssrpatterntac ist arg) in
let name = { mltac_plugin = "ssrmatching_plugin"; mltac_tactic = "ssrpattern"; } in
let () = Tacenv.register_ml_tactic name [|mltac|] in
let tac =
TacFun ([Name (Id.of_string "pattern")],
TacML (Loc.tag ({ mltac_name = name; mltac_index = 0 }, []))) in
let obj () =
Tacenv.register_ltac true false (Id.of_string "ssrpattern") tac in
Mltop.declare_cache_obj obj "ssrmatching_plugin"
let ssrinstancesof ist arg gl =
let ok rhs lhs ise = true in
(* not (Term.eq_constr lhs (Evarutil.nf_evar ise rhs)) in *)
let env, sigma, concl = pf_env gl, project gl, pf_concl gl in
let concl = EConstr.Unsafe.to_constr concl in
let sigma0, cpat = interp_cpattern ist gl arg None in
let pat = match cpat with T x -> x | _ -> errorstrm (str"Not supported") in
let etpat, tpat = mk_tpattern env sigma (sigma0,pat) (ok pat) L2R pat in
let find, conclude =
mk_tpattern_matcher ~all_instances:true ~raise_NoMatch:true
sigma None (etpat,[tpat]) in
let print env p c _ = ppnl (hov 1 (str"instance:" ++ spc() ++ pr_constr p ++ spc() ++ str "matches:" ++ spc() ++ pr_constr c)); c in
ppnl (str"BEGIN INSTANCES");
try
while true do
ignore(find env concl 1 ~k:print)
done; raise NoMatch
with NoMatch -> ppnl (str"END INSTANCES"); tclIDTAC gl
TACTIC EXTEND ssrinstoftpat
| [ "ssrinstancesoftpat" cpattern(arg) ] -> [ Proofview.V82.tactic (ssrinstancesof ist arg) ]
END
(* We wipe out all the keywords generated by the grammar rules we defined. *)
(* The user is supposed to Require Import ssreflect or Require ssreflect *)
(* and Import ssreflect.SsrSyntax to obtain these keywords and as a *)
(* consequence the extended ssreflect grammar. *)
let () = CLexer.set_keyword_state frozen_lexer ;;
(* vim: set filetype=ocaml foldmethod=marker: *)
|