1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* This file is (C) Copyright 2006-2015 Microsoft Corporation and Inria. *)
Require Bool.
Require Import ssreflect ssrfun.
(******************************************************************************)
(* A theory of boolean predicates and operators. A large part of this file is *)
(* concerned with boolean reflection. *)
(* Definitions and notations: *)
(* is_true b == the coercion of b : bool to Prop (:= b = true). *)
(* This is just input and displayed as `b''. *)
(* reflect P b == the reflection inductive predicate, asserting *)
(* that the logical proposition P : prop with the *)
(* formula b : bool. Lemmas asserting reflect P b *)
(* are often referred to as "views". *)
(* iffP, appP, sameP, rwP :: lemmas for direct manipulation of reflection *)
(* views: iffP is used to prove reflection from *)
(* logical equivalence, appP to compose views, and *)
(* sameP and rwP to perform boolean and setoid *)
(* rewriting. *)
(* elimT :: coercion reflect >-> Funclass, which allows the *)
(* direct application of `reflect' views to *)
(* boolean assertions. *)
(* decidable P <-> P is effectively decidable (:= {P} + {~ P}. *)
(* contra, contraL, ... :: contraposition lemmas. *)
(* altP my_viewP :: natural alternative for reflection; given *)
(* lemma myviewP: reflect my_Prop my_formula, *)
(* have [myP | not_myP] := altP my_viewP. *)
(* generates two subgoals, in which my_formula has *)
(* been replaced by true and false, resp., with *)
(* new assumptions myP : my_Prop and *)
(* not_myP: ~~ my_formula. *)
(* Caveat: my_formula must be an APPLICATION, not *)
(* a variable, constant, let-in, etc. (due to the *)
(* poor behaviour of dependent index matching). *)
(* boolP my_formula :: boolean disjunction, equivalent to *)
(* altP (idP my_formula) but circumventing the *)
(* dependent index capture issue; destructing *)
(* boolP my_formula generates two subgoals with *)
(* assumtions my_formula and ~~ myformula. As *)
(* with altP, my_formula must be an application. *)
(* \unless C, P <-> we can assume property P when a something that *)
(* holds under condition C (such as C itself). *)
(* := forall G : Prop, (C -> G) -> (P -> G) -> G. *)
(* This is just C \/ P or rather its impredicative *)
(* encoding, whose usage better fits the above *)
(* description: given a lemma UCP whose conclusion *)
(* is \unless C, P we can assume P by writing: *)
(* wlog hP: / P by apply/UCP; (prove C -> goal). *)
(* or even apply: UCP id _ => hP if the goal is C. *)
(* classically P <-> we can assume P when proving is_true b. *)
(* := forall b : bool, (P -> b) -> b. *)
(* This is equivalent to ~ (~ P) when P : Prop. *)
(* implies P Q == wrapper coinductive type that coerces to P -> Q *)
(* and can be used as a P -> Q view unambigously. *)
(* Useful to avoid spurious insertion of <-> views *)
(* when Q is a conjunction of foralls, as in Lemma *)
(* all_and2 below; conversely, avoids confusion in *)
(* apply views for impredicative properties, such *)
(* as \unless C, P. Also supports contrapositives. *)
(* a && b == the boolean conjunction of a and b. *)
(* a || b == the boolean disjunction of a and b. *)
(* a ==> b == the boolean implication of b by a. *)
(* ~~ a == the boolean negation of a. *)
(* a (+) b == the boolean exclusive or (or sum) of a and b. *)
(* [ /\ P1 , P2 & P3 ] == multiway logical conjunction, up to 5 terms. *)
(* [ \/ P1 , P2 | P3 ] == multiway logical disjunction, up to 4 terms. *)
(* [&& a, b, c & d] == iterated, right associative boolean conjunction *)
(* with arbitrary arity. *)
(* [|| a, b, c | d] == iterated, right associative boolean disjunction *)
(* with arbitrary arity. *)
(* [==> a, b, c => d] == iterated, right associative boolean implication *)
(* with arbitrary arity. *)
(* and3P, ... == specific reflection lemmas for iterated *)
(* connectives. *)
(* andTb, orbAC, ... == systematic names for boolean connective *)
(* properties (see suffix conventions below). *)
(* prop_congr == a tactic to move a boolean equality from *)
(* its coerced form in Prop to the equality *)
(* in bool. *)
(* bool_congr == resolution tactic for blindly weeding out *)
(* like terms from boolean equalities (can fail). *)
(* This file provides a theory of boolean predicates and relations: *)
(* pred T == the type of bool predicates (:= T -> bool). *)
(* simpl_pred T == the type of simplifying bool predicates, using *)
(* the simpl_fun from ssrfun.v. *)
(* rel T == the type of bool relations. *)
(* := T -> pred T or T -> T -> bool. *)
(* simpl_rel T == type of simplifying relations. *)
(* predType == the generic predicate interface, supported for *)
(* for lists and sets. *)
(* pred_class == a coercion class for the predType projection to *)
(* pred; declaring a coercion to pred_class is an *)
(* alternative way of equipping a type with a *)
(* predType structure, which interoperates better *)
(* with coercion subtyping. This is used, e.g., *)
(* for finite sets, so that finite groups inherit *)
(* the membership operation by coercing to sets. *)
(* If P is a predicate the proposition "x satisfies P" can be written *)
(* applicatively as (P x), or using an explicit connective as (x \in P); in *)
(* the latter case we say that P is a "collective" predicate. We use A, B *)
(* rather than P, Q for collective predicates: *)
(* x \in A == x satisfies the (collective) predicate A. *)
(* x \notin A == x doesn't satisfy the (collective) predicate A. *)
(* The pred T type can be used as a generic predicate type for either kind, *)
(* but the two kinds of predicates should not be confused. When a "generic" *)
(* pred T value of one type needs to be passed as the other the following *)
(* conversions should be used explicitly: *)
(* SimplPred P == a (simplifying) applicative equivalent of P. *)
(* mem A == an applicative equivalent of A: *)
(* mem A x simplifies to x \in A. *)
(* Alternatively one can use the syntax for explicit simplifying predicates *)
(* and relations (in the following x is bound in E): *)
(* [pred x | E] == simplifying (see ssrfun) predicate x => E. *)
(* [pred x : T | E] == predicate x => E, with a cast on the argument. *)
(* [pred : T | P] == constant predicate P on type T. *)
(* [pred x | E1 & E2] == [pred x | E1 && E2]; an x : T cast is allowed. *)
(* [pred x in A] == [pred x | x in A]. *)
(* [pred x in A | E] == [pred x | x in A & E]. *)
(* [pred x in A | E1 & E2] == [pred x in A | E1 && E2]. *)
(* [predU A & B] == union of two collective predicates A and B. *)
(* [predI A & B] == intersection of collective predicates A and B. *)
(* [predD A & B] == difference of collective predicates A and B. *)
(* [predC A] == complement of the collective predicate A. *)
(* [preim f of A] == preimage under f of the collective predicate A. *)
(* predU P Q, ... == union, etc of applicative predicates. *)
(* pred0 == the empty predicate. *)
(* predT == the total (always true) predicate. *)
(* if T : predArgType, then T coerces to predT. *)
(* {: T} == T cast to predArgType (e.g., {: bool * nat}) *)
(* In the following, x and y are bound in E: *)
(* [rel x y | E] == simplifying relation x, y => E. *)
(* [rel x y : T | E] == simplifying relation with arguments cast. *)
(* [rel x y in A & B | E] == [rel x y | [&& x \in A, y \in B & E]]. *)
(* [rel x y in A & B] == [rel x y | (x \in A) && (y \in B)]. *)
(* [rel x y in A | E] == [rel x y in A & A | E]. *)
(* [rel x y in A] == [rel x y in A & A]. *)
(* relU R S == union of relations R and S. *)
(* Explicit values of type pred T (i.e., lamdba terms) should always be used *)
(* applicatively, while values of collection types implementing the predType *)
(* interface, such as sequences or sets should always be used as collective *)
(* predicates. Defined constants and functions of type pred T or simpl_pred T *)
(* as well as the explicit simpl_pred T values described below, can generally *)
(* be used either way. Note however that x \in A will not auto-simplify when *)
(* A is an explicit simpl_pred T value; the generic simplification rule inE *)
(* must be used (when A : pred T, the unfold_in rule can be used). Constants *)
(* of type pred T with an explicit simpl_pred value do not auto-simplify when *)
(* used applicatively, but can still be expanded with inE. This behavior can *)
(* be controlled as follows: *)
(* Let A : collective_pred T := [pred x | ... ]. *)
(* The collective_pred T type is just an alias for pred T, but this cast *)
(* stops rewrite inE from expanding the definition of A, thus treating A *)
(* into an abstract collection (unfold_in or in_collective can be used to *)
(* expand manually). *)
(* Let A : applicative_pred T := [pred x | ...]. *)
(* This cast causes inE to turn x \in A into the applicative A x form; *)
(* A will then have to unfolded explicitly with the /A rule. This will *)
(* also apply to any definition that reduces to A (e.g., Let B := A). *)
(* Canonical A_app_pred := ApplicativePred A. *)
(* This declaration, given after definition of A, similarly causes inE to *)
(* turn x \in A into A x, but in addition allows the app_predE rule to *)
(* turn A x back into x \in A; it can be used for any definition of type *)
(* pred T, which makes it especially useful for ambivalent predicates *)
(* as the relational transitive closure connect, that are used in both *)
(* applicative and collective styles. *)
(* Purely for aesthetics, we provide a subtype of collective predicates: *)
(* qualifier q T == a pred T pretty-printing wrapper. An A : qualifier q T *)
(* coerces to pred_class and thus behaves as a collective *)
(* predicate, but x \in A and x \notin A are displayed as: *)
(* x \is A and x \isn't A when q = 0, *)
(* x \is a A and x \isn't a A when q = 1, *)
(* x \is an A and x \isn't an A when q = 2, respectively. *)
(* [qualify x | P] := Qualifier 0 (fun x => P), constructor for the above. *)
(* [qualify x : T | P], [qualify a x | P], [qualify an X | P], etc. *)
(* variants of the above with type constraints and different *)
(* values of q. *)
(* We provide an internal interface to support attaching properties (such as *)
(* being multiplicative) to predicates: *)
(* pred_key p == phantom type that will serve as a support for properties *)
(* to be attached to p : pred_class; instances should be *)
(* created with Fact/Qed so as to be opaque. *)
(* KeyedPred k_p == an instance of the interface structure that attaches *)
(* (k_p : pred_key P) to P; the structure projection is a *)
(* coercion to pred_class. *)
(* KeyedQualifier k_q == an instance of the interface structure that attaches *)
(* (k_q : pred_key q) to (q : qualifier n T). *)
(* DefaultPredKey p == a default value for pred_key p; the vernacular command *)
(* Import DefaultKeying attaches this key to all predicates *)
(* that are not explicitly keyed. *)
(* Keys can be used to attach properties to predicates, qualifiers and *)
(* generic nouns in a way that allows them to be used transparently. The key *)
(* projection of a predicate property structure such as unsignedPred should *)
(* be a pred_key, not a pred, and corresponding lemmas will have the form *)
(* Lemma rpredN R S (oppS : @opprPred R S) (kS : keyed_pred oppS) : *)
(* {mono -%R: x / x \in kS}. *)
(* Because x \in kS will be displayed as x \in S (or x \is S, etc), the *)
(* canonical instance of opprPred will not normally be exposed (it will also *)
(* be erased by /= simplification). In addition each predicate structure *)
(* should have a DefaultPredKey Canonical instance that simply issues the *)
(* property as a proof obligation (which can be caught by the Prop-irrelevant *)
(* feature of the ssreflect plugin). *)
(* Some properties of predicates and relations: *)
(* A =i B <-> A and B are extensionally equivalent. *)
(* {subset A <= B} <-> A is a (collective) subpredicate of B. *)
(* subpred P Q <-> P is an (applicative) subpredicate or Q. *)
(* subrel R S <-> R is a subrelation of S. *)
(* In the following R is in rel T: *)
(* reflexive R <-> R is reflexive. *)
(* irreflexive R <-> R is irreflexive. *)
(* symmetric R <-> R (in rel T) is symmetric (equation). *)
(* pre_symmetric R <-> R is symmetric (implication). *)
(* antisymmetric R <-> R is antisymmetric. *)
(* total R <-> R is total. *)
(* transitive R <-> R is transitive. *)
(* left_transitive R <-> R is a congruence on its left hand side. *)
(* right_transitive R <-> R is a congruence on its right hand side. *)
(* equivalence_rel R <-> R is an equivalence relation. *)
(* Localization of (Prop) predicates; if P1 is convertible to forall x, Qx, *)
(* P2 to forall x y, Qxy and P3 to forall x y z, Qxyz : *)
(* {for y, P1} <-> Qx{y / x}. *)
(* {in A, P1} <-> forall x, x \in A -> Qx. *)
(* {in A1 & A2, P2} <-> forall x y, x \in A1 -> y \in A2 -> Qxy. *)
(* {in A &, P2} <-> forall x y, x \in A -> y \in A -> Qxy. *)
(* {in A1 & A2 & A3, Q3} <-> forall x y z, *)
(* x \in A1 -> y \in A2 -> z \in A3 -> Qxyz. *)
(* {in A1 & A2 &, Q3} == {in A1 & A2 & A2, Q3}. *)
(* {in A1 && A3, Q3} == {in A1 & A1 & A3, Q3}. *)
(* {in A &&, Q3} == {in A & A & A, Q3}. *)
(* {in A, bijective f} == f has a right inverse in A. *)
(* {on C, P1} == forall x, (f x) \in C -> Qx *)
(* when P1 is also convertible to Pf f. *)
(* {on C &, P2} == forall x y, f x \in C -> f y \in C -> Qxy *)
(* when P2 is also convertible to Pf f. *)
(* {on C, P1' & g} == forall x, (f x) \in cd -> Qx *)
(* when P1' is convertible to Pf f *)
(* and P1' g is convertible to forall x, Qx. *)
(* {on C, bijective f} == f has a right inverse on C. *)
(* This file extends the lemma name suffix conventions of ssrfun as follows: *)
(* A -- associativity, as in andbA : associative andb. *)
(* AC -- right commutativity. *)
(* ACA -- self-interchange (inner commutativity), e.g., *)
(* orbACA : (a || b) || (c || d) = (a || c) || (b || d). *)
(* b -- a boolean argument, as in andbb : idempotent andb. *)
(* C -- commutativity, as in andbC : commutative andb, *)
(* or predicate complement, as in predC. *)
(* CA -- left commutativity. *)
(* D -- predicate difference, as in predD. *)
(* E -- elimination, as in negbFE : ~~ b = false -> b. *)
(* F or f -- boolean false, as in andbF : b && false = false. *)
(* I -- left/right injectivity, as in addbI : right_injective addb, *)
(* or predicate intersection, as in predI. *)
(* l -- a left-hand operation, as andb_orl : left_distributive andb orb. *)
(* N or n -- boolean negation, as in andbN : a && (~~ a) = false. *)
(* P -- a characteristic property, often a reflection lemma, as in *)
(* andP : reflect (a /\ b) (a && b). *)
(* r -- a right-hand operation, as orb_andr : rightt_distributive orb andb. *)
(* T or t -- boolean truth, as in andbT: right_id true andb. *)
(* U -- predicate union, as in predU. *)
(* W -- weakening, as in in1W : {in D, forall x, P} -> forall x, P. *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Set Warnings "-projection-no-head-constant".
Notation reflect := Bool.reflect.
Notation ReflectT := Bool.ReflectT.
Notation ReflectF := Bool.ReflectF.
Reserved Notation "~~ b" (at level 35, right associativity).
Reserved Notation "b ==> c" (at level 55, right associativity).
Reserved Notation "b1 (+) b2" (at level 50, left associativity).
Reserved Notation "x \in A"
(at level 70, format "'[hv' x '/ ' \in A ']'", no associativity).
Reserved Notation "x \notin A"
(at level 70, format "'[hv' x '/ ' \notin A ']'", no associativity).
Reserved Notation "p1 =i p2"
(at level 70, format "'[hv' p1 '/ ' =i p2 ']'", no associativity).
(* We introduce a number of n-ary "list-style" notations that share a common *)
(* format, namely *)
(* [op arg1, arg2, ... last_separator last_arg] *)
(* This usually denotes a right-associative applications of op, e.g., *)
(* [&& a, b, c & d] denotes a && (b && (c && d)) *)
(* The last_separator must be a non-operator token. Here we use &, | or =>; *)
(* our default is &, but we try to match the intended meaning of op. The *)
(* separator is a workaround for limitations of the parsing engine; the same *)
(* limitations mean the separator cannot be omitted even when last_arg can. *)
(* The Notation declarations are complicated by the separate treatment for *)
(* some fixed arities (binary for bool operators, and all arities for Prop *)
(* operators). *)
(* We also use the square brackets in comprehension-style notations *)
(* [type var separator expr] *)
(* where "type" is the type of the comprehension (e.g., pred) and "separator" *)
(* is | or => . It is important that in other notations a leading square *)
(* bracket [ is always followed by an operator symbol or a fixed identifier. *)
Reserved Notation "[ /\ P1 & P2 ]" (at level 0, only parsing).
Reserved Notation "[ /\ P1 , P2 & P3 ]" (at level 0, format
"'[hv' [ /\ '[' P1 , '/' P2 ']' '/ ' & P3 ] ']'").
Reserved Notation "[ /\ P1 , P2 , P3 & P4 ]" (at level 0, format
"'[hv' [ /\ '[' P1 , '/' P2 , '/' P3 ']' '/ ' & P4 ] ']'").
Reserved Notation "[ /\ P1 , P2 , P3 , P4 & P5 ]" (at level 0, format
"'[hv' [ /\ '[' P1 , '/' P2 , '/' P3 , '/' P4 ']' '/ ' & P5 ] ']'").
Reserved Notation "[ \/ P1 | P2 ]" (at level 0, only parsing).
Reserved Notation "[ \/ P1 , P2 | P3 ]" (at level 0, format
"'[hv' [ \/ '[' P1 , '/' P2 ']' '/ ' | P3 ] ']'").
Reserved Notation "[ \/ P1 , P2 , P3 | P4 ]" (at level 0, format
"'[hv' [ \/ '[' P1 , '/' P2 , '/' P3 ']' '/ ' | P4 ] ']'").
Reserved Notation "[ && b1 & c ]" (at level 0, only parsing).
Reserved Notation "[ && b1 , b2 , .. , bn & c ]" (at level 0, format
"'[hv' [ && '[' b1 , '/' b2 , '/' .. , '/' bn ']' '/ ' & c ] ']'").
Reserved Notation "[ || b1 | c ]" (at level 0, only parsing).
Reserved Notation "[ || b1 , b2 , .. , bn | c ]" (at level 0, format
"'[hv' [ || '[' b1 , '/' b2 , '/' .. , '/' bn ']' '/ ' | c ] ']'").
Reserved Notation "[ ==> b1 => c ]" (at level 0, only parsing).
Reserved Notation "[ ==> b1 , b2 , .. , bn => c ]" (at level 0, format
"'[hv' [ ==> '[' b1 , '/' b2 , '/' .. , '/' bn ']' '/' => c ] ']'").
Reserved Notation "[ 'pred' : T => E ]" (at level 0, format
"'[hv' [ 'pred' : T => '/ ' E ] ']'").
Reserved Notation "[ 'pred' x => E ]" (at level 0, x at level 8, format
"'[hv' [ 'pred' x => '/ ' E ] ']'").
Reserved Notation "[ 'pred' x : T => E ]" (at level 0, x at level 8, format
"'[hv' [ 'pred' x : T => '/ ' E ] ']'").
Reserved Notation "[ 'rel' x y => E ]" (at level 0, x, y at level 8, format
"'[hv' [ 'rel' x y => '/ ' E ] ']'").
Reserved Notation "[ 'rel' x y : T => E ]" (at level 0, x, y at level 8, format
"'[hv' [ 'rel' x y : T => '/ ' E ] ']'").
(* Shorter delimiter *)
Delimit Scope bool_scope with B.
Open Scope bool_scope.
(* An alternative to xorb that behaves somewhat better wrt simplification. *)
Definition addb b := if b then negb else id.
(* Notation for && and || is declared in Init.Datatypes. *)
Notation "~~ b" := (negb b) : bool_scope.
Notation "b ==> c" := (implb b c) : bool_scope.
Notation "b1 (+) b2" := (addb b1 b2) : bool_scope.
(* Constant is_true b := b = true is defined in Init.Datatypes. *)
Coercion is_true : bool >-> Sortclass. (* Prop *)
Lemma prop_congr : forall b b' : bool, b = b' -> b = b' :> Prop.
Proof. by move=> b b' ->. Qed.
Ltac prop_congr := apply: prop_congr.
(* Lemmas for trivial. *)
Lemma is_true_true : true. Proof. by []. Qed.
Lemma not_false_is_true : ~ false. Proof. by []. Qed.
Lemma is_true_locked_true : locked true. Proof. by unlock. Qed.
Hint Resolve is_true_true not_false_is_true is_true_locked_true.
(* Shorter names. *)
Definition isT := is_true_true.
Definition notF := not_false_is_true.
(* Negation lemmas. *)
(* We generally take NEGATION as the standard form of a false condition: *)
(* negative boolean hypotheses should be of the form ~~ b, rather than ~ b or *)
(* b = false, as much as possible. *)
Lemma negbT b : b = false -> ~~ b. Proof. by case: b. Qed.
Lemma negbTE b : ~~ b -> b = false. Proof. by case: b. Qed.
Lemma negbF b : (b : bool) -> ~~ b = false. Proof. by case: b. Qed.
Lemma negbFE b : ~~ b = false -> b. Proof. by case: b. Qed.
Lemma negbK : involutive negb. Proof. by case. Qed.
Lemma negbNE b : ~~ ~~ b -> b. Proof. by case: b. Qed.
Lemma negb_inj : injective negb. Proof. exact: can_inj negbK. Qed.
Lemma negbLR b c : b = ~~ c -> ~~ b = c. Proof. exact: canLR negbK. Qed.
Lemma negbRL b c : ~~ b = c -> b = ~~ c. Proof. exact: canRL negbK. Qed.
Lemma contra (c b : bool) : (c -> b) -> ~~ b -> ~~ c.
Proof. by case: b => //; case: c. Qed.
Definition contraNN := contra.
Lemma contraL (c b : bool) : (c -> ~~ b) -> b -> ~~ c.
Proof. by case: b => //; case: c. Qed.
Definition contraTN := contraL.
Lemma contraR (c b : bool) : (~~ c -> b) -> ~~ b -> c.
Proof. by case: b => //; case: c. Qed.
Definition contraNT := contraR.
Lemma contraLR (c b : bool) : (~~ c -> ~~ b) -> b -> c.
Proof. by case: b => //; case: c. Qed.
Definition contraTT := contraLR.
Lemma contraT b : (~~ b -> false) -> b. Proof. by case: b => // ->. Qed.
Lemma wlog_neg b : (~~ b -> b) -> b. Proof. by case: b => // ->. Qed.
Lemma contraFT (c b : bool) : (~~ c -> b) -> b = false -> c.
Proof. by move/contraR=> notb_c /negbT. Qed.
Lemma contraFN (c b : bool) : (c -> b) -> b = false -> ~~ c.
Proof. by move/contra=> notb_notc /negbT. Qed.
Lemma contraTF (c b : bool) : (c -> ~~ b) -> b -> c = false.
Proof. by move/contraL=> b_notc /b_notc/negbTE. Qed.
Lemma contraNF (c b : bool) : (c -> b) -> ~~ b -> c = false.
Proof. by move/contra=> notb_notc /notb_notc/negbTE. Qed.
Lemma contraFF (c b : bool) : (c -> b) -> b = false -> c = false.
Proof. by move/contraFN=> bF_notc /bF_notc/negbTE. Qed.
(* Coercion of sum-style datatypes into bool, which makes it possible *)
(* to use ssr's boolean if rather than Coq's "generic" if. *)
Coercion isSome T (u : option T) := if u is Some _ then true else false.
Coercion is_inl A B (u : A + B) := if u is inl _ then true else false.
Coercion is_left A B (u : {A} + {B}) := if u is left _ then true else false.
Coercion is_inleft A B (u : A + {B}) := if u is inleft _ then true else false.
Prenex Implicits isSome is_inl is_left is_inleft.
Definition decidable P := {P} + {~ P}.
(* Lemmas for ifs with large conditions, which allow reasoning about the *)
(* condition without repeating it inside the proof (the latter IS *)
(* preferable when the condition is short). *)
(* Usage : *)
(* if the goal contains (if cond then ...) = ... *)
(* case: ifP => Hcond. *)
(* generates two subgoal, with the assumption Hcond : cond = true/false *)
(* Rewrite if_same eliminates redundant ifs *)
(* Rewrite (fun_if f) moves a function f inside an if *)
(* Rewrite if_arg moves an argument inside a function-valued if *)
Section BoolIf.
Variables (A B : Type) (x : A) (f : A -> B) (b : bool) (vT vF : A).
CoInductive if_spec (not_b : Prop) : bool -> A -> Set :=
| IfSpecTrue of b : if_spec not_b true vT
| IfSpecFalse of not_b : if_spec not_b false vF.
Lemma ifP : if_spec (b = false) b (if b then vT else vF).
Proof. by case def_b: b; constructor. Qed.
Lemma ifPn : if_spec (~~ b) b (if b then vT else vF).
Proof. by case def_b: b; constructor; rewrite ?def_b. Qed.
Lemma ifT : b -> (if b then vT else vF) = vT. Proof. by move->. Qed.
Lemma ifF : b = false -> (if b then vT else vF) = vF. Proof. by move->. Qed.
Lemma ifN : ~~ b -> (if b then vT else vF) = vF. Proof. by move/negbTE->. Qed.
Lemma if_same : (if b then vT else vT) = vT.
Proof. by case b. Qed.
Lemma if_neg : (if ~~ b then vT else vF) = if b then vF else vT.
Proof. by case b. Qed.
Lemma fun_if : f (if b then vT else vF) = if b then f vT else f vF.
Proof. by case b. Qed.
Lemma if_arg (fT fF : A -> B) :
(if b then fT else fF) x = if b then fT x else fF x.
Proof. by case b. Qed.
(* Turning a boolean "if" form into an application. *)
Definition if_expr := if b then vT else vF.
Lemma ifE : (if b then vT else vF) = if_expr. Proof. by []. Qed.
End BoolIf.
(* Core (internal) reflection lemmas, used for the three kinds of views. *)
Section ReflectCore.
Variables (P Q : Prop) (b c : bool).
Hypothesis Hb : reflect P b.
Lemma introNTF : (if c then ~ P else P) -> ~~ b = c.
Proof. by case c; case Hb. Qed.
Lemma introTF : (if c then P else ~ P) -> b = c.
Proof. by case c; case Hb. Qed.
Lemma elimNTF : ~~ b = c -> if c then ~ P else P.
Proof. by move <-; case Hb. Qed.
Lemma elimTF : b = c -> if c then P else ~ P.
Proof. by move <-; case Hb. Qed.
Lemma equivPif : (Q -> P) -> (P -> Q) -> if b then Q else ~ Q.
Proof. by case Hb; auto. Qed.
Lemma xorPif : Q \/ P -> ~ (Q /\ P) -> if b then ~ Q else Q.
Proof. by case Hb => [? _ H ? | ? H _]; case: H. Qed.
End ReflectCore.
(* Internal negated reflection lemmas *)
Section ReflectNegCore.
Variables (P Q : Prop) (b c : bool).
Hypothesis Hb : reflect P (~~ b).
Lemma introTFn : (if c then ~ P else P) -> b = c.
Proof. by move/(introNTF Hb) <-; case b. Qed.
Lemma elimTFn : b = c -> if c then ~ P else P.
Proof. by move <-; apply: (elimNTF Hb); case b. Qed.
Lemma equivPifn : (Q -> P) -> (P -> Q) -> if b then ~ Q else Q.
Proof. by rewrite -if_neg; apply: equivPif. Qed.
Lemma xorPifn : Q \/ P -> ~ (Q /\ P) -> if b then Q else ~ Q.
Proof. by rewrite -if_neg; apply: xorPif. Qed.
End ReflectNegCore.
(* User-oriented reflection lemmas *)
Section Reflect.
Variables (P Q : Prop) (b b' c : bool).
Hypotheses (Pb : reflect P b) (Pb' : reflect P (~~ b')).
Lemma introT : P -> b. Proof. exact: introTF true _. Qed.
Lemma introF : ~ P -> b = false. Proof. exact: introTF false _. Qed.
Lemma introN : ~ P -> ~~ b. Proof. exact: introNTF true _. Qed.
Lemma introNf : P -> ~~ b = false. Proof. exact: introNTF false _. Qed.
Lemma introTn : ~ P -> b'. Proof. exact: introTFn true _. Qed.
Lemma introFn : P -> b' = false. Proof. exact: introTFn false _. Qed.
Lemma elimT : b -> P. Proof. exact: elimTF true _. Qed.
Lemma elimF : b = false -> ~ P. Proof. exact: elimTF false _. Qed.
Lemma elimN : ~~ b -> ~P. Proof. exact: elimNTF true _. Qed.
Lemma elimNf : ~~ b = false -> P. Proof. exact: elimNTF false _. Qed.
Lemma elimTn : b' -> ~ P. Proof. exact: elimTFn true _. Qed.
Lemma elimFn : b' = false -> P. Proof. exact: elimTFn false _. Qed.
Lemma introP : (b -> Q) -> (~~ b -> ~ Q) -> reflect Q b.
Proof. by case b; constructor; auto. Qed.
Lemma iffP : (P -> Q) -> (Q -> P) -> reflect Q b.
Proof. by case: Pb; constructor; auto. Qed.
Lemma equivP : (P <-> Q) -> reflect Q b.
Proof. by case; apply: iffP. Qed.
Lemma sumboolP (decQ : decidable Q) : reflect Q decQ.
Proof. by case: decQ; constructor. Qed.
Lemma appP : reflect Q b -> P -> Q.
Proof. by move=> Qb; move/introT; case: Qb. Qed.
Lemma sameP : reflect P c -> b = c.
Proof. by case; [apply: introT | apply: introF]. Qed.
Lemma decPcases : if b then P else ~ P. Proof. by case Pb. Qed.
Definition decP : decidable P. by case: b decPcases; [left | right]. Defined.
Lemma rwP : P <-> b. Proof. by split; [apply: introT | apply: elimT]. Qed.
Lemma rwP2 : reflect Q b -> (P <-> Q).
Proof. by move=> Qb; split=> ?; [apply: appP | apply: elimT; case: Qb]. Qed.
(* Predicate family to reflect excluded middle in bool. *)
CoInductive alt_spec : bool -> Type :=
| AltTrue of P : alt_spec true
| AltFalse of ~~ b : alt_spec false.
Lemma altP : alt_spec b.
Proof. by case def_b: b / Pb; constructor; rewrite ?def_b. Qed.
End Reflect.
Hint View for move/ elimTF|3 elimNTF|3 elimTFn|3 introT|2 introTn|2 introN|2.
Hint View for apply/ introTF|3 introNTF|3 introTFn|3 elimT|2 elimTn|2 elimN|2.
Hint View for apply// equivPif|3 xorPif|3 equivPifn|3 xorPifn|3.
(* Allow the direct application of a reflection lemma to a boolean assertion. *)
Coercion elimT : reflect >-> Funclass.
CoInductive implies P Q := Implies of P -> Q.
Lemma impliesP P Q : implies P Q -> P -> Q. Proof. by case. Qed.
Lemma impliesPn (P Q : Prop) : implies P Q -> ~ Q -> ~ P.
Proof. by case=> iP ? /iP. Qed.
Coercion impliesP : implies >-> Funclass.
Hint View for move/ impliesPn|2 impliesP|2.
Hint View for apply/ impliesPn|2 impliesP|2.
(* Impredicative or, which can emulate a classical not-implies. *)
Definition unless condition property : Prop :=
forall goal : Prop, (condition -> goal) -> (property -> goal) -> goal.
Notation "\unless C , P" := (unless C P)
(at level 200, C at level 100,
format "'[' \unless C , '/ ' P ']'") : type_scope.
Lemma unlessL C P : implies C (\unless C, P).
Proof. by split=> hC G /(_ hC). Qed.
Lemma unlessR C P : implies P (\unless C, P).
Proof. by split=> hP G _ /(_ hP). Qed.
Lemma unless_sym C P : implies (\unless C, P) (\unless P, C).
Proof. by split; apply; [apply/unlessR | apply/unlessL]. Qed.
Lemma unlessP (C P : Prop) : (\unless C, P) <-> C \/ P.
Proof. by split=> [|[/unlessL | /unlessR]]; apply; [left | right]. Qed.
Lemma bind_unless C P {Q} : implies (\unless C, P) (\unless (\unless C, Q), P).
Proof. by split; apply=> [hC|hP]; [apply/unlessL/unlessL | apply/unlessR]. Qed.
Lemma unless_contra b C : implies (~~ b -> C) (\unless C, b).
Proof. by split; case: b => [_ | hC]; [apply/unlessR | apply/unlessL/hC]. Qed.
(* Classical reasoning becomes directly accessible for any bool subgoal. *)
(* Note that we cannot use "unless" here for lack of universe polymorphism. *)
Definition classically P : Prop := forall b : bool, (P -> b) -> b.
Lemma classicP (P : Prop) : classically P <-> ~ ~ P.
Proof.
split=> [cP nP | nnP [] // nP]; last by case nnP; move/nP.
by have: P -> false; [move/nP | move/cP].
Qed.
Lemma classicW P : P -> classically P. Proof. by move=> hP _ ->. Qed.
Lemma classic_bind P Q : (P -> classically Q) -> classically P -> classically Q.
Proof. by move=> iPQ cP b /iPQ-/cP. Qed.
Lemma classic_EM P : classically (decidable P).
Proof.
by case=> // undecP; apply/undecP; right=> notP; apply/notF/undecP; left.
Qed.
Lemma classic_pick T P : classically ({x : T | P x} + (forall x, ~ P x)).
Proof.
case=> // undecP; apply/undecP; right=> x Px.
by apply/notF/undecP; left; exists x.
Qed.
Lemma classic_imply P Q : (P -> classically Q) -> classically (P -> Q).
Proof.
move=> iPQ []// notPQ; apply/notPQ=> /iPQ-cQ.
by case: notF; apply: cQ => hQ; apply: notPQ.
Qed.
(* List notations for wider connectives; the Prop connectives have a fixed *)
(* width so as to avoid iterated destruction (we go up to width 5 for /\, and *)
(* width 4 for or). The bool connectives have arbitrary widths, but denote *)
(* expressions that associate to the RIGHT. This is consistent with the right *)
(* associativity of list expressions and thus more convenient in most proofs. *)
Inductive and3 (P1 P2 P3 : Prop) : Prop := And3 of P1 & P2 & P3.
Inductive and4 (P1 P2 P3 P4 : Prop) : Prop := And4 of P1 & P2 & P3 & P4.
Inductive and5 (P1 P2 P3 P4 P5 : Prop) : Prop :=
And5 of P1 & P2 & P3 & P4 & P5.
Inductive or3 (P1 P2 P3 : Prop) : Prop := Or31 of P1 | Or32 of P2 | Or33 of P3.
Inductive or4 (P1 P2 P3 P4 : Prop) : Prop :=
Or41 of P1 | Or42 of P2 | Or43 of P3 | Or44 of P4.
Notation "[ /\ P1 & P2 ]" := (and P1 P2) (only parsing) : type_scope.
Notation "[ /\ P1 , P2 & P3 ]" := (and3 P1 P2 P3) : type_scope.
Notation "[ /\ P1 , P2 , P3 & P4 ]" := (and4 P1 P2 P3 P4) : type_scope.
Notation "[ /\ P1 , P2 , P3 , P4 & P5 ]" := (and5 P1 P2 P3 P4 P5) : type_scope.
Notation "[ \/ P1 | P2 ]" := (or P1 P2) (only parsing) : type_scope.
Notation "[ \/ P1 , P2 | P3 ]" := (or3 P1 P2 P3) : type_scope.
Notation "[ \/ P1 , P2 , P3 | P4 ]" := (or4 P1 P2 P3 P4) : type_scope.
Notation "[ && b1 & c ]" := (b1 && c) (only parsing) : bool_scope.
Notation "[ && b1 , b2 , .. , bn & c ]" := (b1 && (b2 && .. (bn && c) .. ))
: bool_scope.
Notation "[ || b1 | c ]" := (b1 || c) (only parsing) : bool_scope.
Notation "[ || b1 , b2 , .. , bn | c ]" := (b1 || (b2 || .. (bn || c) .. ))
: bool_scope.
Notation "[ ==> b1 , b2 , .. , bn => c ]" :=
(b1 ==> (b2 ==> .. (bn ==> c) .. )) : bool_scope.
Notation "[ ==> b1 => c ]" := (b1 ==> c) (only parsing) : bool_scope.
Section AllAnd.
Variables (T : Type) (P1 P2 P3 P4 P5 : T -> Prop).
Local Notation a P := (forall x, P x).
Lemma all_and2 : implies (forall x, [/\ P1 x & P2 x]) [/\ a P1 & a P2].
Proof. by split=> haveP; split=> x; case: (haveP x). Qed.
Lemma all_and3 : implies (forall x, [/\ P1 x, P2 x & P3 x])
[/\ a P1, a P2 & a P3].
Proof. by split=> haveP; split=> x; case: (haveP x). Qed.
Lemma all_and4 : implies (forall x, [/\ P1 x, P2 x, P3 x & P4 x])
[/\ a P1, a P2, a P3 & a P4].
Proof. by split=> haveP; split=> x; case: (haveP x). Qed.
Lemma all_and5 : implies (forall x, [/\ P1 x, P2 x, P3 x, P4 x & P5 x])
[/\ a P1, a P2, a P3, a P4 & a P5].
Proof. by split=> haveP; split=> x; case: (haveP x). Qed.
End AllAnd.
Arguments all_and2 {T P1 P2}.
Arguments all_and3 {T P1 P2 P3}.
Arguments all_and4 {T P1 P2 P3 P4}.
Arguments all_and5 {T P1 P2 P3 P4 P5}.
Lemma pair_andP P Q : P /\ Q <-> P * Q. Proof. by split; case. Qed.
Section ReflectConnectives.
Variable b1 b2 b3 b4 b5 : bool.
Lemma idP : reflect b1 b1.
Proof. by case b1; constructor. Qed.
Lemma boolP : alt_spec b1 b1 b1.
Proof. exact: (altP idP). Qed.
Lemma idPn : reflect (~~ b1) (~~ b1).
Proof. by case b1; constructor. Qed.
Lemma negP : reflect (~ b1) (~~ b1).
Proof. by case b1; constructor; auto. Qed.
Lemma negPn : reflect b1 (~~ ~~ b1).
Proof. by case b1; constructor. Qed.
Lemma negPf : reflect (b1 = false) (~~ b1).
Proof. by case b1; constructor. Qed.
Lemma andP : reflect (b1 /\ b2) (b1 && b2).
Proof. by case b1; case b2; constructor=> //; case. Qed.
Lemma and3P : reflect [/\ b1, b2 & b3] [&& b1, b2 & b3].
Proof. by case b1; case b2; case b3; constructor; try by case. Qed.
Lemma and4P : reflect [/\ b1, b2, b3 & b4] [&& b1, b2, b3 & b4].
Proof. by case b1; case b2; case b3; case b4; constructor; try by case. Qed.
Lemma and5P : reflect [/\ b1, b2, b3, b4 & b5] [&& b1, b2, b3, b4 & b5].
Proof.
by case b1; case b2; case b3; case b4; case b5; constructor; try by case.
Qed.
Lemma orP : reflect (b1 \/ b2) (b1 || b2).
Proof. by case b1; case b2; constructor; auto; case. Qed.
Lemma or3P : reflect [\/ b1, b2 | b3] [|| b1, b2 | b3].
Proof.
case b1; first by constructor; constructor 1.
case b2; first by constructor; constructor 2.
case b3; first by constructor; constructor 3.
by constructor; case.
Qed.
Lemma or4P : reflect [\/ b1, b2, b3 | b4] [|| b1, b2, b3 | b4].
Proof.
case b1; first by constructor; constructor 1.
case b2; first by constructor; constructor 2.
case b3; first by constructor; constructor 3.
case b4; first by constructor; constructor 4.
by constructor; case.
Qed.
Lemma nandP : reflect (~~ b1 \/ ~~ b2) (~~ (b1 && b2)).
Proof. by case b1; case b2; constructor; auto; case; auto. Qed.
Lemma norP : reflect (~~ b1 /\ ~~ b2) (~~ (b1 || b2)).
Proof. by case b1; case b2; constructor; auto; case; auto. Qed.
Lemma implyP : reflect (b1 -> b2) (b1 ==> b2).
Proof. by case b1; case b2; constructor; auto. Qed.
End ReflectConnectives.
Arguments idP [b1].
Arguments idPn [b1].
Arguments negP [b1].
Arguments negPn [b1].
Arguments negPf [b1].
Arguments andP [b1 b2].
Arguments and3P [b1 b2 b3].
Arguments and4P [b1 b2 b3 b4].
Arguments and5P [b1 b2 b3 b4 b5].
Arguments orP [b1 b2].
Arguments or3P [b1 b2 b3].
Arguments or4P [b1 b2 b3 b4].
Arguments nandP [b1 b2].
Arguments norP [b1 b2].
Arguments implyP [b1 b2].
Prenex Implicits idP idPn negP negPn negPf.
Prenex Implicits andP and3P and4P and5P orP or3P or4P nandP norP implyP.
(* Shorter, more systematic names for the boolean connectives laws. *)
Lemma andTb : left_id true andb. Proof. by []. Qed.
Lemma andFb : left_zero false andb. Proof. by []. Qed.
Lemma andbT : right_id true andb. Proof. by case. Qed.
Lemma andbF : right_zero false andb. Proof. by case. Qed.
Lemma andbb : idempotent andb. Proof. by case. Qed.
Lemma andbC : commutative andb. Proof. by do 2!case. Qed.
Lemma andbA : associative andb. Proof. by do 3!case. Qed.
Lemma andbCA : left_commutative andb. Proof. by do 3!case. Qed.
Lemma andbAC : right_commutative andb. Proof. by do 3!case. Qed.
Lemma andbACA : interchange andb andb. Proof. by do 4!case. Qed.
Lemma orTb : forall b, true || b. Proof. by []. Qed.
Lemma orFb : left_id false orb. Proof. by []. Qed.
Lemma orbT : forall b, b || true. Proof. by case. Qed.
Lemma orbF : right_id false orb. Proof. by case. Qed.
Lemma orbb : idempotent orb. Proof. by case. Qed.
Lemma orbC : commutative orb. Proof. by do 2!case. Qed.
Lemma orbA : associative orb. Proof. by do 3!case. Qed.
Lemma orbCA : left_commutative orb. Proof. by do 3!case. Qed.
Lemma orbAC : right_commutative orb. Proof. by do 3!case. Qed.
Lemma orbACA : interchange orb orb. Proof. by do 4!case. Qed.
Lemma andbN b : b && ~~ b = false. Proof. by case: b. Qed.
Lemma andNb b : ~~ b && b = false. Proof. by case: b. Qed.
Lemma orbN b : b || ~~ b = true. Proof. by case: b. Qed.
Lemma orNb b : ~~ b || b = true. Proof. by case: b. Qed.
Lemma andb_orl : left_distributive andb orb. Proof. by do 3!case. Qed.
Lemma andb_orr : right_distributive andb orb. Proof. by do 3!case. Qed.
Lemma orb_andl : left_distributive orb andb. Proof. by do 3!case. Qed.
Lemma orb_andr : right_distributive orb andb. Proof. by do 3!case. Qed.
Lemma andb_idl (a b : bool) : (b -> a) -> a && b = b.
Proof. by case: a; case: b => // ->. Qed.
Lemma andb_idr (a b : bool) : (a -> b) -> a && b = a.
Proof. by case: a; case: b => // ->. Qed.
Lemma andb_id2l (a b c : bool) : (a -> b = c) -> a && b = a && c.
Proof. by case: a; case: b; case: c => // ->. Qed.
Lemma andb_id2r (a b c : bool) : (b -> a = c) -> a && b = c && b.
Proof. by case: a; case: b; case: c => // ->. Qed.
Lemma orb_idl (a b : bool) : (a -> b) -> a || b = b.
Proof. by case: a; case: b => // ->. Qed.
Lemma orb_idr (a b : bool) : (b -> a) -> a || b = a.
Proof. by case: a; case: b => // ->. Qed.
Lemma orb_id2l (a b c : bool) : (~~ a -> b = c) -> a || b = a || c.
Proof. by case: a; case: b; case: c => // ->. Qed.
Lemma orb_id2r (a b c : bool) : (~~ b -> a = c) -> a || b = c || b.
Proof. by case: a; case: b; case: c => // ->. Qed.
Lemma negb_and (a b : bool) : ~~ (a && b) = ~~ a || ~~ b.
Proof. by case: a; case: b. Qed.
Lemma negb_or (a b : bool) : ~~ (a || b) = ~~ a && ~~ b.
Proof. by case: a; case: b. Qed.
(* Pseudo-cancellation -- i.e, absorbtion *)
Lemma andbK a b : a && b || a = a. Proof. by case: a; case: b. Qed.
Lemma andKb a b : a || b && a = a. Proof. by case: a; case: b. Qed.
Lemma orbK a b : (a || b) && a = a. Proof. by case: a; case: b. Qed.
Lemma orKb a b : a && (b || a) = a. Proof. by case: a; case: b. Qed.
(* Imply *)
Lemma implybT b : b ==> true. Proof. by case: b. Qed.
Lemma implybF b : (b ==> false) = ~~ b. Proof. by case: b. Qed.
Lemma implyFb b : false ==> b. Proof. by []. Qed.
Lemma implyTb b : (true ==> b) = b. Proof. by []. Qed.
Lemma implybb b : b ==> b. Proof. by case: b. Qed.
Lemma negb_imply a b : ~~ (a ==> b) = a && ~~ b.
Proof. by case: a; case: b. Qed.
Lemma implybE a b : (a ==> b) = ~~ a || b.
Proof. by case: a; case: b. Qed.
Lemma implyNb a b : (~~ a ==> b) = a || b.
Proof. by case: a; case: b. Qed.
Lemma implybN a b : (a ==> ~~ b) = (b ==> ~~ a).
Proof. by case: a; case: b. Qed.
Lemma implybNN a b : (~~ a ==> ~~ b) = b ==> a.
Proof. by case: a; case: b. Qed.
Lemma implyb_idl (a b : bool) : (~~ a -> b) -> (a ==> b) = b.
Proof. by case: a; case: b => // ->. Qed.
Lemma implyb_idr (a b : bool) : (b -> ~~ a) -> (a ==> b) = ~~ a.
Proof. by case: a; case: b => // ->. Qed.
Lemma implyb_id2l (a b c : bool) : (a -> b = c) -> (a ==> b) = (a ==> c).
Proof. by case: a; case: b; case: c => // ->. Qed.
(* Addition (xor) *)
Lemma addFb : left_id false addb. Proof. by []. Qed.
Lemma addbF : right_id false addb. Proof. by case. Qed.
Lemma addbb : self_inverse false addb. Proof. by case. Qed.
Lemma addbC : commutative addb. Proof. by do 2!case. Qed.
Lemma addbA : associative addb. Proof. by do 3!case. Qed.
Lemma addbCA : left_commutative addb. Proof. by do 3!case. Qed.
Lemma addbAC : right_commutative addb. Proof. by do 3!case. Qed.
Lemma addbACA : interchange addb addb. Proof. by do 4!case. Qed.
Lemma andb_addl : left_distributive andb addb. Proof. by do 3!case. Qed.
Lemma andb_addr : right_distributive andb addb. Proof. by do 3!case. Qed.
Lemma addKb : left_loop id addb. Proof. by do 2!case. Qed.
Lemma addbK : right_loop id addb. Proof. by do 2!case. Qed.
Lemma addIb : left_injective addb. Proof. by do 3!case. Qed.
Lemma addbI : right_injective addb. Proof. by do 3!case. Qed.
Lemma addTb b : true (+) b = ~~ b. Proof. by []. Qed.
Lemma addbT b : b (+) true = ~~ b. Proof. by case: b. Qed.
Lemma addbN a b : a (+) ~~ b = ~~ (a (+) b).
Proof. by case: a; case: b. Qed.
Lemma addNb a b : ~~ a (+) b = ~~ (a (+) b).
Proof. by case: a; case: b. Qed.
Lemma addbP a b : reflect (~~ a = b) (a (+) b).
Proof. by case: a; case: b; constructor. Qed.
Arguments addbP [a b].
(* Resolution tactic for blindly weeding out common terms from boolean *)
(* equalities. When faced with a goal of the form (andb/orb/addb b1 b2) = b3 *)
(* they will try to locate b1 in b3 and remove it. This can fail! *)
Ltac bool_congr :=
match goal with
| |- (?X1 && ?X2 = ?X3) => first
[ symmetry; rewrite -1?(andbC X1) -?(andbCA X1); congr 1 (andb X1); symmetry
| case: (X1); [ rewrite ?andTb ?andbT // | by rewrite ?andbF /= ] ]
| |- (?X1 || ?X2 = ?X3) => first
[ symmetry; rewrite -1?(orbC X1) -?(orbCA X1); congr 1 (orb X1); symmetry
| case: (X1); [ by rewrite ?orbT //= | rewrite ?orFb ?orbF ] ]
| |- (?X1 (+) ?X2 = ?X3) =>
symmetry; rewrite -1?(addbC X1) -?(addbCA X1); congr 1 (addb X1); symmetry
| |- (~~ ?X1 = ?X2) => congr 1 negb
end.
(******************************************************************************)
(* Predicates, i.e., packaged functions to bool. *)
(* - pred T, the basic type for predicates over a type T, is simply an alias *)
(* for T -> bool. *)
(* We actually distinguish two kinds of predicates, which we call applicative *)
(* and collective, based on the syntax used to test them at some x in T: *)
(* - For an applicative predicate P, one uses prefix syntax: *)
(* P x *)
(* Also, most operations on applicative predicates use prefix syntax as *)
(* well (e.g., predI P Q). *)
(* - For a collective predicate A, one uses infix syntax: *)
(* x \in A *)
(* and all operations on collective predicates use infix syntax as well *)
(* (e.g., [predI A & B]). *)
(* There are only two kinds of applicative predicates: *)
(* - pred T, the alias for T -> bool mentioned above *)
(* - simpl_pred T, an alias for simpl_fun T bool with a coercion to pred T *)
(* that auto-simplifies on application (see ssrfun). *)
(* On the other hand, the set of collective predicate types is open-ended via *)
(* - predType T, a Structure that can be used to put Canonical collective *)
(* predicate interpretation on other types, such as lists, tuples, *)
(* finite sets, etc. *)
(* Indeed, we define such interpretations for applicative predicate types, *)
(* which can therefore also be used with the infix syntax, e.g., *)
(* x \in predI P Q *)
(* Moreover these infix forms are convertible to their prefix counterpart *)
(* (e.g., predI P Q x which in turn simplifies to P x && Q x). The converse *)
(* is not true, however; collective predicate types cannot, in general, be *)
(* general, be used applicatively, because of the "uniform inheritance" *)
(* restriction on implicit coercions. *)
(* However, we do define an explicit generic coercion *)
(* - mem : forall (pT : predType), pT -> mem_pred T *)
(* where mem_pred T is a variant of simpl_pred T that preserves the infix *)
(* syntax, i.e., mem A x auto-simplifies to x \in A. *)
(* Indeed, the infix "collective" operators are notation for a prefix *)
(* operator with arguments of type mem_pred T or pred T, applied to coerced *)
(* collective predicates, e.g., *)
(* Notation "x \in A" := (in_mem x (mem A)). *)
(* This prevents the variability in the predicate type from interfering with *)
(* the application of generic lemmas. Moreover this also makes it much easier *)
(* to define generic lemmas, because the simplest type -- pred T -- can be *)
(* used as the type of generic collective predicates, provided one takes care *)
(* not to use it applicatively; this avoids the burden of having to declare a *)
(* different predicate type for each predicate parameter of each section or *)
(* lemma. *)
(* This trick is made possible by the fact that the constructor of the *)
(* mem_pred T type aligns the unification process, forcing a generic *)
(* "collective" predicate A : pred T to unify with the actual collective B, *)
(* which mem has coerced to pred T via an internal, hidden implicit coercion, *)
(* supplied by the predType structure for B. Users should take care not to *)
(* inadvertently "strip" (mem B) down to the coerced B, since this will *)
(* expose the internal coercion: Coq will display a term B x that cannot be *)
(* typed as such. The topredE lemma can be used to restore the x \in B *)
(* syntax in this case. While -topredE can conversely be used to change *)
(* x \in P into P x, it is safer to use the inE and memE lemmas instead, as *)
(* they do not run the risk of exposing internal coercions. As a consequence *)
(* it is better to explicitly cast a generic applicative pred T to simpl_pred *)
(* using the SimplPred constructor, when it is used as a collective predicate *)
(* (see, e.g., Lemma eq_big in bigop). *)
(* We also sometimes "instantiate" the predType structure by defining a *)
(* coercion to the sort of the predPredType structure. This works better for *)
(* types such as {set T} that have subtypes that coerce to them, since the *)
(* same coercion will be inserted by the application of mem. It also lets us *)
(* turn any Type aT : predArgType into the total predicate over that type, *)
(* i.e., fun _: aT => true. This allows us to write, e.g., #|'I_n| for the *)
(* cardinal of the (finite) type of integers less than n. *)
(* Collective predicates have a specific extensional equality, *)
(* - A =i B, *)
(* while applicative predicates use the extensional equality of functions, *)
(* - P =1 Q *)
(* The two forms are convertible, however. *)
(* We lift boolean operations to predicates, defining: *)
(* - predU (union), predI (intersection), predC (complement), *)
(* predD (difference), and preim (preimage, i.e., composition) *)
(* For each operation we define three forms, typically: *)
(* - predU : pred T -> pred T -> simpl_pred T *)
(* - [predU A & B], a Notation for predU (mem A) (mem B) *)
(* - xpredU, a Notation for the lambda-expression inside predU, *)
(* which is mostly useful as an argument of =1, since it exposes the head *)
(* head constant of the expression to the ssreflect matching algorithm. *)
(* The syntax for the preimage of a collective predicate A is *)
(* - [preim f of A] *)
(* Finally, the generic syntax for defining a simpl_pred T is *)
(* - [pred x : T | P(x)], [pred x | P(x)], [pred x in A | P(x)], etc. *)
(* We also support boolean relations, but only the applicative form, with *)
(* types *)
(* - rel T, an alias for T -> pred T *)
(* - simpl_rel T, an auto-simplifying version, and syntax *)
(* [rel x y | P(x,y)], [rel x y in A & B | P(x,y)], etc. *)
(* The notation [rel of fA] can be used to coerce a function returning a *)
(* collective predicate to one returning pred T. *)
(* Finally, note that there is specific support for ambivalent predicates *)
(* that can work in either style, as per this file's head descriptor. *)
(******************************************************************************)
Definition pred T := T -> bool.
Identity Coercion fun_of_pred : pred >-> Funclass.
Definition rel T := T -> pred T.
Identity Coercion fun_of_rel : rel >-> Funclass.
Notation xpred0 := (fun _ => false).
Notation xpredT := (fun _ => true).
Notation xpredI := (fun (p1 p2 : pred _) x => p1 x && p2 x).
Notation xpredU := (fun (p1 p2 : pred _) x => p1 x || p2 x).
Notation xpredC := (fun (p : pred _) x => ~~ p x).
Notation xpredD := (fun (p1 p2 : pred _) x => ~~ p2 x && p1 x).
Notation xpreim := (fun f (p : pred _) x => p (f x)).
Notation xrelU := (fun (r1 r2 : rel _) x y => r1 x y || r2 x y).
Section Predicates.
Variables T : Type.
Definition subpred (p1 p2 : pred T) := forall x, p1 x -> p2 x.
Definition subrel (r1 r2 : rel T) := forall x y, r1 x y -> r2 x y.
Definition simpl_pred := simpl_fun T bool.
Definition applicative_pred := pred T.
Definition collective_pred := pred T.
Definition SimplPred (p : pred T) : simpl_pred := SimplFun p.
Coercion pred_of_simpl (p : simpl_pred) : pred T := fun_of_simpl p.
Coercion applicative_pred_of_simpl (p : simpl_pred) : applicative_pred :=
fun_of_simpl p.
Coercion collective_pred_of_simpl (p : simpl_pred) : collective_pred :=
fun x => (let: SimplFun f := p in fun _ => f x) x.
(* Note: applicative_of_simpl is convertible to pred_of_simpl, while *)
(* collective_of_simpl is not. *)
Definition pred0 := SimplPred xpred0.
Definition predT := SimplPred xpredT.
Definition predI p1 p2 := SimplPred (xpredI p1 p2).
Definition predU p1 p2 := SimplPred (xpredU p1 p2).
Definition predC p := SimplPred (xpredC p).
Definition predD p1 p2 := SimplPred (xpredD p1 p2).
Definition preim rT f (d : pred rT) := SimplPred (xpreim f d).
Definition simpl_rel := simpl_fun T (pred T).
Definition SimplRel (r : rel T) : simpl_rel := [fun x => r x].
Coercion rel_of_simpl_rel (r : simpl_rel) : rel T := fun x y => r x y.
Definition relU r1 r2 := SimplRel (xrelU r1 r2).
Lemma subrelUl r1 r2 : subrel r1 (relU r1 r2).
Proof. by move=> *; apply/orP; left. Qed.
Lemma subrelUr r1 r2 : subrel r2 (relU r1 r2).
Proof. by move=> *; apply/orP; right. Qed.
CoInductive mem_pred := Mem of pred T.
Definition isMem pT topred mem := mem = (fun p : pT => Mem [eta topred p]).
Structure predType := PredType {
pred_sort :> Type;
topred : pred_sort -> pred T;
_ : {mem | isMem topred mem}
}.
Definition mkPredType pT toP := PredType (exist (@isMem pT toP) _ (erefl _)).
Canonical predPredType := Eval hnf in @mkPredType (pred T) id.
Canonical simplPredType := Eval hnf in mkPredType pred_of_simpl.
Canonical boolfunPredType := Eval hnf in @mkPredType (T -> bool) id.
Coercion pred_of_mem mp : pred_sort predPredType := let: Mem p := mp in [eta p].
Canonical memPredType := Eval hnf in mkPredType pred_of_mem.
Definition clone_pred U :=
fun pT & pred_sort pT -> U =>
fun a mP (pT' := @PredType U a mP) & phant_id pT' pT => pT'.
End Predicates.
Arguments pred0 [T].
Arguments predT [T].
Prenex Implicits pred0 predT predI predU predC predD preim relU.
Notation "[ 'pred' : T | E ]" := (SimplPred (fun _ : T => E%B))
(at level 0, format "[ 'pred' : T | E ]") : fun_scope.
Notation "[ 'pred' x | E ]" := (SimplPred (fun x => E%B))
(at level 0, x ident, format "[ 'pred' x | E ]") : fun_scope.
Notation "[ 'pred' x | E1 & E2 ]" := [pred x | E1 && E2 ]
(at level 0, x ident, format "[ 'pred' x | E1 & E2 ]") : fun_scope.
Notation "[ 'pred' x : T | E ]" := (SimplPred (fun x : T => E%B))
(at level 0, x ident, only parsing) : fun_scope.
Notation "[ 'pred' x : T | E1 & E2 ]" := [pred x : T | E1 && E2 ]
(at level 0, x ident, only parsing) : fun_scope.
Notation "[ 'rel' x y | E ]" := (SimplRel (fun x y => E%B))
(at level 0, x ident, y ident, format "[ 'rel' x y | E ]") : fun_scope.
Notation "[ 'rel' x y : T | E ]" := (SimplRel (fun x y : T => E%B))
(at level 0, x ident, y ident, only parsing) : fun_scope.
Notation "[ 'predType' 'of' T ]" := (@clone_pred _ T _ id _ _ id)
(at level 0, format "[ 'predType' 'of' T ]") : form_scope.
(* This redundant coercion lets us "inherit" the simpl_predType canonical *)
(* instance by declaring a coercion to simpl_pred. This hack is the only way *)
(* to put a predType structure on a predArgType. We use simpl_pred rather *)
(* than pred to ensure that /= removes the identity coercion. Note that the *)
(* coercion will never be used directly for simpl_pred, since the canonical *)
(* instance should always be resolved. *)
Notation pred_class := (pred_sort (predPredType _)).
Coercion sort_of_simpl_pred T (p : simpl_pred T) : pred_class := p : pred T.
(* This lets us use some types as a synonym for their universal predicate. *)
(* Unfortunately, this won't work for existing types like bool, unless we *)
(* redefine bool, true, false and all bool ops. *)
Definition predArgType := Type.
Bind Scope type_scope with predArgType.
Identity Coercion sort_of_predArgType : predArgType >-> Sortclass.
Coercion pred_of_argType (T : predArgType) : simpl_pred T := predT.
Notation "{ : T }" := (T%type : predArgType)
(at level 0, format "{ : T }") : type_scope.
(* These must be defined outside a Section because "cooking" kills the *)
(* nosimpl tag. *)
Definition mem T (pT : predType T) : pT -> mem_pred T :=
nosimpl (let: @PredType _ _ _ (exist _ mem _) := pT return pT -> _ in mem).
Definition in_mem T x mp := nosimpl pred_of_mem T mp x.
Prenex Implicits mem.
Coercion pred_of_mem_pred T mp := [pred x : T | in_mem x mp].
Definition eq_mem T p1 p2 := forall x : T, in_mem x p1 = in_mem x p2.
Definition sub_mem T p1 p2 := forall x : T, in_mem x p1 -> in_mem x p2.
Typeclasses Opaque eq_mem.
Lemma sub_refl T (p : mem_pred T) : sub_mem p p. Proof. by []. Qed.
Arguments sub_refl {T p}.
Notation "x \in A" := (in_mem x (mem A)) : bool_scope.
Notation "x \in A" := (in_mem x (mem A)) : bool_scope.
Notation "x \notin A" := (~~ (x \in A)) : bool_scope.
Notation "A =i B" := (eq_mem (mem A) (mem B)) : type_scope.
Notation "{ 'subset' A <= B }" := (sub_mem (mem A) (mem B))
(at level 0, A, B at level 69,
format "{ '[hv' 'subset' A '/ ' <= B ']' }") : type_scope.
Notation "[ 'mem' A ]" := (pred_of_simpl (pred_of_mem_pred (mem A)))
(at level 0, only parsing) : fun_scope.
Notation "[ 'rel' 'of' fA ]" := (fun x => [mem (fA x)])
(at level 0, format "[ 'rel' 'of' fA ]") : fun_scope.
Notation "[ 'predI' A & B ]" := (predI [mem A] [mem B])
(at level 0, format "[ 'predI' A & B ]") : fun_scope.
Notation "[ 'predU' A & B ]" := (predU [mem A] [mem B])
(at level 0, format "[ 'predU' A & B ]") : fun_scope.
Notation "[ 'predD' A & B ]" := (predD [mem A] [mem B])
(at level 0, format "[ 'predD' A & B ]") : fun_scope.
Notation "[ 'predC' A ]" := (predC [mem A])
(at level 0, format "[ 'predC' A ]") : fun_scope.
Notation "[ 'preim' f 'of' A ]" := (preim f [mem A])
(at level 0, format "[ 'preim' f 'of' A ]") : fun_scope.
Notation "[ 'pred' x 'in' A ]" := [pred x | x \in A]
(at level 0, x ident, format "[ 'pred' x 'in' A ]") : fun_scope.
Notation "[ 'pred' x 'in' A | E ]" := [pred x | x \in A & E]
(at level 0, x ident, format "[ 'pred' x 'in' A | E ]") : fun_scope.
Notation "[ 'pred' x 'in' A | E1 & E2 ]" := [pred x | x \in A & E1 && E2 ]
(at level 0, x ident,
format "[ 'pred' x 'in' A | E1 & E2 ]") : fun_scope.
Notation "[ 'rel' x y 'in' A & B | E ]" :=
[rel x y | (x \in A) && (y \in B) && E]
(at level 0, x ident, y ident,
format "[ 'rel' x y 'in' A & B | E ]") : fun_scope.
Notation "[ 'rel' x y 'in' A & B ]" := [rel x y | (x \in A) && (y \in B)]
(at level 0, x ident, y ident,
format "[ 'rel' x y 'in' A & B ]") : fun_scope.
Notation "[ 'rel' x y 'in' A | E ]" := [rel x y in A & A | E]
(at level 0, x ident, y ident,
format "[ 'rel' x y 'in' A | E ]") : fun_scope.
Notation "[ 'rel' x y 'in' A ]" := [rel x y in A & A]
(at level 0, x ident, y ident,
format "[ 'rel' x y 'in' A ]") : fun_scope.
Section simpl_mem.
Variables (T : Type) (pT : predType T).
Implicit Types (x : T) (p : pred T) (sp : simpl_pred T) (pp : pT).
(* Bespoke structures that provide fine-grained control over matching the *)
(* various forms of the \in predicate; note in particular the different forms *)
(* of hoisting that are used. We had to work around several bugs in the *)
(* implementation of unification, notably improper expansion of telescope *)
(* projections and overwriting of a variable assignment by a later *)
(* unification (probably due to conversion cache cross-talk). *)
Structure manifest_applicative_pred p := ManifestApplicativePred {
manifest_applicative_pred_value :> pred T;
_ : manifest_applicative_pred_value = p
}.
Definition ApplicativePred p := ManifestApplicativePred (erefl p).
Canonical applicative_pred_applicative sp :=
ApplicativePred (applicative_pred_of_simpl sp).
Structure manifest_simpl_pred p := ManifestSimplPred {
manifest_simpl_pred_value :> simpl_pred T;
_ : manifest_simpl_pred_value = SimplPred p
}.
Canonical expose_simpl_pred p := ManifestSimplPred (erefl (SimplPred p)).
Structure manifest_mem_pred p := ManifestMemPred {
manifest_mem_pred_value :> mem_pred T;
_ : manifest_mem_pred_value= Mem [eta p]
}.
Canonical expose_mem_pred p := @ManifestMemPred p _ (erefl _).
Structure applicative_mem_pred p :=
ApplicativeMemPred {applicative_mem_pred_value :> manifest_mem_pred p}.
Canonical check_applicative_mem_pred p (ap : manifest_applicative_pred p) mp :=
@ApplicativeMemPred ap mp.
Lemma mem_topred (pp : pT) : mem (topred pp) = mem pp.
Proof. by rewrite /mem; case: pT pp => T1 app1 [mem1 /= ->]. Qed.
Lemma topredE x (pp : pT) : topred pp x = (x \in pp).
Proof. by rewrite -mem_topred. Qed.
Lemma app_predE x p (ap : manifest_applicative_pred p) : ap x = (x \in p).
Proof. by case: ap => _ /= ->. Qed.
Lemma in_applicative x p (amp : applicative_mem_pred p) : in_mem x amp = p x.
Proof. by case: amp => [[_ /= ->]]. Qed.
Lemma in_collective x p (msp : manifest_simpl_pred p) :
(x \in collective_pred_of_simpl msp) = p x.
Proof. by case: msp => _ /= ->. Qed.
Lemma in_simpl x p (msp : manifest_simpl_pred p) :
in_mem x (Mem [eta fun_of_simpl (msp : simpl_pred T)]) = p x.
Proof. by case: msp => _ /= ->. Qed.
(* Because of the explicit eta expansion in the left-hand side, this lemma *)
(* should only be used in a right-to-left direction. The 8.3 hack allowing *)
(* partial right-to-left use does not work with the improved expansion *)
(* heuristics in 8.4. *)
Lemma unfold_in x p : (x \in ([eta p] : pred T)) = p x.
Proof. by []. Qed.
Lemma simpl_predE p : SimplPred p =1 p.
Proof. by []. Qed.
Definition inE := (in_applicative, in_simpl, simpl_predE). (* to be extended *)
Lemma mem_simpl sp : mem sp = sp :> pred T.
Proof. by []. Qed.
Definition memE := mem_simpl. (* could be extended *)
Lemma mem_mem (pp : pT) : (mem (mem pp) = mem pp) * (mem [mem pp] = mem pp).
Proof. by rewrite -mem_topred. Qed.
End simpl_mem.
(* Qualifiers and keyed predicates. *)
CoInductive qualifier (q : nat) T := Qualifier of predPredType T.
Coercion has_quality n T (q : qualifier n T) : pred_class :=
fun x => let: Qualifier _ p := q in p x.
Arguments has_quality n [T].
Lemma qualifE n T p x : (x \in @Qualifier n T p) = p x. Proof. by []. Qed.
Notation "x \is A" := (x \in has_quality 0 A)
(at level 70, no associativity,
format "'[hv' x '/ ' \is A ']'") : bool_scope.
Notation "x \is 'a' A" := (x \in has_quality 1 A)
(at level 70, no associativity,
format "'[hv' x '/ ' \is 'a' A ']'") : bool_scope.
Notation "x \is 'an' A" := (x \in has_quality 2 A)
(at level 70, no associativity,
format "'[hv' x '/ ' \is 'an' A ']'") : bool_scope.
Notation "x \isn't A" := (x \notin has_quality 0 A)
(at level 70, no associativity,
format "'[hv' x '/ ' \isn't A ']'") : bool_scope.
Notation "x \isn't 'a' A" := (x \notin has_quality 1 A)
(at level 70, no associativity,
format "'[hv' x '/ ' \isn't 'a' A ']'") : bool_scope.
Notation "x \isn't 'an' A" := (x \notin has_quality 2 A)
(at level 70, no associativity,
format "'[hv' x '/ ' \isn't 'an' A ']'") : bool_scope.
Notation "[ 'qualify' x | P ]" := (Qualifier 0 (fun x => P%B))
(at level 0, x at level 99,
format "'[hv' [ 'qualify' x | '/ ' P ] ']'") : form_scope.
Notation "[ 'qualify' x : T | P ]" := (Qualifier 0 (fun x : T => P%B))
(at level 0, x at level 99, only parsing) : form_scope.
Notation "[ 'qualify' 'a' x | P ]" := (Qualifier 1 (fun x => P%B))
(at level 0, x at level 99,
format "'[hv' [ 'qualify' 'a' x | '/ ' P ] ']'") : form_scope.
Notation "[ 'qualify' 'a' x : T | P ]" := (Qualifier 1 (fun x : T => P%B))
(at level 0, x at level 99, only parsing) : form_scope.
Notation "[ 'qualify' 'an' x | P ]" := (Qualifier 2 (fun x => P%B))
(at level 0, x at level 99,
format "'[hv' [ 'qualify' 'an' x | '/ ' P ] ']'") : form_scope.
Notation "[ 'qualify' 'an' x : T | P ]" := (Qualifier 2 (fun x : T => P%B))
(at level 0, x at level 99, only parsing) : form_scope.
(* Keyed predicates: support for property-bearing predicate interfaces. *)
Section KeyPred.
Variable T : Type.
CoInductive pred_key (p : predPredType T) := DefaultPredKey.
Variable p : predPredType T.
Structure keyed_pred (k : pred_key p) :=
PackKeyedPred {unkey_pred :> pred_class; _ : unkey_pred =i p}.
Variable k : pred_key p.
Definition KeyedPred := @PackKeyedPred k p (frefl _).
Variable k_p : keyed_pred k.
Lemma keyed_predE : k_p =i p. Proof. by case: k_p. Qed.
(* Instances that strip the mem cast; the first one has "pred_of_mem" as its *)
(* projection head value, while the second has "pred_of_simpl". The latter *)
(* has the side benefit of preempting accidental misdeclarations. *)
(* Note: pred_of_mem is the registered mem >-> pred_class coercion, while *)
(* simpl_of_mem; pred_of_simpl is the mem >-> pred >=> Funclass coercion. We *)
(* must write down the coercions explicitly as the Canonical head constant *)
(* computation does not strip casts !! *)
Canonical keyed_mem :=
@PackKeyedPred k (pred_of_mem (mem k_p)) keyed_predE.
Canonical keyed_mem_simpl :=
@PackKeyedPred k (pred_of_simpl (mem k_p)) keyed_predE.
End KeyPred.
Notation "x \i 'n' S" := (x \in @unkey_pred _ S _ _)
(at level 70, format "'[hv' x '/ ' \i 'n' S ']'") : bool_scope.
Section KeyedQualifier.
Variables (T : Type) (n : nat) (q : qualifier n T).
Structure keyed_qualifier (k : pred_key q) :=
PackKeyedQualifier {unkey_qualifier; _ : unkey_qualifier = q}.
Definition KeyedQualifier k := PackKeyedQualifier k (erefl q).
Variables (k : pred_key q) (k_q : keyed_qualifier k).
Fact keyed_qualifier_suproof : unkey_qualifier k_q =i q.
Proof. by case: k_q => /= _ ->. Qed.
Canonical keyed_qualifier_keyed := PackKeyedPred k keyed_qualifier_suproof.
End KeyedQualifier.
Notation "x \i 's' A" := (x \i n has_quality 0 A)
(at level 70, format "'[hv' x '/ ' \i 's' A ']'") : bool_scope.
Notation "x \i 's' 'a' A" := (x \i n has_quality 1 A)
(at level 70, format "'[hv' x '/ ' \i 's' 'a' A ']'") : bool_scope.
Notation "x \i 's' 'an' A" := (x \i n has_quality 2 A)
(at level 70, format "'[hv' x '/ ' \i 's' 'an' A ']'") : bool_scope.
Module DefaultKeying.
Canonical default_keyed_pred T p := KeyedPred (@DefaultPredKey T p).
Canonical default_keyed_qualifier T n (q : qualifier n T) :=
KeyedQualifier (DefaultPredKey q).
End DefaultKeying.
(* Skolemizing with conditions. *)
Lemma all_tag_cond_dep I T (C : pred I) U :
(forall x, T x) -> (forall x, C x -> {y : T x & U x y}) ->
{f : forall x, T x & forall x, C x -> U x (f x)}.
Proof.
move=> f0 fP; apply: all_tag (fun x y => C x -> U x y) _ => x.
by case Cx: (C x); [case/fP: Cx => y; exists y | exists (f0 x)].
Qed.
Lemma all_tag_cond I T (C : pred I) U :
T -> (forall x, C x -> {y : T & U x y}) ->
{f : I -> T & forall x, C x -> U x (f x)}.
Proof. by move=> y0; apply: all_tag_cond_dep. Qed.
Lemma all_sig_cond_dep I T (C : pred I) P :
(forall x, T x) -> (forall x, C x -> {y : T x | P x y}) ->
{f : forall x, T x | forall x, C x -> P x (f x)}.
Proof. by move=> f0 /(all_tag_cond_dep f0)[f]; exists f. Qed.
Lemma all_sig_cond I T (C : pred I) P :
T -> (forall x, C x -> {y : T | P x y}) ->
{f : I -> T | forall x, C x -> P x (f x)}.
Proof. by move=> y0; apply: all_sig_cond_dep. Qed.
Section RelationProperties.
(* Caveat: reflexive should not be used to state lemmas, as auto and trivial *)
(* will not expand the constant. *)
Variable T : Type.
Variable R : rel T.
Definition total := forall x y, R x y || R y x.
Definition transitive := forall y x z, R x y -> R y z -> R x z.
Definition symmetric := forall x y, R x y = R y x.
Definition antisymmetric := forall x y, R x y && R y x -> x = y.
Definition pre_symmetric := forall x y, R x y -> R y x.
Lemma symmetric_from_pre : pre_symmetric -> symmetric.
Proof. by move=> symR x y; apply/idP/idP; apply: symR. Qed.
Definition reflexive := forall x, R x x.
Definition irreflexive := forall x, R x x = false.
Definition left_transitive := forall x y, R x y -> R x =1 R y.
Definition right_transitive := forall x y, R x y -> R^~ x =1 R^~ y.
Section PER.
Hypotheses (symR : symmetric) (trR : transitive).
Lemma sym_left_transitive : left_transitive.
Proof. by move=> x y Rxy z; apply/idP/idP; apply: trR; rewrite // symR. Qed.
Lemma sym_right_transitive : right_transitive.
Proof. by move=> x y /sym_left_transitive Rxy z; rewrite !(symR z) Rxy. Qed.
End PER.
(* We define the equivalence property with prenex quantification so that it *)
(* can be localized using the {in ..., ..} form defined below. *)
Definition equivalence_rel := forall x y z, R z z * (R x y -> R x z = R y z).
Lemma equivalence_relP : equivalence_rel <-> reflexive /\ left_transitive.
Proof.
split=> [eqiR | [Rxx trR] x y z]; last by split=> [|/trR->].
by split=> [x | x y Rxy z]; [rewrite (eqiR x x x) | rewrite (eqiR x y z)].
Qed.
End RelationProperties.
Lemma rev_trans T (R : rel T) : transitive R -> transitive (fun x y => R y x).
Proof. by move=> trR x y z Ryx Rzy; apply: trR Rzy Ryx. Qed.
(* Property localization *)
Local Notation "{ 'all1' P }" := (forall x, P x : Prop) (at level 0).
Local Notation "{ 'all2' P }" := (forall x y, P x y : Prop) (at level 0).
Local Notation "{ 'all3' P }" := (forall x y z, P x y z: Prop) (at level 0).
Local Notation ph := (phantom _).
Section LocalProperties.
Variables T1 T2 T3 : Type.
Variables (d1 : mem_pred T1) (d2 : mem_pred T2) (d3 : mem_pred T3).
Local Notation ph := (phantom Prop).
Definition prop_for (x : T1) P & ph {all1 P} := P x.
Lemma forE x P phP : @prop_for x P phP = P x. Proof. by []. Qed.
Definition prop_in1 P & ph {all1 P} :=
forall x, in_mem x d1 -> P x.
Definition prop_in11 P & ph {all2 P} :=
forall x y, in_mem x d1 -> in_mem y d2 -> P x y.
Definition prop_in2 P & ph {all2 P} :=
forall x y, in_mem x d1 -> in_mem y d1 -> P x y.
Definition prop_in111 P & ph {all3 P} :=
forall x y z, in_mem x d1 -> in_mem y d2 -> in_mem z d3 -> P x y z.
Definition prop_in12 P & ph {all3 P} :=
forall x y z, in_mem x d1 -> in_mem y d2 -> in_mem z d2 -> P x y z.
Definition prop_in21 P & ph {all3 P} :=
forall x y z, in_mem x d1 -> in_mem y d1 -> in_mem z d2 -> P x y z.
Definition prop_in3 P & ph {all3 P} :=
forall x y z, in_mem x d1 -> in_mem y d1 -> in_mem z d1 -> P x y z.
Variable f : T1 -> T2.
Definition prop_on1 Pf P & phantom T3 (Pf f) & ph {all1 P} :=
forall x, in_mem (f x) d2 -> P x.
Definition prop_on2 Pf P & phantom T3 (Pf f) & ph {all2 P} :=
forall x y, in_mem (f x) d2 -> in_mem (f y) d2 -> P x y.
End LocalProperties.
Definition inPhantom := Phantom Prop.
Definition onPhantom T P (x : T) := Phantom Prop (P x).
Definition bijective_in aT rT (d : mem_pred aT) (f : aT -> rT) :=
exists2 g, prop_in1 d (inPhantom (cancel f g))
& prop_on1 d (Phantom _ (cancel g)) (onPhantom (cancel g) f).
Definition bijective_on aT rT (cd : mem_pred rT) (f : aT -> rT) :=
exists2 g, prop_on1 cd (Phantom _ (cancel f)) (onPhantom (cancel f) g)
& prop_in1 cd (inPhantom (cancel g f)).
Notation "{ 'for' x , P }" :=
(prop_for x (inPhantom P))
(at level 0, format "{ 'for' x , P }") : type_scope.
Notation "{ 'in' d , P }" :=
(prop_in1 (mem d) (inPhantom P))
(at level 0, format "{ 'in' d , P }") : type_scope.
Notation "{ 'in' d1 & d2 , P }" :=
(prop_in11 (mem d1) (mem d2) (inPhantom P))
(at level 0, format "{ 'in' d1 & d2 , P }") : type_scope.
Notation "{ 'in' d & , P }" :=
(prop_in2 (mem d) (inPhantom P))
(at level 0, format "{ 'in' d & , P }") : type_scope.
Notation "{ 'in' d1 & d2 & d3 , P }" :=
(prop_in111 (mem d1) (mem d2) (mem d3) (inPhantom P))
(at level 0, format "{ 'in' d1 & d2 & d3 , P }") : type_scope.
Notation "{ 'in' d1 & & d3 , P }" :=
(prop_in21 (mem d1) (mem d3) (inPhantom P))
(at level 0, format "{ 'in' d1 & & d3 , P }") : type_scope.
Notation "{ 'in' d1 & d2 & , P }" :=
(prop_in12 (mem d1) (mem d2) (inPhantom P))
(at level 0, format "{ 'in' d1 & d2 & , P }") : type_scope.
Notation "{ 'in' d & & , P }" :=
(prop_in3 (mem d) (inPhantom P))
(at level 0, format "{ 'in' d & & , P }") : type_scope.
Notation "{ 'on' cd , P }" :=
(prop_on1 (mem cd) (inPhantom P) (inPhantom P))
(at level 0, format "{ 'on' cd , P }") : type_scope.
Notation "{ 'on' cd & , P }" :=
(prop_on2 (mem cd) (inPhantom P) (inPhantom P))
(at level 0, format "{ 'on' cd & , P }") : type_scope.
Local Arguments onPhantom {_%type_scope} _ _.
Notation "{ 'on' cd , P & g }" :=
(prop_on1 (mem cd) (Phantom (_ -> Prop) P) (onPhantom P g))
(at level 0, format "{ 'on' cd , P & g }") : type_scope.
Notation "{ 'in' d , 'bijective' f }" := (bijective_in (mem d) f)
(at level 0, f at level 8,
format "{ 'in' d , 'bijective' f }") : type_scope.
Notation "{ 'on' cd , 'bijective' f }" := (bijective_on (mem cd) f)
(at level 0, f at level 8,
format "{ 'on' cd , 'bijective' f }") : type_scope.
(* Weakening and monotonicity lemmas for localized predicates. *)
(* Note that using these lemmas in backward reasoning will force expansion of *)
(* the predicate definition, as Coq needs to expose the quantifier to apply *)
(* these lemmas. We define a few specialized variants to avoid this for some *)
(* of the ssrfun predicates. *)
Section LocalGlobal.
Variables T1 T2 T3 : predArgType.
Variables (D1 : pred T1) (D2 : pred T2) (D3 : pred T3).
Variables (d1 d1' : mem_pred T1) (d2 d2' : mem_pred T2) (d3 d3' : mem_pred T3).
Variables (f f' : T1 -> T2) (g : T2 -> T1) (h : T3).
Variables (P1 : T1 -> Prop) (P2 : T1 -> T2 -> Prop).
Variable P3 : T1 -> T2 -> T3 -> Prop.
Variable Q1 : (T1 -> T2) -> T1 -> Prop.
Variable Q1l : (T1 -> T2) -> T3 -> T1 -> Prop.
Variable Q2 : (T1 -> T2) -> T1 -> T1 -> Prop.
Hypothesis sub1 : sub_mem d1 d1'.
Hypothesis sub2 : sub_mem d2 d2'.
Hypothesis sub3 : sub_mem d3 d3'.
Lemma in1W : {all1 P1} -> {in D1, {all1 P1}}.
Proof. by move=> ? ?. Qed.
Lemma in2W : {all2 P2} -> {in D1 & D2, {all2 P2}}.
Proof. by move=> ? ?. Qed.
Lemma in3W : {all3 P3} -> {in D1 & D2 & D3, {all3 P3}}.
Proof. by move=> ? ?. Qed.
Lemma in1T : {in T1, {all1 P1}} -> {all1 P1}.
Proof. by move=> ? ?; auto. Qed.
Lemma in2T : {in T1 & T2, {all2 P2}} -> {all2 P2}.
Proof. by move=> ? ?; auto. Qed.
Lemma in3T : {in T1 & T2 & T3, {all3 P3}} -> {all3 P3}.
Proof. by move=> ? ?; auto. Qed.
Lemma sub_in1 (Ph : ph {all1 P1}) : prop_in1 d1' Ph -> prop_in1 d1 Ph.
Proof. by move=> allP x /sub1; apply: allP. Qed.
Lemma sub_in11 (Ph : ph {all2 P2}) : prop_in11 d1' d2' Ph -> prop_in11 d1 d2 Ph.
Proof. by move=> allP x1 x2 /sub1 d1x1 /sub2; apply: allP. Qed.
Lemma sub_in111 (Ph : ph {all3 P3}) :
prop_in111 d1' d2' d3' Ph -> prop_in111 d1 d2 d3 Ph.
Proof. by move=> allP x1 x2 x3 /sub1 d1x1 /sub2 d2x2 /sub3; apply: allP. Qed.
Let allQ1 f'' := {all1 Q1 f''}.
Let allQ1l f'' h' := {all1 Q1l f'' h'}.
Let allQ2 f'' := {all2 Q2 f''}.
Lemma on1W : allQ1 f -> {on D2, allQ1 f}. Proof. by move=> ? ?. Qed.
Lemma on1lW : allQ1l f h -> {on D2, allQ1l f & h}. Proof. by move=> ? ?. Qed.
Lemma on2W : allQ2 f -> {on D2 &, allQ2 f}. Proof. by move=> ? ?. Qed.
Lemma on1T : {on T2, allQ1 f} -> allQ1 f. Proof. by move=> ? ?; auto. Qed.
Lemma on1lT : {on T2, allQ1l f & h} -> allQ1l f h.
Proof. by move=> ? ?; auto. Qed.
Lemma on2T : {on T2 &, allQ2 f} -> allQ2 f.
Proof. by move=> ? ?; auto. Qed.
Lemma subon1 (Phf : ph (allQ1 f)) (Ph : ph (allQ1 f)) :
prop_on1 d2' Phf Ph -> prop_on1 d2 Phf Ph.
Proof. by move=> allQ x /sub2; apply: allQ. Qed.
Lemma subon1l (Phf : ph (allQ1l f)) (Ph : ph (allQ1l f h)) :
prop_on1 d2' Phf Ph -> prop_on1 d2 Phf Ph.
Proof. by move=> allQ x /sub2; apply: allQ. Qed.
Lemma subon2 (Phf : ph (allQ2 f)) (Ph : ph (allQ2 f)) :
prop_on2 d2' Phf Ph -> prop_on2 d2 Phf Ph.
Proof. by move=> allQ x y /sub2=> d2fx /sub2; apply: allQ. Qed.
Lemma can_in_inj : {in D1, cancel f g} -> {in D1 &, injective f}.
Proof. by move=> fK x y /fK{2}<- /fK{2}<- ->. Qed.
Lemma canLR_in x y : {in D1, cancel f g} -> y \in D1 -> x = f y -> g x = y.
Proof. by move=> fK D1y ->; rewrite fK. Qed.
Lemma canRL_in x y : {in D1, cancel f g} -> x \in D1 -> f x = y -> x = g y.
Proof. by move=> fK D1x <-; rewrite fK. Qed.
Lemma on_can_inj : {on D2, cancel f & g} -> {on D2 &, injective f}.
Proof. by move=> fK x y /fK{2}<- /fK{2}<- ->. Qed.
Lemma canLR_on x y : {on D2, cancel f & g} -> f y \in D2 -> x = f y -> g x = y.
Proof. by move=> fK D2fy ->; rewrite fK. Qed.
Lemma canRL_on x y : {on D2, cancel f & g} -> f x \in D2 -> f x = y -> x = g y.
Proof. by move=> fK D2fx <-; rewrite fK. Qed.
Lemma inW_bij : bijective f -> {in D1, bijective f}.
Proof. by case=> g' fK g'K; exists g' => * ? *; auto. Qed.
Lemma onW_bij : bijective f -> {on D2, bijective f}.
Proof. by case=> g' fK g'K; exists g' => * ? *; auto. Qed.
Lemma inT_bij : {in T1, bijective f} -> bijective f.
Proof. by case=> g' fK g'K; exists g' => * ? *; auto. Qed.
Lemma onT_bij : {on T2, bijective f} -> bijective f.
Proof. by case=> g' fK g'K; exists g' => * ? *; auto. Qed.
Lemma sub_in_bij (D1' : pred T1) :
{subset D1 <= D1'} -> {in D1', bijective f} -> {in D1, bijective f}.
Proof.
by move=> subD [g' fK g'K]; exists g' => x; move/subD; [apply: fK | apply: g'K].
Qed.
Lemma subon_bij (D2' : pred T2) :
{subset D2 <= D2'} -> {on D2', bijective f} -> {on D2, bijective f}.
Proof.
by move=> subD [g' fK g'K]; exists g' => x; move/subD; [apply: fK | apply: g'K].
Qed.
End LocalGlobal.
Lemma sub_in2 T d d' (P : T -> T -> Prop) :
sub_mem d d' -> forall Ph : ph {all2 P}, prop_in2 d' Ph -> prop_in2 d Ph.
Proof. by move=> /= sub_dd'; apply: sub_in11. Qed.
Lemma sub_in3 T d d' (P : T -> T -> T -> Prop) :
sub_mem d d' -> forall Ph : ph {all3 P}, prop_in3 d' Ph -> prop_in3 d Ph.
Proof. by move=> /= sub_dd'; apply: sub_in111. Qed.
Lemma sub_in12 T1 T d1 d1' d d' (P : T1 -> T -> T -> Prop) :
sub_mem d1 d1' -> sub_mem d d' ->
forall Ph : ph {all3 P}, prop_in12 d1' d' Ph -> prop_in12 d1 d Ph.
Proof. by move=> /= sub1 sub; apply: sub_in111. Qed.
Lemma sub_in21 T T3 d d' d3 d3' (P : T -> T -> T3 -> Prop) :
sub_mem d d' -> sub_mem d3 d3' ->
forall Ph : ph {all3 P}, prop_in21 d' d3' Ph -> prop_in21 d d3 Ph.
Proof. by move=> /= sub sub3; apply: sub_in111. Qed.
Lemma equivalence_relP_in T (R : rel T) (A : pred T) :
{in A & &, equivalence_rel R}
<-> {in A, reflexive R} /\ {in A &, forall x y, R x y -> {in A, R x =1 R y}}.
Proof.
split=> [eqiR | [Rxx trR] x y z *]; last by split=> [|/trR-> //]; apply: Rxx.
by split=> [x Ax|x y Ax Ay Rxy z Az]; [rewrite (eqiR x x) | rewrite (eqiR x y)].
Qed.
Section MonoHomoMorphismTheory.
Variables (aT rT sT : Type) (f : aT -> rT) (g : rT -> aT).
Variables (aP : pred aT) (rP : pred rT) (aR : rel aT) (rR : rel rT).
Lemma monoW : {mono f : x / aP x >-> rP x} -> {homo f : x / aP x >-> rP x}.
Proof. by move=> hf x ax; rewrite hf. Qed.
Lemma mono2W :
{mono f : x y / aR x y >-> rR x y} -> {homo f : x y / aR x y >-> rR x y}.
Proof. by move=> hf x y axy; rewrite hf. Qed.
Hypothesis fgK : cancel g f.
Lemma homoRL :
{homo f : x y / aR x y >-> rR x y} -> forall x y, aR (g x) y -> rR x (f y).
Proof. by move=> Hf x y /Hf; rewrite fgK. Qed.
Lemma homoLR :
{homo f : x y / aR x y >-> rR x y} -> forall x y, aR x (g y) -> rR (f x) y.
Proof. by move=> Hf x y /Hf; rewrite fgK. Qed.
Lemma homo_mono :
{homo f : x y / aR x y >-> rR x y} -> {homo g : x y / rR x y >-> aR x y} ->
{mono g : x y / rR x y >-> aR x y}.
Proof.
move=> mf mg x y; case: (boolP (rR _ _))=> [/mg //|].
by apply: contraNF=> /mf; rewrite !fgK.
Qed.
Lemma monoLR :
{mono f : x y / aR x y >-> rR x y} -> forall x y, rR (f x) y = aR x (g y).
Proof. by move=> mf x y; rewrite -{1}[y]fgK mf. Qed.
Lemma monoRL :
{mono f : x y / aR x y >-> rR x y} -> forall x y, rR x (f y) = aR (g x) y.
Proof. by move=> mf x y; rewrite -{1}[x]fgK mf. Qed.
Lemma can_mono :
{mono f : x y / aR x y >-> rR x y} -> {mono g : x y / rR x y >-> aR x y}.
Proof. by move=> mf x y /=; rewrite -mf !fgK. Qed.
End MonoHomoMorphismTheory.
Section MonoHomoMorphismTheory_in.
Variables (aT rT sT : predArgType) (f : aT -> rT) (g : rT -> aT).
Variable (aD : pred aT).
Variable (aP : pred aT) (rP : pred rT) (aR : rel aT) (rR : rel rT).
Notation rD := [pred x | g x \in aD].
Lemma monoW_in :
{in aD &, {mono f : x y / aR x y >-> rR x y}} ->
{in aD &, {homo f : x y / aR x y >-> rR x y}}.
Proof. by move=> hf x y hx hy axy; rewrite hf. Qed.
Lemma mono2W_in :
{in aD, {mono f : x / aP x >-> rP x}} ->
{in aD, {homo f : x / aP x >-> rP x}}.
Proof. by move=> hf x hx ax; rewrite hf. Qed.
Hypothesis fgK_on : {on aD, cancel g & f}.
Lemma homoRL_in :
{in aD &, {homo f : x y / aR x y >-> rR x y}} ->
{in rD & aD, forall x y, aR (g x) y -> rR x (f y)}.
Proof. by move=> Hf x y hx hy /Hf; rewrite fgK_on //; apply. Qed.
Lemma homoLR_in :
{in aD &, {homo f : x y / aR x y >-> rR x y}} ->
{in aD & rD, forall x y, aR x (g y) -> rR (f x) y}.
Proof. by move=> Hf x y hx hy /Hf; rewrite fgK_on //; apply. Qed.
Lemma homo_mono_in :
{in aD &, {homo f : x y / aR x y >-> rR x y}} ->
{in rD &, {homo g : x y / rR x y >-> aR x y}} ->
{in rD &, {mono g : x y / rR x y >-> aR x y}}.
Proof.
move=> mf mg x y hx hy; case: (boolP (rR _ _))=> [/mg //|]; first exact.
by apply: contraNF=> /mf; rewrite !fgK_on //; apply.
Qed.
Lemma monoLR_in :
{in aD &, {mono f : x y / aR x y >-> rR x y}} ->
{in aD & rD, forall x y, rR (f x) y = aR x (g y)}.
Proof. by move=> mf x y hx hy; rewrite -{1}[y]fgK_on // mf. Qed.
Lemma monoRL_in :
{in aD &, {mono f : x y / aR x y >-> rR x y}} ->
{in rD & aD, forall x y, rR x (f y) = aR (g x) y}.
Proof. by move=> mf x y hx hy; rewrite -{1}[x]fgK_on // mf. Qed.
Lemma can_mono_in :
{in aD &, {mono f : x y / aR x y >-> rR x y}} ->
{in rD &, {mono g : x y / rR x y >-> aR x y}}.
Proof. by move=> mf x y hx hy /=; rewrite -mf // !fgK_on. Qed.
End MonoHomoMorphismTheory_in.
|