blob: 19eaddc12371393123eca9cef6f9f06cfead417c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Export Ring.
Require Import ZArith_base.
Require Import Zpow_def.
Import InitialRing.
Set Implicit Arguments.
Ltac Zcst t :=
match isZcst t with
true => t
| _ => constr:(NotConstant)
end.
Ltac isZpow_coef t :=
match t with
| Zpos ?p => isPcst p
| Z0 => constr:(true)
| _ => constr:(false)
end.
Notation N_of_Z := Z.to_N (only parsing).
Ltac Zpow_tac t :=
match isZpow_coef t with
| true => constr:(N_of_Z t)
| _ => constr:(NotConstant)
end.
Ltac Zpower_neg :=
repeat match goal with
| [|- ?G] =>
match G with
| context c [Z.pow _ (Zneg _)] =>
let t := context c [Z0] in
change t
end
end.
Add Ring Zr : Zth
(decidable Zeq_bool_eq, constants [Zcst], preprocess [Zpower_neg;unfold Z.succ],
power_tac Zpower_theory [Zpow_tac],
(* The following two options are not needed; they are the default choice
when the set of coefficient is the usual ring Z *)
div (InitialRing.Ztriv_div_th (@Eqsth Z) (@IDphi Z)),
sign get_signZ_th).
|