1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Ssrmatching_plugin
open Util
open Names
open Proofview
open Proofview.Notations
open Ssrast
module IpatMachine : sig
(* the => tactical. ?eqtac is a tactic to be eventually run
* after the first [..] block. first_case_is_dispatch is the
* ssr exception to elim: and case: *)
val main : ?eqtac:unit tactic -> first_case_is_dispatch:bool ->
ssripats -> unit tactic
end = struct (* {{{ *)
module State : sig
(* to_clear API *)
val isCLR_PUSH : Id.t -> unit tactic
val isCLR_PUSHL : Id.t list -> unit tactic
val isCLR_CONSUME : unit tactic
(* Some data may expire *)
val isTICK : ssripat -> unit tactic
val isPRINT : Proofview.Goal.t -> Pp.t
end = struct (* {{{ *)
type istate = {
(* Delayed clear *)
to_clear : Id.t list;
}
let empty_state = {
to_clear = [];
}
include Ssrcommon.MakeState(struct
type state = istate
let init = empty_state
end)
let isPRINT g =
let state = get g in
Pp.(str"{{ to_clear: " ++
prlist_with_sep spc Id.print state.to_clear ++ spc () ++
str" }}")
let isCLR_PUSH id =
tclGET (fun { to_clear = ids } ->
tclSET { to_clear = id :: ids })
let isCLR_PUSHL more_ids =
tclGET (fun { to_clear = ids } ->
tclSET { to_clear = more_ids @ ids })
let isCLR_CONSUME =
tclGET (fun { to_clear = ids } ->
tclSET { to_clear = [] } <*>
Tactics.clear ids)
let isTICK _ = tclUNIT ()
end (* }}} *************************************************************** *)
open State
(** [=> *] ****************************************************************)
(** [nb_assums] returns the number of dependent premises *)
(** Warning: unlike [nb_deps_assums], it does not perform reduction *)
let rec nb_assums cur env sigma t =
match EConstr.kind sigma t with
| Term.Prod(name,ty,body) ->
nb_assums (cur+1) env sigma body
| Term.LetIn(name,ty,t1,t2) ->
nb_assums (cur+1) env sigma t2
| Term.Cast(t,_,_) ->
nb_assums cur env sigma t
| _ -> cur
let nb_assums = nb_assums 0
let intro_anon_all = Goal.enter begin fun gl ->
let env = Goal.env gl in
let sigma = Goal.sigma gl in
let g = Goal.concl gl in
let n = nb_assums env sigma g in
Tacticals.New.tclDO n Ssrcommon.tclINTRO_ANON
end
(** [intro_drop] behaves like [intro_anon] but registers the id of the
introduced assumption for a delayed clear. *)
let intro_drop =
Ssrcommon.tclINTRO ~id:None
~conclusion:(fun ~orig_name:_ ~new_name -> isCLR_PUSH new_name)
(** [intro_end] performs the actions that have been delayed. *)
let intro_end =
Ssrcommon.tcl0G (isCLR_CONSUME)
(** [=> _] *****************************************************************)
let intro_clear ids future_ipats =
Goal.enter begin fun gl ->
let _, clear_ids, ren =
List.fold_left (fun (used_ids, clear_ids, ren) id ->
if not(Ssrcommon.is_name_in_ipats id future_ipats) then begin
used_ids, id :: clear_ids, ren
end else
let new_id = Ssrcommon.mk_anon_id (Id.to_string id) used_ids in
(new_id :: used_ids, new_id :: clear_ids, (id, new_id) :: ren))
(Tacmach.New.pf_ids_of_hyps gl, [], []) ids
in
Tactics.rename_hyp ren <*>
isCLR_PUSHL clear_ids
end
let tacCHECK_HYPS_EXIST hyps = Goal.enter begin fun gl ->
let ctx = Goal.hyps gl in
List.iter (Ssrcommon.check_hyp_exists ctx) hyps;
tclUNIT ()
end
(** [=> []] *****************************************************************)
let tac_case t =
Goal.enter begin fun _ ->
Ssrcommon.tacTYPEOF t >>= fun ty ->
Ssrcommon.tacIS_INJECTION_CASE ~ty t >>= fun is_inj ->
if is_inj then
V82.tactic ~nf_evars:false (Ssrelim.perform_injection t)
else
Ssrelim.ssrscasetac t
end
(** [=> [: id]] ************************************************************)
let mk_abstract_id =
let open Coqlib in
let ssr_abstract_id = Summary.ref ~name:"SSR:abstractid" 0 in
begin fun () ->
let rec nat_of_n n =
if n = 0 then EConstr.mkConstruct path_of_O
else EConstr.mkApp (EConstr.mkConstruct path_of_S, [|nat_of_n (n-1)|]) in
incr ssr_abstract_id; nat_of_n !ssr_abstract_id
end
let tcltclMK_ABSTRACT_VAR id = Goal.enter begin fun gl ->
let env, concl = Goal.(env gl, concl gl) in
let step = begin fun sigma ->
let (sigma, (abstract_proof, abstract_ty)) =
let (sigma, (ty, _)) =
Evarutil.new_type_evar env sigma Evd.univ_flexible_alg in
let (sigma, ablock) = Ssrcommon.mkSsrConst "abstract_lock" env sigma in
let (sigma, lock) = Evarutil.new_evar env sigma ablock in
let (sigma, abstract) = Ssrcommon.mkSsrConst "abstract" env sigma in
let abstract_ty =
EConstr.mkApp(abstract, [|ty;mk_abstract_id ();lock|]) in
let sigma, m = Evarutil.new_evar env sigma abstract_ty in
sigma, (m, abstract_ty) in
let sigma, kont =
let rd = Context.Rel.Declaration.LocalAssum (Name id, abstract_ty) in
let sigma, ev = Evarutil.new_evar (EConstr.push_rel rd env) sigma concl in
sigma, ev
in
let term =
EConstr.(mkApp (mkLambda(Name id,abstract_ty,kont),[|abstract_proof|])) in
let sigma, _ = Typing.type_of env sigma term in
sigma, term
end in
Tactics.New.refine ~typecheck:false step <*>
tclFOCUS 1 3 Proofview.shelve
end
let tclMK_ABSTRACT_VARS ids =
List.fold_right (fun id tac ->
Tacticals.New.tclTHENFIRST (tcltclMK_ABSTRACT_VAR id) tac) ids (tclUNIT ())
(* Debugging *)
let tclLOG p t =
tclUNIT () >>= begin fun () ->
Ssrprinters.ppdebug (lazy Pp.(str "exec: " ++ Ssrprinters.pr_ipat p));
tclUNIT ()
end <*>
Goal.enter begin fun g ->
Ssrprinters.ppdebug (lazy Pp.(str" on state:" ++ spc () ++
isPRINT g ++
str" goal:" ++ spc () ++ Printer.pr_goal (Goal.print g)));
tclUNIT ()
end
<*>
t p
<*>
Goal.enter begin fun g ->
Ssrprinters.ppdebug (lazy Pp.(str "done: " ++ isPRINT g));
tclUNIT ()
end
let rec ipat_tac1 future_ipats ipat : unit tactic =
match ipat with
| IPatView l ->
Ssrview.tclIPAT_VIEWS ~views:l
~conclusion:(fun ~to_clear:clr -> intro_clear clr future_ipats)
| IPatDispatch ipatss ->
tclEXTEND (List.map ipat_tac ipatss) (tclUNIT ()) []
| IPatId id -> Ssrcommon.tclINTRO_ID id
| IPatCase ipatss ->
tclIORPAT (Ssrcommon.tclWITHTOP tac_case) ipatss
| IPatInj ipatss ->
tclIORPAT (Ssrcommon.tclWITHTOP
(fun t -> V82.tactic ~nf_evars:false (Ssrelim.perform_injection t))) ipatss
| IPatAnon Drop -> intro_drop
| IPatAnon One -> Ssrcommon.tclINTRO_ANON
| IPatAnon All -> intro_anon_all
| IPatNoop -> tclUNIT ()
| IPatSimpl Nop -> tclUNIT ()
| IPatClear ids ->
tacCHECK_HYPS_EXIST ids <*>
intro_clear (List.map Ssrcommon.hyp_id ids) future_ipats
| IPatSimpl (Simpl n) ->
V82.tactic ~nf_evars:false (Ssrequality.simpltac (Simpl n))
| IPatSimpl (Cut n) ->
V82.tactic ~nf_evars:false (Ssrequality.simpltac (Cut n))
| IPatSimpl (SimplCut (n,m)) ->
V82.tactic ~nf_evars:false (Ssrequality.simpltac (SimplCut (n,m)))
| IPatRewrite (occ,dir) ->
Ssrcommon.tclWITHTOP
(fun x -> V82.tactic ~nf_evars:false (Ssrequality.ipat_rewrite occ dir x))
| IPatAbstractVars ids -> tclMK_ABSTRACT_VARS ids
| IPatTac t -> t
and ipat_tac pl : unit tactic =
match pl with
| [] -> tclUNIT ()
| pat :: pl ->
Ssrcommon.tcl0G (tclLOG pat (ipat_tac1 pl)) <*>
isTICK pat <*>
ipat_tac pl
and tclIORPAT tac = function
| [[]] -> tac
| p -> Tacticals.New.tclTHENS tac (List.map ipat_tac p)
let split_at_first_case ipats =
let rec loop acc = function
| (IPatSimpl _ | IPatClear _) as x :: rest -> loop (x :: acc) rest
| IPatCase _ as x :: xs -> CList.rev acc, Some x, xs
| pats -> CList.rev acc, None, pats
in
loop [] ipats
let ssr_exception is_on = function
| Some (IPatCase l) when is_on -> Some (IPatDispatch l)
| x -> x
let option_to_list = function None -> [] | Some x -> [x]
let main ?eqtac ~first_case_is_dispatch ipats =
let ip_before, case, ip_after = split_at_first_case ipats in
let case = ssr_exception first_case_is_dispatch case in
let case = option_to_list case in
let eqtac = option_to_list (Option.map (fun x -> IPatTac x) eqtac) in
Ssrcommon.tcl0G (ipat_tac (ip_before @ case @ eqtac @ ip_after) <*> intro_end)
end (* }}} *)
let tclIPAT_EQ eqtac ip =
Ssrprinters.ppdebug (lazy Pp.(str "ipat@run: " ++ Ssrprinters.pr_ipats ip));
IpatMachine.main ~eqtac ~first_case_is_dispatch:true ip
let tclIPATssr ip =
Ssrprinters.ppdebug (lazy Pp.(str "ipat@run: " ++ Ssrprinters.pr_ipats ip));
IpatMachine.main ~first_case_is_dispatch:true ip
(* Common code to handle generalization lists along with the defective case *)
let with_defective maintac deps clr = Goal.enter begin fun g ->
let sigma, concl = Goal.(sigma g, concl g) in
let top_id =
match EConstr.kind_of_type sigma concl with
| Term.ProdType (Name id, _, _)
when Ssrcommon.is_discharged_id id -> id
| _ -> Ssrcommon.top_id in
let top_gen = Ssrequality.mkclr clr, Ssrmatching.cpattern_of_id top_id in
Ssrcommon.tclINTRO_ID top_id <*> maintac deps top_gen
end
let with_dgens { dgens; gens; clr } maintac = match gens with
| [] -> with_defective maintac dgens clr
| gen :: gens ->
V82.tactic ~nf_evars:false (Ssrcommon.genstac (gens, clr)) <*> maintac dgens gen
let mkCoqEq env sigma =
let eq = Coqlib.((build_coq_eq_data ()).eq) in
let sigma, eq = EConstr.fresh_global env sigma eq in
eq, sigma
let mkCoqRefl t c env sigma =
let refl = Coqlib.((build_coq_eq_data()).refl) in
let sigma, refl = EConstr.fresh_global env sigma refl in
EConstr.mkApp (refl, [|t; c|]), sigma
(** Intro patterns processing for elim tactic, in particular when used in
conjunction with equation generation as in [elim E: x] *)
let elim_intro_tac ipats ?ist what eqid ssrelim is_rec clr =
let intro_eq =
match eqid with
| Some (IPatId ipat) when not is_rec ->
let rec intro_eq () = Goal.enter begin fun g ->
let sigma, env, concl = Goal.(sigma g, env g, concl g) in
match EConstr.kind_of_type sigma concl with
| Term.ProdType (_, src, tgt) -> begin
match EConstr.kind_of_type sigma src with
| Term.AtomicType (hd, _) when Ssrcommon.is_protect hd env sigma ->
V82.tactic ~nf_evars:false Ssrcommon.unprotecttac <*>
Ssrcommon.tclINTRO_ID ipat
| _ -> Ssrcommon.tclINTRO_ANON <*> intro_eq ()
end
|_ -> Ssrcommon.errorstrm (Pp.str "Too many names in intro pattern")
end in
intro_eq ()
| Some (IPatId ipat) ->
let intro_lhs = Goal.enter begin fun g ->
let sigma = Goal.sigma g in
let elim_name = match clr, what with
| [SsrHyp(_, x)], _ -> x
| _, `EConstr(_,_,t) when EConstr.isVar sigma t ->
EConstr.destVar sigma t
| _ -> Ssrcommon.mk_anon_id "K" (Tacmach.New.pf_ids_of_hyps g) in
let elim_name =
if Ssrcommon.is_name_in_ipats elim_name ipats then
Ssrcommon.mk_anon_id "K" (Tacmach.New.pf_ids_of_hyps g)
else elim_name
in
Ssrcommon.tclINTRO_ID elim_name
end in
let rec gen_eq_tac () = Goal.enter begin fun g ->
let sigma, env, concl = Goal.(sigma g, env g, concl g) in
let sigma, eq =
EConstr.fresh_global env sigma (Coqlib.build_coq_eq ()) in
let ctx, last = EConstr.decompose_prod_assum sigma concl in
let args = match EConstr.kind_of_type sigma last with
| Term.AtomicType (hd, args) ->
assert(Ssrcommon.is_protect hd env sigma);
args
| _ -> assert false in
let case = args.(Array.length args-1) in
if not(EConstr.Vars.closed0 sigma case)
then Ssrcommon.tclINTRO_ANON <*> gen_eq_tac ()
else
Ssrcommon.tacTYPEOF case >>= fun case_ty ->
let open EConstr in
let refl =
mkApp (eq, [|Vars.lift 1 case_ty; mkRel 1; Vars.lift 1 case|]) in
let name = Ssrcommon.mk_anon_id "K" (Tacmach.New.pf_ids_of_hyps g) in
let new_concl =
mkProd (Name name, case_ty, mkArrow refl (Vars.lift 2 concl)) in
let erefl, sigma = mkCoqRefl case_ty case env sigma in
Proofview.Unsafe.tclEVARS sigma <*>
Tactics.apply_type ~typecheck:true new_concl [case;erefl]
end in
gen_eq_tac () <*>
intro_lhs <*>
Ssrcommon.tclINTRO_ID ipat
| _ -> tclUNIT () in
let unprot =
if eqid <> None && is_rec
then V82.tactic ~nf_evars:false Ssrcommon.unprotecttac else tclUNIT () in
V82.of_tactic begin
V82.tactic ~nf_evars:false ssrelim <*>
tclIPAT_EQ (intro_eq <*> unprot) ipats
end
let mkEq dir cl c t n env sigma =
let open EConstr in
let eqargs = [|t; c; c|] in
eqargs.(Ssrequality.dir_org dir) <- mkRel n;
let eq, sigma = mkCoqEq env sigma in
let refl, sigma = mkCoqRefl t c env sigma in
mkArrow (mkApp (eq, eqargs)) (Vars.lift 1 cl), refl, sigma
(** in [tac/v: last gens..] the first (last to be run) generalization is
"special" in that is it also the main argument of [tac] and is eventually
to be processed forward with view [v]. The behavior implemented is
very close to [tac: (v last) gens..] but:
- [v last] may use a view adaptor
- eventually clear for [last] is taken into account
- [tac/v {clr}] is also supported, and [{clr}] is to be run later
The code here does not "grab" [v last] nor apply [v] to [last], see the
[tacVIEW_THEN_GRAB] combinator. *)
let tclLAST_GEN ~to_ind ((oclr, occ), t) conclusion = tclINDEPENDENTL begin
Ssrcommon.tacSIGMA >>= fun sigma0 ->
Goal.enter_one begin fun g ->
let pat = Ssrmatching.interp_cpattern sigma0 t None in
let cl0, env, sigma, hyps = Goal.(concl g, env g, sigma g, hyps g) in
let cl = EConstr.to_constr sigma cl0 in
let (c, ucst), cl =
try Ssrmatching.fill_occ_pattern ~raise_NoMatch:true env sigma cl pat occ 1
with Ssrmatching.NoMatch -> Ssrmatching.redex_of_pattern env pat, cl in
let sigma = Evd.merge_universe_context sigma ucst in
let c, cl = EConstr.of_constr c, EConstr.of_constr cl in
let clr =
Ssrcommon.interp_clr sigma (oclr, (Ssrmatching.tag_of_cpattern t,c)) in
(* Historically in Coq, and hence in ssr, [case t] accepts [t] of type
[A.. -> Ind] and opens new goals for [A..] as well as for the branches
of [Ind], see the [~to_ind] argument *)
if not(Termops.occur_existential sigma c) then
if Ssrmatching.tag_of_cpattern t = Ssrprinters.xWithAt then
if not (EConstr.isVar sigma c) then
Ssrcommon.errorstrm Pp.(str "@ can be used with variables only")
else match Context.Named.lookup (EConstr.destVar sigma c) hyps with
| Context.Named.Declaration.LocalAssum _ ->
Ssrcommon.errorstrm Pp.(str "@ can be used with let-ins only")
| Context.Named.Declaration.LocalDef (name, b, ty) ->
Unsafe.tclEVARS sigma <*>
tclUNIT (true, EConstr.mkLetIn (Name name,b,ty,cl), c, clr)
else
Unsafe.tclEVARS sigma <*>
Ssrcommon.tacMKPROD c cl >>= fun ccl ->
tclUNIT (false, ccl, c, clr)
else
if to_ind && occ = None then
let _, p, _, ucst' =
(* TODO: use abs_evars2 *)
Ssrcommon.pf_abs_evars sigma0 (fst pat, c) in
let sigma = Evd.merge_universe_context sigma ucst' in
Unsafe.tclEVARS sigma <*>
Ssrcommon.tacTYPEOF p >>= fun pty ->
(* TODO: check bug: cl0 no lift? *)
let ccl = EConstr.mkProd (Ssrcommon.constr_name sigma c, pty, cl0) in
tclUNIT (false, ccl, p, clr)
else
Ssrcommon.errorstrm Pp.(str "generalized term didn't match")
end end >>= begin
fun infos -> tclDISPATCH (infos |> List.map conclusion)
end
(** a typical mate of [tclLAST_GEN] doing the job of applying the views [cs]
to [c] and generalizing the resulting term *)
let tacVIEW_THEN_GRAB ?(simple_types=true)
vs ~conclusion (is_letin, new_concl, c, clear)
=
Ssrview.tclWITH_FWD_VIEWS ~simple_types ~subject:c ~views:vs
~conclusion:(fun t ->
Ssrcommon.tacCONSTR_NAME c >>= fun name ->
Goal.enter_one ~__LOC__ begin fun g ->
let sigma, env = Goal.sigma g, Goal.env g in
Ssrcommon.tacMKPROD t ~name
(Termops.subst_term sigma t (* NOTE: we grab t here *)
(Termops.prod_applist sigma new_concl [c])) >>=
conclusion is_letin t clear
end)
(* Elim views are elimination lemmas, so the eliminated term is not added *)
(* to the dependent terms as for "case", unless it actually occurs in the *)
(* goal, the "all occurrences" {+} switch is used, or the equation switch *)
(* is used and there are no dependents. *)
let ssrelimtac (view, (eqid, (dgens, ipats))) =
let ndefectelimtac view eqid ipats deps gen =
match view with
| [v] ->
Ssrcommon.tclINTERP_AST_CLOSURE_TERM_AS_CONSTR v >>= fun cs ->
tclDISPATCH (List.map (fun elim ->
V82.tactic ~nf_evars:false
(Ssrelim.ssrelim deps (`EGen gen) ~elim eqid (elim_intro_tac ipats)))
cs)
| [] ->
tclINDEPENDENT
(V82.tactic ~nf_evars:false
(Ssrelim.ssrelim deps (`EGen gen) eqid (elim_intro_tac ipats)))
| _ ->
Ssrcommon.errorstrm
Pp.(str "elim: only one elimination lemma can be provided")
in
with_dgens dgens (ndefectelimtac view eqid ipats)
let ssrcasetac (view, (eqid, (dgens, ipats))) =
let ndefectcasetac view eqid ipats deps ((_, occ), _ as gen) =
tclLAST_GEN ~to_ind:true gen (fun (_, cl, c, clear as info) ->
let conclusion _ vc _clear _cl =
Ssrcommon.tacIS_INJECTION_CASE vc >>= fun inj ->
let simple = (eqid = None && deps = [] && occ = None) in
if simple && inj then
V82.tactic ~nf_evars:false (Ssrelim.perform_injection vc) <*>
Tactics.clear (List.map Ssrcommon.hyp_id clear) <*>
tclIPATssr ipats
else
(* macro for "case/v E: x" ---> "case E: x / (v x)" *)
let deps, clear, occ =
if view <> [] && eqid <> None && deps = []
then [gen], [], None
else deps, clear, occ in
V82.tactic ~nf_evars:false
(Ssrelim.ssrelim ~is_case:true deps (`EConstr (clear, occ, vc))
eqid (elim_intro_tac ipats))
in
if view = [] then conclusion false c clear c
else tacVIEW_THEN_GRAB ~simple_types:false view ~conclusion info)
in
with_dgens dgens (ndefectcasetac view eqid ipats)
let ssrscasetoptac = Ssrcommon.tclWITHTOP Ssrelim.ssrscase_or_inj_tac
let ssrselimtoptac = Ssrcommon.tclWITHTOP Ssrelim.elimtac
(** [move] **************************************************************)
let pushmoveeqtac cl c = Goal.enter begin fun g ->
let env, sigma = Goal.(env g, sigma g) in
let x, t, cl1 = EConstr.destProd sigma cl in
let cl2, eqc, sigma = mkEq R2L cl1 c t 1 env sigma in
Unsafe.tclEVARS sigma <*>
Tactics.apply_type ~typecheck:true (EConstr.mkProd (x, t, cl2)) [c; eqc]
end
let eqmovetac _ gen = Goal.enter begin fun g ->
Ssrcommon.tacSIGMA >>= fun gl ->
let cl, c, _, gl = Ssrcommon.pf_interp_gen gl false gen in
Unsafe.tclEVARS (Tacmach.project gl) <*>
pushmoveeqtac cl c
end
let rec eqmoveipats eqpat = function
| (IPatSimpl _ | IPatClear _ as ipat) :: ipats ->
ipat :: eqmoveipats eqpat ipats
| (IPatAnon All :: _ | []) as ipats ->
IPatAnon One :: eqpat :: ipats
| ipat :: ipats ->
ipat :: eqpat :: ipats
let ssrsmovetac = Goal.enter begin fun g ->
let sigma, concl = Goal.(sigma g, concl g) in
match EConstr.kind sigma concl with
| Term.Prod _ | Term.LetIn _ -> tclUNIT ()
| _ -> Tactics.hnf_in_concl
end
let tclIPAT ip =
Ssrprinters.ppdebug (lazy Pp.(str "ipat@run: " ++ Ssrprinters.pr_ipats ip));
IpatMachine.main ~first_case_is_dispatch:false ip
let ssrmovetac = function
| _::_ as view, (_, ({ gens = lastgen :: gens; clr }, ipats)) ->
let gentac = V82.tactic ~nf_evars:false (Ssrcommon.genstac (gens, [])) in
let conclusion _ t clear ccl =
Tactics.apply_type ~typecheck:true ccl [t] <*>
Tactics.clear (List.map Ssrcommon.hyp_id clear) in
gentac <*>
tclLAST_GEN ~to_ind:false lastgen
(tacVIEW_THEN_GRAB view ~conclusion) <*>
tclIPAT (IPatClear clr :: ipats)
| _::_ as view, (_, ({ gens = []; clr }, ipats)) ->
tclIPAT (IPatView view :: IPatClear clr :: ipats)
| _, (Some pat, (dgens, ipats)) ->
let dgentac = with_dgens dgens eqmovetac in
dgentac <*> tclIPAT (eqmoveipats pat ipats)
| _, (_, ({ gens = (_ :: _ as gens); dgens = []; clr}, ipats)) ->
let gentac = V82.tactic ~nf_evars:false (Ssrcommon.genstac (gens, clr)) in
gentac <*> tclIPAT ipats
| _, (_, ({ clr }, ipats)) ->
Tacticals.New.tclTHENLIST [ssrsmovetac; Tactics.clear (List.map Ssrcommon.hyp_id clr); tclIPAT ipats]
(** [abstract: absvar gens] **************************************************)
let rec is_Evar_or_CastedMeta sigma x =
EConstr.isEvar sigma x ||
EConstr.isMeta sigma x ||
(EConstr.isCast sigma x &&
is_Evar_or_CastedMeta sigma (pi1 (EConstr.destCast sigma x)))
let occur_existential_or_casted_meta sigma c =
let rec occrec c = match EConstr.kind sigma c with
| Term.Evar _ -> raise Not_found
| Term.Cast (m,_,_) when EConstr.isMeta sigma m -> raise Not_found
| _ -> EConstr.iter sigma occrec c
in
try occrec c; false
with Not_found -> true
let tacEXAMINE_ABSTRACT id = Ssrcommon.tacTYPEOF id >>= begin fun tid ->
Ssrcommon.tacMK_SSR_CONST "abstract" >>= fun abstract ->
Goal.enter_one ~__LOC__ begin fun g ->
let sigma, env = Goal.(sigma g, env g) in
let err () =
Ssrcommon.errorstrm
Pp.(strbrk"not a proper abstract constant: "++
Printer.pr_econstr_env env sigma id) in
if not (EConstr.isApp sigma tid) then err ();
let hd, args_id = EConstr.destApp sigma tid in
if not (EConstr.eq_constr_nounivs sigma hd abstract) then err ();
if Array.length args_id <> 3 then err ();
if not (is_Evar_or_CastedMeta sigma args_id.(2)) then
Ssrcommon.errorstrm Pp.(strbrk"abstract constant "++
Printer.pr_econstr_env env sigma id++str" already used");
tclUNIT (tid, args_id)
end end
let tacFIND_ABSTRACT_PROOF check_lock abstract_n =
Ssrcommon.tacMK_SSR_CONST "abstract" >>= fun abstract ->
Goal.enter_one ~__LOC__ begin fun g ->
let sigma, env = Goal.(sigma g, env g) in
let l = Evd.fold_undefined (fun e ei l ->
match EConstr.kind sigma (EConstr.of_constr ei.Evd.evar_concl) with
| Term.App(hd, [|ty; n; lock|])
when (not check_lock ||
(occur_existential_or_casted_meta sigma ty &&
is_Evar_or_CastedMeta sigma lock)) &&
EConstr.eq_constr_nounivs sigma hd abstract &&
EConstr.eq_constr_nounivs sigma n abstract_n -> e :: l
| _ -> l) sigma [] in
match l with
| [e] -> tclUNIT e
| _ -> Ssrcommon.errorstrm
Pp.(strbrk"abstract constant "++
Printer.pr_econstr_env env sigma abstract_n ++
strbrk" not found in the evar map exactly once. "++
strbrk"Did you tamper with it?")
end
let ssrabstract dgens =
let main _ (_,cid) = Goal.enter begin fun g ->
Ssrcommon.tacMK_SSR_CONST "abstract" >>= fun abstract ->
Ssrcommon.tacMK_SSR_CONST "abstract_key" >>= fun abstract_key ->
Ssrcommon.tacINTERP_CPATTERN cid >>= fun cid ->
let id = EConstr.mkVar (Option.get (Ssrmatching.id_of_pattern cid)) in
tacEXAMINE_ABSTRACT id >>= fun (idty, args_id) ->
let abstract_n = args_id.(1) in
tacFIND_ABSTRACT_PROOF true abstract_n >>= fun abstract_proof ->
let tacFIND_HOLE = Goal.enter_one ~__LOC__ begin fun g ->
let sigma, env, concl = Goal.(sigma g, env g, concl g) in
let t = args_id.(0) in
match EConstr.kind sigma t with
| (Term.Evar _ | Term.Meta _) -> Ssrcommon.tacUNIFY concl t <*> tclUNIT id
| Term.Cast(m,_,_)
when EConstr.isEvar sigma m || EConstr.isMeta sigma m ->
Ssrcommon.tacUNIFY concl t <*> tclUNIT id
| _ ->
Ssrcommon.errorstrm
Pp.(strbrk"abstract constant "++
Printer.pr_econstr_env env sigma abstract_n ++
strbrk" has an unexpected shape. Did you tamper with it?")
end in
tacFIND_HOLE >>= fun proof ->
Ssrcommon.tacUNIFY abstract_key args_id.(2) <*>
Ssrcommon.tacTYPEOF idty >>= fun _ ->
Unsafe.tclGETGOALS >>= fun goals ->
(* Here we jump in the proof tree: we move from the current goal to
the evar that inhabits the abstract variable with the current goal *)
Unsafe.tclSETGOALS
(goals @ [Proofview_monad.with_empty_state abstract_proof]) <*>
tclDISPATCH [
Tacticals.New.tclSOLVE [Tactics.apply proof];
Ssrcommon.unfold[abstract;abstract_key]
]
end in
let interp_gens { gens } ~conclusion = Goal.enter begin fun g ->
Ssrcommon.tacSIGMA >>= fun gl0 ->
let open Ssrmatching in
let ipats = List.map (fun (_,cp) ->
match id_of_pattern (interp_cpattern gl0 cp None) with
| None -> IPatAnon One
| Some id -> IPatId id)
(List.tl gens) in
conclusion ipats
end in
interp_gens dgens ~conclusion:(fun ipats ->
with_dgens dgens main <*>
tclIPATssr ipats)
module Internal = struct
let pf_find_abstract_proof b gl t =
let res = ref None in
let _ = V82.of_tactic (tacFIND_ABSTRACT_PROOF b (EConstr.of_constr t) >>= fun x -> res := Some x; tclUNIT ()) gl in
match !res with
| None -> assert false
| Some x -> x
let examine_abstract t gl =
let res = ref None in
let _ = V82.of_tactic (tacEXAMINE_ABSTRACT t >>= fun x -> res := Some x; tclUNIT ()) gl in
match !res with
| None -> assert false
| Some x -> x
end
(* vim: set filetype=ocaml foldmethod=marker: *)
|