1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
|
(************************************************************************)
(* V * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Set Implicit Arguments.
Require Import Setoid.
Require Import BinList.
Require Import BinPos.
Require Import BinNat.
Require Import BinInt.
Require Export Ring_theory.
Open Local Scope positive_scope.
Import RingSyntax.
Section MakeRingPol.
(* Ring elements *)
Variable R:Type.
Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R->R).
Variable req : R -> R -> Prop.
(* Ring properties *)
Variable Rsth : Setoid_Theory R req.
Variable Reqe : ring_eq_ext radd rmul ropp req.
Variable ARth : almost_ring_theory rO rI radd rmul rsub ropp req.
(* Coefficients *)
Variable C: Type.
Variable (cO cI: C) (cadd cmul csub : C->C->C) (copp : C->C).
Variable ceqb : C->C->bool.
Variable phi : C -> R.
Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req
cO cI cadd cmul csub copp ceqb phi.
(* Power coefficients *)
Variable Cpow : Set.
Variable Cp_phi : N -> Cpow.
Variable rpow : R -> Cpow -> R.
Variable pow_th : power_theory rI rmul req Cp_phi rpow.
(* division is ok *)
Variable cdiv: C -> C -> C * C.
Variable div_th: div_theory req cadd cmul phi cdiv.
(* R notations *)
Notation "0" := rO. Notation "1" := rI.
Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
Notation "x - y " := (rsub x y). Notation "- x" := (ropp x).
Notation "x == y" := (req x y).
(* C notations *)
Notation "x +! y" := (cadd x y). Notation "x *! y " := (cmul x y).
Notation "x -! y " := (csub x y). Notation "-! x" := (copp x).
Notation " x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x).
(* Useful tactics *)
Add Setoid R req Rsth as R_set1.
Ltac rrefl := gen_reflexivity Rsth.
Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed.
Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed.
Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed.
Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed.
Ltac rsimpl := gen_srewrite Rsth Reqe ARth.
Ltac add_push := gen_add_push radd Rsth Reqe ARth.
Ltac mul_push := gen_mul_push rmul Rsth Reqe ARth.
(* Definition of multivariable polynomials with coefficients in C :
Type [Pol] represents [X1 ... Xn].
The representation is Horner's where a [n] variable polynomial
(C[X1..Xn]) is seen as a polynomial on [X1] which coefficients
are polynomials with [n-1] variables (C[X2..Xn]).
There are several optimisations to make the repr compacter:
- [Pc c] is the constant polynomial of value c
== c*X1^0*..*Xn^0
- [Pinj j Q] is a polynomial constant w.r.t the [j] first variables.
variable indices are shifted of j in Q.
== X1^0 *..* Xj^0 * Q{X1 <- Xj+1;..; Xn-j <- Xn}
- [PX P i Q] is an optimised Horner form of P*X^i + Q
with P not the null polynomial
== P * X1^i + Q{X1 <- X2; ..; Xn-1 <- Xn}
In addition:
- polynomials of the form (PX (PX P i (Pc 0)) j Q) are forbidden
since they can be represented by the simpler form (PX P (i+j) Q)
- (Pinj i (Pinj j P)) is (Pinj (i+j) P)
- (Pinj i (Pc c)) is (Pc c)
*)
Inductive Pol : Type :=
| Pc : C -> Pol
| Pinj : positive -> Pol -> Pol
| PX : Pol -> positive -> Pol -> Pol.
Definition P0 := Pc cO.
Definition P1 := Pc cI.
Fixpoint Peq (P P' : Pol) {struct P'} : bool :=
match P, P' with
| Pc c, Pc c' => c ?=! c'
| Pinj j Q, Pinj j' Q' =>
match Pcompare j j' Eq with
| Eq => Peq Q Q'
| _ => false
end
| PX P i Q, PX P' i' Q' =>
match Pcompare i i' Eq with
| Eq => if Peq P P' then Peq Q Q' else false
| _ => false
end
| _, _ => false
end.
Notation " P ?== P' " := (Peq P P').
Definition mkPinj j P :=
match P with
| Pc _ => P
| Pinj j' Q => Pinj ((j + j'):positive) Q
| _ => Pinj j P
end.
Definition mkPinj_pred j P:=
match j with
| xH => P
| xO j => Pinj (Pdouble_minus_one j) P
| xI j => Pinj (xO j) P
end.
Definition mkPX P i Q :=
match P with
| Pc c => if c ?=! cO then mkPinj xH Q else PX P i Q
| Pinj _ _ => PX P i Q
| PX P' i' Q' => if Q' ?== P0 then PX P' (i' + i) Q else PX P i Q
end.
Definition mkXi i := PX P1 i P0.
Definition mkX := mkXi 1.
(** Opposite of addition *)
Fixpoint Popp (P:Pol) : Pol :=
match P with
| Pc c => Pc (-! c)
| Pinj j Q => Pinj j (Popp Q)
| PX P i Q => PX (Popp P) i (Popp Q)
end.
Notation "-- P" := (Popp P).
(** Addition et subtraction *)
Fixpoint PaddC (P:Pol) (c:C) {struct P} : Pol :=
match P with
| Pc c1 => Pc (c1 +! c)
| Pinj j Q => Pinj j (PaddC Q c)
| PX P i Q => PX P i (PaddC Q c)
end.
Fixpoint PsubC (P:Pol) (c:C) {struct P} : Pol :=
match P with
| Pc c1 => Pc (c1 -! c)
| Pinj j Q => Pinj j (PsubC Q c)
| PX P i Q => PX P i (PsubC Q c)
end.
Section PopI.
Variable Pop : Pol -> Pol -> Pol.
Variable Q : Pol.
Fixpoint PaddI (j:positive) (P:Pol){struct P} : Pol :=
match P with
| Pc c => mkPinj j (PaddC Q c)
| Pinj j' Q' =>
match ZPminus j' j with
| Zpos k => mkPinj j (Pop (Pinj k Q') Q)
| Z0 => mkPinj j (Pop Q' Q)
| Zneg k => mkPinj j' (PaddI k Q')
end
| PX P i Q' =>
match j with
| xH => PX P i (Pop Q' Q)
| xO j => PX P i (PaddI (Pdouble_minus_one j) Q')
| xI j => PX P i (PaddI (xO j) Q')
end
end.
Fixpoint PsubI (j:positive) (P:Pol){struct P} : Pol :=
match P with
| Pc c => mkPinj j (PaddC (--Q) c)
| Pinj j' Q' =>
match ZPminus j' j with
| Zpos k => mkPinj j (Pop (Pinj k Q') Q)
| Z0 => mkPinj j (Pop Q' Q)
| Zneg k => mkPinj j' (PsubI k Q')
end
| PX P i Q' =>
match j with
| xH => PX P i (Pop Q' Q)
| xO j => PX P i (PsubI (Pdouble_minus_one j) Q')
| xI j => PX P i (PsubI (xO j) Q')
end
end.
Variable P' : Pol.
Fixpoint PaddX (i':positive) (P:Pol) {struct P} : Pol :=
match P with
| Pc c => PX P' i' P
| Pinj j Q' =>
match j with
| xH => PX P' i' Q'
| xO j => PX P' i' (Pinj (Pdouble_minus_one j) Q')
| xI j => PX P' i' (Pinj (xO j) Q')
end
| PX P i Q' =>
match ZPminus i i' with
| Zpos k => mkPX (Pop (PX P k P0) P') i' Q'
| Z0 => mkPX (Pop P P') i Q'
| Zneg k => mkPX (PaddX k P) i Q'
end
end.
Fixpoint PsubX (i':positive) (P:Pol) {struct P} : Pol :=
match P with
| Pc c => PX (--P') i' P
| Pinj j Q' =>
match j with
| xH => PX (--P') i' Q'
| xO j => PX (--P') i' (Pinj (Pdouble_minus_one j) Q')
| xI j => PX (--P') i' (Pinj (xO j) Q')
end
| PX P i Q' =>
match ZPminus i i' with
| Zpos k => mkPX (Pop (PX P k P0) P') i' Q'
| Z0 => mkPX (Pop P P') i Q'
| Zneg k => mkPX (PsubX k P) i Q'
end
end.
End PopI.
Fixpoint Padd (P P': Pol) {struct P'} : Pol :=
match P' with
| Pc c' => PaddC P c'
| Pinj j' Q' => PaddI Padd Q' j' P
| PX P' i' Q' =>
match P with
| Pc c => PX P' i' (PaddC Q' c)
| Pinj j Q =>
match j with
| xH => PX P' i' (Padd Q Q')
| xO j => PX P' i' (Padd (Pinj (Pdouble_minus_one j) Q) Q')
| xI j => PX P' i' (Padd (Pinj (xO j) Q) Q')
end
| PX P i Q =>
match ZPminus i i' with
| Zpos k => mkPX (Padd (PX P k P0) P') i' (Padd Q Q')
| Z0 => mkPX (Padd P P') i (Padd Q Q')
| Zneg k => mkPX (PaddX Padd P' k P) i (Padd Q Q')
end
end
end.
Notation "P ++ P'" := (Padd P P').
Fixpoint Psub (P P': Pol) {struct P'} : Pol :=
match P' with
| Pc c' => PsubC P c'
| Pinj j' Q' => PsubI Psub Q' j' P
| PX P' i' Q' =>
match P with
| Pc c => PX (--P') i' (*(--(PsubC Q' c))*) (PaddC (--Q') c)
| Pinj j Q =>
match j with
| xH => PX (--P') i' (Psub Q Q')
| xO j => PX (--P') i' (Psub (Pinj (Pdouble_minus_one j) Q) Q')
| xI j => PX (--P') i' (Psub (Pinj (xO j) Q) Q')
end
| PX P i Q =>
match ZPminus i i' with
| Zpos k => mkPX (Psub (PX P k P0) P') i' (Psub Q Q')
| Z0 => mkPX (Psub P P') i (Psub Q Q')
| Zneg k => mkPX (PsubX Psub P' k P) i (Psub Q Q')
end
end
end.
Notation "P -- P'" := (Psub P P').
(** Multiplication *)
Fixpoint PmulC_aux (P:Pol) (c:C) {struct P} : Pol :=
match P with
| Pc c' => Pc (c' *! c)
| Pinj j Q => mkPinj j (PmulC_aux Q c)
| PX P i Q => mkPX (PmulC_aux P c) i (PmulC_aux Q c)
end.
Definition PmulC P c :=
if c ?=! cO then P0 else
if c ?=! cI then P else PmulC_aux P c.
Section PmulI.
Variable Pmul : Pol -> Pol -> Pol.
Variable Q : Pol.
Fixpoint PmulI (j:positive) (P:Pol) {struct P} : Pol :=
match P with
| Pc c => mkPinj j (PmulC Q c)
| Pinj j' Q' =>
match ZPminus j' j with
| Zpos k => mkPinj j (Pmul (Pinj k Q') Q)
| Z0 => mkPinj j (Pmul Q' Q)
| Zneg k => mkPinj j' (PmulI k Q')
end
| PX P' i' Q' =>
match j with
| xH => mkPX (PmulI xH P') i' (Pmul Q' Q)
| xO j' => mkPX (PmulI j P') i' (PmulI (Pdouble_minus_one j') Q')
| xI j' => mkPX (PmulI j P') i' (PmulI (xO j') Q')
end
end.
End PmulI.
(* A symmetric version of the multiplication *)
Fixpoint Pmul (P P'' : Pol) {struct P''} : Pol :=
match P'' with
| Pc c => PmulC P c
| Pinj j' Q' => PmulI Pmul Q' j' P
| PX P' i' Q' =>
match P with
| Pc c => PmulC P'' c
| Pinj j Q =>
let QQ' :=
match j with
| xH => Pmul Q Q'
| xO j => Pmul (Pinj (Pdouble_minus_one j) Q) Q'
| xI j => Pmul (Pinj (xO j) Q) Q'
end in
mkPX (Pmul P P') i' QQ'
| PX P i Q=>
let QQ' := Pmul Q Q' in
let PQ' := PmulI Pmul Q' xH P in
let QP' := Pmul (mkPinj xH Q) P' in
let PP' := Pmul P P' in
(mkPX (mkPX PP' i P0 ++ QP') i' P0) ++ mkPX PQ' i QQ'
end
end.
(* Non symmetric *)
(*
Fixpoint Pmul_aux (P P' : Pol) {struct P'} : Pol :=
match P' with
| Pc c' => PmulC P c'
| Pinj j' Q' => PmulI Pmul_aux Q' j' P
| PX P' i' Q' =>
(mkPX (Pmul_aux P P') i' P0) ++ (PmulI Pmul_aux Q' xH P)
end.
Definition Pmul P P' :=
match P with
| Pc c => PmulC P' c
| Pinj j Q => PmulI Pmul_aux Q j P'
| PX P i Q =>
(mkPX (Pmul_aux P P') i P0) ++ (PmulI Pmul_aux Q xH P')
end.
*)
Notation "P ** P'" := (Pmul P P').
Fixpoint Psquare (P:Pol) : Pol :=
match P with
| Pc c => Pc (c *! c)
| Pinj j Q => Pinj j (Psquare Q)
| PX P i Q =>
let twoPQ := Pmul P (mkPinj xH (PmulC Q (cI +! cI))) in
let Q2 := Psquare Q in
let P2 := Psquare P in
mkPX (mkPX P2 i P0 ++ twoPQ) i Q2
end.
(** Monomial **)
Inductive Mon: Set :=
mon0: Mon
| zmon: positive -> Mon -> Mon
| vmon: positive -> Mon -> Mon.
Fixpoint Mphi(l:list R) (M: Mon) {struct M} : R :=
match M with
mon0 => rI
| zmon j M1 => Mphi (jump j l) M1
| vmon i M1 =>
let x := hd 0 l in
let xi := pow_pos rmul x i in
(Mphi (tail l) M1) * xi
end.
Definition mkZmon j M :=
match M with mon0 => mon0 | _ => zmon j M end.
Definition zmon_pred j M :=
match j with xH => M | _ => mkZmon (Ppred j) M end.
Definition mkVmon i M :=
match M with
| mon0 => vmon i mon0
| zmon j m => vmon i (zmon_pred j m)
| vmon i' m => vmon (i+i') m
end.
Fixpoint CFactor (P: Pol) (c: C) {struct P}: Pol * Pol :=
match P with
| Pc c1 => let (q,r) := cdiv c1 c in (Pc r, Pc q)
| Pinj j1 P1 =>
let (R,S) := CFactor P1 c in
(mkPinj j1 R, mkPinj j1 S)
| PX P1 i Q1 =>
let (R1, S1) := CFactor P1 c in
let (R2, S2) := CFactor Q1 c in
(mkPX R1 i R2, mkPX S1 i S2)
end.
Fixpoint MFactor (P: Pol) (c: C) (M: Mon) {struct P}: Pol * Pol :=
match P, M with
_, mon0 =>
if (ceqb c cI) then (Pc cO, P) else
(* if (ceqb c (copp cI)) then (Pc cO, Popp P) else Not in almost ring *)
CFactor P c
| Pc _, _ => (P, Pc cO)
| Pinj j1 P1, zmon j2 M1 =>
match (j1 ?= j2) Eq with
Eq => let (R,S) := MFactor P1 c M1 in
(mkPinj j1 R, mkPinj j1 S)
| Lt => let (R,S) := MFactor P1 c (zmon (j2 - j1) M1) in
(mkPinj j1 R, mkPinj j1 S)
| Gt => (P, Pc cO)
end
| Pinj _ _, vmon _ _ => (P, Pc cO)
| PX P1 i Q1, zmon j M1 =>
let M2 := zmon_pred j M1 in
let (R1, S1) := MFactor P1 c M in
let (R2, S2) := MFactor Q1 c M2 in
(mkPX R1 i R2, mkPX S1 i S2)
| PX P1 i Q1, vmon j M1 =>
match (i ?= j) Eq with
Eq => let (R1,S1) := MFactor P1 c (mkZmon xH M1) in
(mkPX R1 i Q1, S1)
| Lt => let (R1,S1) := MFactor P1 c (vmon (j - i) M1) in
(mkPX R1 i Q1, S1)
| Gt => let (R1,S1) := MFactor P1 c (mkZmon xH M1) in
(mkPX R1 i Q1, mkPX S1 (i-j) (Pc cO))
end
end.
Definition POneSubst (P1: Pol) (cM1: C * Mon) (P2: Pol): option Pol :=
let (c,M1) := cM1 in
let (Q1,R1) := MFactor P1 c M1 in
match R1 with
(Pc c) => if c ?=! cO then None
else Some (Padd Q1 (Pmul P2 R1))
| _ => Some (Padd Q1 (Pmul P2 R1))
end.
Fixpoint PNSubst1 (P1: Pol) (cM1: C * Mon) (P2: Pol) (n: nat) {struct n}: Pol :=
match POneSubst P1 cM1 P2 with
Some P3 => match n with S n1 => PNSubst1 P3 cM1 P2 n1 | _ => P3 end
| _ => P1
end.
Definition PNSubst (P1: Pol) (cM1: C * Mon) (P2: Pol) (n: nat): option Pol :=
match POneSubst P1 cM1 P2 with
Some P3 => match n with S n1 => Some (PNSubst1 P3 cM1 P2 n1) | _ => None end
| _ => None
end.
Fixpoint PSubstL1 (P1: Pol) (LM1: list ((C * Mon) * Pol)) (n: nat) {struct LM1}:
Pol :=
match LM1 with
cons (M1,P2) LM2 => PSubstL1 (PNSubst1 P1 M1 P2 n) LM2 n
| _ => P1
end.
Fixpoint PSubstL (P1: Pol) (LM1: list ((C * Mon) * Pol)) (n: nat) {struct LM1}: option Pol :=
match LM1 with
cons (M1,P2) LM2 =>
match PNSubst P1 M1 P2 n with
Some P3 => Some (PSubstL1 P3 LM2 n)
| None => PSubstL P1 LM2 n
end
| _ => None
end.
Fixpoint PNSubstL (P1: Pol) (LM1: list ((C * Mon) * Pol)) (m n: nat) {struct m}: Pol :=
match PSubstL P1 LM1 n with
Some P3 => match m with S m1 => PNSubstL P3 LM1 m1 n | _ => P3 end
| _ => P1
end.
(** Evaluation of a polynomial towards R *)
Fixpoint Pphi(l:list R) (P:Pol) {struct P} : R :=
match P with
| Pc c => [c]
| Pinj j Q => Pphi (jump j l) Q
| PX P i Q =>
let x := hd 0 l in
let xi := pow_pos rmul x i in
(Pphi l P) * xi + (Pphi (tail l) Q)
end.
Reserved Notation "P @ l " (at level 10, no associativity).
Notation "P @ l " := (Pphi l P).
(** Proofs *)
Lemma ZPminus_spec : forall x y,
match ZPminus x y with
| Z0 => x = y
| Zpos k => x = (y + k)%positive
| Zneg k => y = (x + k)%positive
end.
Proof.
induction x;destruct y.
replace (ZPminus (xI x) (xI y)) with (Zdouble (ZPminus x y));trivial.
assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite H;trivial.
replace (ZPminus (xI x) (xO y)) with (Zdouble_plus_one (ZPminus x y));trivial.
assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble_plus_one;rewrite H;trivial.
apply Pplus_xI_double_minus_one.
simpl;trivial.
replace (ZPminus (xO x) (xI y)) with (Zdouble_minus_one (ZPminus x y));trivial.
assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble_minus_one;rewrite H;trivial.
apply Pplus_xI_double_minus_one.
replace (ZPminus (xO x) (xO y)) with (Zdouble (ZPminus x y));trivial.
assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite H;trivial.
replace (ZPminus (xO x) xH) with (Zpos (Pdouble_minus_one x));trivial.
rewrite <- Pplus_one_succ_l.
rewrite Psucc_o_double_minus_one_eq_xO;trivial.
replace (ZPminus xH (xI y)) with (Zneg (xO y));trivial.
replace (ZPminus xH (xO y)) with (Zneg (Pdouble_minus_one y));trivial.
rewrite <- Pplus_one_succ_l.
rewrite Psucc_o_double_minus_one_eq_xO;trivial.
simpl;trivial.
Qed.
Lemma Peq_ok : forall P P',
(P ?== P') = true -> forall l, P@l == P'@ l.
Proof.
induction P;destruct P';simpl;intros;try discriminate;trivial.
apply (morph_eq CRmorph);trivial.
assert (H1 := Pcompare_Eq_eq p p0); destruct ((p ?= p0)%positive Eq);
try discriminate H.
rewrite (IHP P' H); rewrite H1;trivial;rrefl.
assert (H1 := Pcompare_Eq_eq p p0); destruct ((p ?= p0)%positive Eq);
try discriminate H.
rewrite H1;trivial. clear H1.
assert (H1 := IHP1 P'1);assert (H2 := IHP2 P'2);
destruct (P2 ?== P'1);[destruct (P3 ?== P'2); [idtac|discriminate H]
|discriminate H].
rewrite (H1 H);rewrite (H2 H);rrefl.
Qed.
Lemma Pphi0 : forall l, P0@l == 0.
Proof.
intros;simpl;apply (morph0 CRmorph).
Qed.
Lemma Pphi1 : forall l, P1@l == 1.
Proof.
intros;simpl;apply (morph1 CRmorph).
Qed.
Lemma mkPinj_ok : forall j l P, (mkPinj j P)@l == P@(jump j l).
Proof.
intros j l p;destruct p;simpl;rsimpl.
rewrite <-jump_Pplus;rewrite Pplus_comm;rrefl.
Qed.
Let pow_pos_Pplus :=
pow_pos_Pplus rmul Rsth Reqe.(Rmul_ext) ARth.(ARmul_comm) ARth.(ARmul_assoc).
Lemma mkPX_ok : forall l P i Q,
(mkPX P i Q)@l == P@l*(pow_pos rmul (hd 0 l) i) + Q@(tail l).
Proof.
intros l P i Q;unfold mkPX.
destruct P;try (simpl;rrefl).
assert (H := morph_eq CRmorph c cO);destruct (c ?=! cO);simpl;try rrefl.
rewrite (H (refl_equal true));rewrite (morph0 CRmorph).
rewrite mkPinj_ok;rsimpl;simpl;rrefl.
assert (H := @Peq_ok P3 P0);destruct (P3 ?== P0);simpl;try rrefl.
rewrite (H (refl_equal true));trivial.
rewrite Pphi0. rewrite pow_pos_Pplus;rsimpl.
Qed.
Ltac Esimpl :=
repeat (progress (
match goal with
| |- context [?P@?l] =>
match P with
| P0 => rewrite (Pphi0 l)
| P1 => rewrite (Pphi1 l)
| (mkPinj ?j ?P) => rewrite (mkPinj_ok j l P)
| (mkPX ?P ?i ?Q) => rewrite (mkPX_ok l P i Q)
end
| |- context [[?c]] =>
match c with
| cO => rewrite (morph0 CRmorph)
| cI => rewrite (morph1 CRmorph)
| ?x +! ?y => rewrite ((morph_add CRmorph) x y)
| ?x *! ?y => rewrite ((morph_mul CRmorph) x y)
| ?x -! ?y => rewrite ((morph_sub CRmorph) x y)
| -! ?x => rewrite ((morph_opp CRmorph) x)
end
end));
rsimpl; simpl.
Lemma PaddC_ok : forall c P l, (PaddC P c)@l == P@l + [c].
Proof.
induction P;simpl;intros;Esimpl;trivial.
rewrite IHP2;rsimpl.
Qed.
Lemma PsubC_ok : forall c P l, (PsubC P c)@l == P@l - [c].
Proof.
induction P;simpl;intros.
Esimpl.
rewrite IHP;rsimpl.
rewrite IHP2;rsimpl.
Qed.
Lemma PmulC_aux_ok : forall c P l, (PmulC_aux P c)@l == P@l * [c].
Proof.
induction P;simpl;intros;Esimpl;trivial.
rewrite IHP1;rewrite IHP2;rsimpl.
mul_push ([c]);rrefl.
Qed.
Lemma PmulC_ok : forall c P l, (PmulC P c)@l == P@l * [c].
Proof.
intros c P l; unfold PmulC.
assert (H:= morph_eq CRmorph c cO);destruct (c ?=! cO).
rewrite (H (refl_equal true));Esimpl.
assert (H1:= morph_eq CRmorph c cI);destruct (c ?=! cI).
rewrite (H1 (refl_equal true));Esimpl.
apply PmulC_aux_ok.
Qed.
Lemma Popp_ok : forall P l, (--P)@l == - P@l.
Proof.
induction P;simpl;intros.
Esimpl.
apply IHP.
rewrite IHP1;rewrite IHP2;rsimpl.
Qed.
Ltac Esimpl2 :=
Esimpl;
repeat (progress (
match goal with
| |- context [(PaddC ?P ?c)@?l] => rewrite (PaddC_ok c P l)
| |- context [(PsubC ?P ?c)@?l] => rewrite (PsubC_ok c P l)
| |- context [(PmulC ?P ?c)@?l] => rewrite (PmulC_ok c P l)
| |- context [(--?P)@?l] => rewrite (Popp_ok P l)
end)); Esimpl.
Lemma Padd_ok : forall P' P l, (P ++ P')@l == P@l + P'@l.
Proof.
induction P';simpl;intros;Esimpl2.
generalize P p l;clear P p l.
induction P;simpl;intros.
Esimpl2;apply (ARadd_comm ARth).
assert (H := ZPminus_spec p p0);destruct (ZPminus p p0).
rewrite H;Esimpl. rewrite IHP';rrefl.
rewrite H;Esimpl. rewrite IHP';Esimpl.
rewrite <- jump_Pplus;rewrite Pplus_comm;rrefl.
rewrite H;Esimpl. rewrite IHP.
rewrite <- jump_Pplus;rewrite Pplus_comm;rrefl.
destruct p0;simpl.
rewrite IHP2;simpl;rsimpl.
rewrite IHP2;simpl.
rewrite jump_Pdouble_minus_one;rsimpl.
rewrite IHP';rsimpl.
destruct P;simpl.
Esimpl2;add_push [c];rrefl.
destruct p0;simpl;Esimpl2.
rewrite IHP'2;simpl.
rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));rrefl.
rewrite IHP'2;simpl.
rewrite jump_Pdouble_minus_one;rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));rrefl.
rewrite IHP'2;rsimpl. add_push (P @ (tail l));rrefl.
assert (H := ZPminus_spec p0 p);destruct (ZPminus p0 p);Esimpl2.
rewrite IHP'1;rewrite IHP'2;rsimpl.
add_push (P3 @ (tail l));rewrite H;rrefl.
rewrite IHP'1;rewrite IHP'2;simpl;Esimpl.
rewrite H;rewrite Pplus_comm.
rewrite pow_pos_Pplus;rsimpl.
add_push (P3 @ (tail l));rrefl.
assert (forall P k l,
(PaddX Padd P'1 k P) @ l == P@l + P'1@l * pow_pos rmul (hd 0 l) k).
induction P;simpl;intros;try apply (ARadd_comm ARth).
destruct p2;simpl;try apply (ARadd_comm ARth).
rewrite jump_Pdouble_minus_one;apply (ARadd_comm ARth).
assert (H1 := ZPminus_spec p2 k);destruct (ZPminus p2 k);Esimpl2.
rewrite IHP'1;rsimpl; rewrite H1;add_push (P5 @ (tail l0));rrefl.
rewrite IHP'1;simpl;Esimpl.
rewrite H1;rewrite Pplus_comm.
rewrite pow_pos_Pplus;simpl;Esimpl.
add_push (P5 @ (tail l0));rrefl.
rewrite IHP1;rewrite H1;rewrite Pplus_comm.
rewrite pow_pos_Pplus;simpl;rsimpl.
add_push (P5 @ (tail l0));rrefl.
rewrite H0;rsimpl.
add_push (P3 @ (tail l)).
rewrite H;rewrite Pplus_comm.
rewrite IHP'2;rewrite pow_pos_Pplus;rsimpl.
add_push (P3 @ (tail l));rrefl.
Qed.
Lemma Psub_ok : forall P' P l, (P -- P')@l == P@l - P'@l.
Proof.
induction P';simpl;intros;Esimpl2;trivial.
generalize P p l;clear P p l.
induction P;simpl;intros.
Esimpl2;apply (ARadd_comm ARth).
assert (H := ZPminus_spec p p0);destruct (ZPminus p p0).
rewrite H;Esimpl. rewrite IHP';rsimpl.
rewrite H;Esimpl. rewrite IHP';Esimpl.
rewrite <- jump_Pplus;rewrite Pplus_comm;rrefl.
rewrite H;Esimpl. rewrite IHP.
rewrite <- jump_Pplus;rewrite Pplus_comm;rrefl.
destruct p0;simpl.
rewrite IHP2;simpl;rsimpl.
rewrite IHP2;simpl.
rewrite jump_Pdouble_minus_one;rsimpl.
rewrite IHP';rsimpl.
destruct P;simpl.
repeat rewrite Popp_ok;Esimpl2;rsimpl;add_push [c];try rrefl.
destruct p0;simpl;Esimpl2.
rewrite IHP'2;simpl;rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));trivial.
add_push (P @ (jump p0 (jump p0 (tail l))));rrefl.
rewrite IHP'2;simpl;rewrite jump_Pdouble_minus_one;rsimpl.
add_push (- (P'1 @ l * pow_pos rmul (hd 0 l) p));rrefl.
rewrite IHP'2;rsimpl;add_push (P @ (tail l));rrefl.
assert (H := ZPminus_spec p0 p);destruct (ZPminus p0 p);Esimpl2.
rewrite IHP'1; rewrite IHP'2;rsimpl.
add_push (P3 @ (tail l));rewrite H;rrefl.
rewrite IHP'1; rewrite IHP'2;rsimpl;simpl;Esimpl.
rewrite H;rewrite Pplus_comm.
rewrite pow_pos_Pplus;rsimpl.
add_push (P3 @ (tail l));rrefl.
assert (forall P k l,
(PsubX Psub P'1 k P) @ l == P@l + - P'1@l * pow_pos rmul (hd 0 l) k).
induction P;simpl;intros.
rewrite Popp_ok;rsimpl;apply (ARadd_comm ARth);trivial.
destruct p2;simpl;rewrite Popp_ok;rsimpl.
apply (ARadd_comm ARth);trivial.
rewrite jump_Pdouble_minus_one;apply (ARadd_comm ARth);trivial.
apply (ARadd_comm ARth);trivial.
assert (H1 := ZPminus_spec p2 k);destruct (ZPminus p2 k);Esimpl2;rsimpl.
rewrite IHP'1;rsimpl;add_push (P5 @ (tail l0));rewrite H1;rrefl.
rewrite IHP'1;rewrite H1;rewrite Pplus_comm.
rewrite pow_pos_Pplus;simpl;Esimpl.
add_push (P5 @ (tail l0));rrefl.
rewrite IHP1;rewrite H1;rewrite Pplus_comm.
rewrite pow_pos_Pplus;simpl;rsimpl.
add_push (P5 @ (tail l0));rrefl.
rewrite H0;rsimpl.
rewrite IHP'2;rsimpl;add_push (P3 @ (tail l)).
rewrite H;rewrite Pplus_comm.
rewrite pow_pos_Pplus;rsimpl.
Qed.
(* Proof for the symmetriv version *)
Lemma PmulI_ok :
forall P',
(forall (P : Pol) (l : list R), (Pmul P P') @ l == P @ l * P' @ l) ->
forall (P : Pol) (p : positive) (l : list R),
(PmulI Pmul P' p P) @ l == P @ l * P' @ (jump p l).
Proof.
induction P;simpl;intros.
Esimpl2;apply (ARmul_comm ARth).
assert (H1 := ZPminus_spec p p0);destruct (ZPminus p p0);Esimpl2.
rewrite H1; rewrite H;rrefl.
rewrite H1; rewrite H.
rewrite Pplus_comm.
rewrite jump_Pplus;simpl;rrefl.
rewrite H1;rewrite Pplus_comm.
rewrite jump_Pplus;rewrite IHP;rrefl.
destruct p0;Esimpl2.
rewrite IHP1;rewrite IHP2;simpl;rsimpl.
mul_push (pow_pos rmul (hd 0 l) p);rrefl.
rewrite IHP1;rewrite IHP2;simpl;rsimpl.
mul_push (pow_pos rmul (hd 0 l) p); rewrite jump_Pdouble_minus_one;rrefl.
rewrite IHP1;simpl;rsimpl.
mul_push (pow_pos rmul (hd 0 l) p).
rewrite H;rrefl.
Qed.
(*
Lemma PmulI_ok :
forall P',
(forall (P : Pol) (l : list R), (Pmul_aux P P') @ l == P @ l * P' @ l) ->
forall (P : Pol) (p : positive) (l : list R),
(PmulI Pmul_aux P' p P) @ l == P @ l * P' @ (jump p l).
Proof.
induction P;simpl;intros.
Esimpl2;apply (ARmul_comm ARth).
assert (H1 := ZPminus_spec p p0);destruct (ZPminus p p0);Esimpl2.
rewrite H1; rewrite H;rrefl.
rewrite H1; rewrite H.
rewrite Pplus_comm.
rewrite jump_Pplus;simpl;rrefl.
rewrite H1;rewrite Pplus_comm.
rewrite jump_Pplus;rewrite IHP;rrefl.
destruct p0;Esimpl2.
rewrite IHP1;rewrite IHP2;simpl;rsimpl.
mul_push (pow_pos rmul (hd 0 l) p);rrefl.
rewrite IHP1;rewrite IHP2;simpl;rsimpl.
mul_push (pow_pos rmul (hd 0 l) p); rewrite jump_Pdouble_minus_one;rrefl.
rewrite IHP1;simpl;rsimpl.
mul_push (pow_pos rmul (hd 0 l) p).
rewrite H;rrefl.
Qed.
Lemma Pmul_aux_ok : forall P' P l,(Pmul_aux P P')@l == P@l * P'@l.
Proof.
induction P';simpl;intros.
Esimpl2;trivial.
apply PmulI_ok;trivial.
rewrite Padd_ok;Esimpl2.
rewrite (PmulI_ok P'2 IHP'2). rewrite IHP'1. rrefl.
Qed.
*)
(* Proof for the symmetric version *)
Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l.
Proof.
intros P P';generalize P;clear P;induction P';simpl;intros.
apply PmulC_ok. apply PmulI_ok;trivial.
destruct P.
rewrite (ARmul_comm ARth);Esimpl2;Esimpl2.
Esimpl2. rewrite IHP'1;Esimpl2.
assert (match p0 with
| xI j => Pinj (xO j) P ** P'2
| xO j => Pinj (Pdouble_minus_one j) P ** P'2
| 1 => P ** P'2
end @ (tail l) == P @ (jump p0 l) * P'2 @ (tail l)).
destruct p0;simpl;rewrite IHP'2;Esimpl.
rewrite jump_Pdouble_minus_one;Esimpl.
rewrite H;Esimpl.
rewrite Padd_ok; Esimpl2. rewrite Padd_ok; Esimpl2.
repeat (rewrite IHP'1 || rewrite IHP'2);simpl.
rewrite PmulI_ok;trivial.
mul_push (P'1@l). simpl. mul_push (P'2 @ (tail l)). Esimpl.
Qed.
(*
Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l.
Proof.
destruct P;simpl;intros.
Esimpl2;apply (ARmul_comm ARth).
rewrite (PmulI_ok P (Pmul_aux_ok P)).
apply (ARmul_comm ARth).
rewrite Padd_ok; Esimpl2.
rewrite (PmulI_ok P3 (Pmul_aux_ok P3));trivial.
rewrite Pmul_aux_ok;mul_push (P' @ l).
rewrite (ARmul_comm ARth (P' @ l));rrefl.
Qed.
*)
Lemma Psquare_ok : forall P l, (Psquare P)@l == P@l * P@l.
Proof.
induction P;simpl;intros;Esimpl2.
apply IHP. rewrite Padd_ok. rewrite Pmul_ok;Esimpl2.
rewrite IHP1;rewrite IHP2.
mul_push (pow_pos rmul (hd 0 l) p). mul_push (P2@l).
rrefl.
Qed.
Lemma mkZmon_ok: forall M j l,
Mphi l (mkZmon j M) == Mphi l (zmon j M).
intros M j l; case M; simpl; intros; rsimpl.
Qed.
Lemma zmon_pred_ok : forall M j l,
Mphi (tail l) (zmon_pred j M) == Mphi l (zmon j M).
Proof.
destruct j; simpl;intros auto; rsimpl.
rewrite mkZmon_ok;rsimpl.
rewrite mkZmon_ok;simpl. rewrite jump_Pdouble_minus_one; rsimpl.
Qed.
Lemma mkVmon_ok : forall M i l, Mphi l (mkVmon i M) == Mphi l M*pow_pos rmul (hd 0 l) i.
Proof.
destruct M;simpl;intros;rsimpl.
rewrite zmon_pred_ok;simpl;rsimpl.
rewrite Pplus_comm;rewrite pow_pos_Pplus;rsimpl.
Qed.
Lemma Mcphi_ok: forall P c l,
let (Q,R) := CFactor P c in
P@l == Q@l + (phi c) * (R@l).
Proof.
intros P; elim P; simpl; auto; clear P.
intros c c1 l; generalize (div_th.(div_eucl_th) c c1); case cdiv.
intros q r H; rewrite H.
Esimpl.
rewrite (ARadd_comm ARth); rsimpl.
intros i P Hrec c l.
generalize (Hrec c (jump i l)); case CFactor.
intros R1 S1; Esimpl; auto.
intros Q1 Qrec i R1 Rrec c l.
generalize (Qrec c l); case CFactor; intros S1 S2 HS.
generalize (Rrec c (tail l)); case CFactor; intros S3 S4 HS1.
rewrite HS; rewrite HS1; Esimpl.
apply (Radd_ext Reqe); rsimpl.
repeat rewrite <- (ARadd_assoc ARth).
apply (Radd_ext Reqe); rsimpl.
rewrite (ARadd_comm ARth); rsimpl.
Qed.
Lemma Mphi_ok: forall P (cM: C * Mon) l,
let (c,M) := cM in
let (Q,R) := MFactor P c M in
P@l == Q@l + (phi c) * (Mphi l M) * (R@l).
Proof.
intros P; elim P; simpl; auto; clear P.
intros c (c1, M) l; case M; simpl; auto.
assert (H1:= morph_eq CRmorph c1 cI);destruct (c1 ?=! cI).
rewrite (H1 (refl_equal true));Esimpl.
try rewrite (morph0 CRmorph); rsimpl.
generalize (div_th.(div_eucl_th) c c1); case (cdiv c c1).
intros q r H; rewrite H; clear H H1.
Esimpl.
rewrite (ARadd_comm ARth); rsimpl.
intros p m; Esimpl.
intros p m; Esimpl.
intros i P Hrec (c,M) l; case M; simpl; clear M.
assert (H1:= morph_eq CRmorph c cI);destruct (c ?=! cI).
rewrite (H1 (refl_equal true));Esimpl.
Esimpl.
generalize (Mcphi_ok P c (jump i l)); case CFactor.
intros R1 Q1 HH; rewrite HH; Esimpl.
intros j M.
case_eq ((i ?= j) Eq); intros He; simpl.
rewrite (Pcompare_Eq_eq _ _ He).
generalize (Hrec (c, M) (jump j l)); case (MFactor P c M);
simpl; intros P2 Q2 H; repeat rewrite mkPinj_ok; auto.
generalize (Hrec (c, (zmon (j -i) M)) (jump i l));
case (MFactor P c (zmon (j -i) M)); simpl.
intros P2 Q2 H; repeat rewrite mkPinj_ok; auto.
rewrite <- (Pplus_minus _ _ (ZC2 _ _ He)).
rewrite Pplus_comm; rewrite jump_Pplus; auto.
rewrite (morph0 CRmorph); rsimpl.
intros P2 m; rewrite (morph0 CRmorph); rsimpl.
intros P2 Hrec1 i Q2 Hrec2 (c, M) l; case M; simpl; auto.
assert (H1:= morph_eq CRmorph c cI);destruct (c ?=! cI).
rewrite (H1 (refl_equal true));Esimpl.
Esimpl.
generalize (Mcphi_ok P2 c l); case CFactor.
intros S1 S2 HS.
generalize (Mcphi_ok Q2 c (tail l)); case CFactor.
intros S3 S4 HS1; Esimpl; rewrite HS; rewrite HS1.
rsimpl.
apply (Radd_ext Reqe); rsimpl.
repeat rewrite <- (ARadd_assoc ARth).
apply (Radd_ext Reqe); rsimpl.
rewrite (ARadd_comm ARth); rsimpl.
intros j M1.
generalize (Hrec1 (c,zmon j M1) l);
case (MFactor P2 c (zmon j M1)).
intros R1 S1 H1.
generalize (Hrec2 (c, zmon_pred j M1) (List.tail l));
case (MFactor Q2 c (zmon_pred j M1)); simpl.
intros R2 S2 H2; rewrite H1; rewrite H2.
repeat rewrite mkPX_ok; simpl.
rsimpl.
apply radd_ext; rsimpl.
rewrite (ARadd_comm ARth); rsimpl.
apply radd_ext; rsimpl.
rewrite (ARadd_comm ARth); rsimpl.
rewrite zmon_pred_ok;rsimpl.
intros j M1.
case_eq ((i ?= j) Eq); intros He; simpl.
rewrite (Pcompare_Eq_eq _ _ He).
generalize (Hrec1 (c, mkZmon xH M1) l); case (MFactor P2 c (mkZmon xH M1));
simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto.
rewrite H; rewrite mkPX_ok; rsimpl.
repeat (rewrite <-(ARadd_assoc ARth)).
apply radd_ext; rsimpl.
rewrite (ARadd_comm ARth); rsimpl.
apply radd_ext; rsimpl.
repeat (rewrite <-(ARmul_assoc ARth)).
rewrite mkZmon_ok.
apply rmul_ext; rsimpl.
repeat (rewrite <-(ARmul_assoc ARth)).
apply rmul_ext; rsimpl.
rewrite (ARmul_comm ARth); rsimpl.
generalize (Hrec1 (c, vmon (j - i) M1) l);
case (MFactor P2 c (vmon (j - i) M1));
simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto.
rewrite H; rsimpl; repeat rewrite mkPinj_ok; auto.
rewrite mkPX_ok; rsimpl.
repeat (rewrite <-(ARadd_assoc ARth)).
apply radd_ext; rsimpl.
rewrite (ARadd_comm ARth); rsimpl.
apply radd_ext; rsimpl.
repeat (rewrite <-(ARmul_assoc ARth)).
apply rmul_ext; rsimpl.
rewrite (ARmul_comm ARth); rsimpl.
apply rmul_ext; rsimpl.
rewrite <- (ARmul_comm ARth (Mphi (tail l) M1)); rsimpl.
repeat (rewrite <-(ARmul_assoc ARth)).
apply rmul_ext; rsimpl.
rewrite <- pow_pos_Pplus.
rewrite (Pplus_minus _ _ (ZC2 _ _ He)); rsimpl.
generalize (Hrec1 (c, mkZmon 1 M1) l);
case (MFactor P2 c (mkZmon 1 M1));
simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto.
rewrite H; rsimpl.
rewrite mkPX_ok; rsimpl.
repeat (rewrite <-(ARadd_assoc ARth)).
apply radd_ext; rsimpl.
rewrite (ARadd_comm ARth); rsimpl.
apply radd_ext; rsimpl.
rewrite mkZmon_ok.
repeat (rewrite <-(ARmul_assoc ARth)).
apply rmul_ext; rsimpl.
rewrite (ARmul_comm ARth); rsimpl.
rewrite mkPX_ok; simpl; rsimpl.
rewrite (morph0 CRmorph); rsimpl.
repeat (rewrite <-(ARmul_assoc ARth)).
rewrite (ARmul_comm ARth (Q3@l)); rsimpl.
apply rmul_ext; rsimpl.
rewrite (ARmul_comm ARth); rsimpl.
repeat (rewrite <- (ARmul_assoc ARth)).
apply rmul_ext; rsimpl.
rewrite <- pow_pos_Pplus.
rewrite (Pplus_minus _ _ He); rsimpl.
Qed.
(* Proof for the symmetric version *)
Lemma POneSubst_ok: forall P1 M1 P2 P3 l,
POneSubst P1 M1 P2 = Some P3 -> phi (fst M1) * Mphi l (snd M1) == P2@l -> P1@l == P3@l.
Proof.
intros P2 (cc,M1) P3 P4 l; unfold POneSubst.
generalize (Mphi_ok P2 (cc, M1) l); case (MFactor P2 cc M1); simpl; auto.
intros Q1 R1; case R1.
intros c H; rewrite H.
generalize (morph_eq CRmorph c cO);
case (c ?=! cO); simpl; auto.
intros H1 H2; rewrite H1; auto; rsimpl.
discriminate.
intros _ H1 H2; injection H1; intros; subst.
rewrite H2; rsimpl.
(* new version *)
rewrite Padd_ok; rewrite PmulC_ok; rsimpl.
intros i P5 H; rewrite H.
intros HH H1; injection HH; intros; subst; rsimpl.
rewrite Padd_ok; rewrite PmulI_ok by (intros;apply Pmul_ok). rewrite H1; rsimpl.
intros i P5 P6 H1 H2 H3; rewrite H1; rewrite H3.
assert (P4 = Q1 ++ P3 ** PX i P5 P6).
injection H2; intros; subst;trivial.
rewrite H;rewrite Padd_ok;rewrite Pmul_ok;rsimpl.
Qed.
(*
Lemma POneSubst_ok: forall P1 M1 P2 P3 l,
POneSubst P1 M1 P2 = Some P3 -> Mphi l M1 == P2@l -> P1@l == P3@l.
Proof.
intros P2 M1 P3 P4 l; unfold POneSubst.
generalize (Mphi_ok P2 M1 l); case (MFactor P2 M1); simpl; auto.
intros Q1 R1; case R1.
intros c H; rewrite H.
generalize (morph_eq CRmorph c cO);
case (c ?=! cO); simpl; auto.
intros H1 H2; rewrite H1; auto; rsimpl.
discriminate.
intros _ H1 H2; injection H1; intros; subst.
rewrite H2; rsimpl.
rewrite Padd_ok; rewrite Pmul_ok; rsimpl.
intros i P5 H; rewrite H.
intros HH H1; injection HH; intros; subst; rsimpl.
rewrite Padd_ok; rewrite Pmul_ok. rewrite H1; rsimpl.
intros i P5 P6 H1 H2 H3; rewrite H1; rewrite H3.
injection H2; intros; subst; rsimpl.
rewrite Padd_ok.
rewrite Pmul_ok; rsimpl.
Qed.
*)
Lemma PNSubst1_ok: forall n P1 M1 P2 l,
[fst M1] * Mphi l (snd M1) == P2@l -> P1@l == (PNSubst1 P1 M1 P2 n)@l.
Proof.
intros n; elim n; simpl; auto.
intros P2 M1 P3 l H.
generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l);
case (POneSubst P2 M1 P3); [idtac | intros; rsimpl].
intros P4 Hrec; rewrite (Hrec P4); auto; rsimpl.
intros n1 Hrec P2 M1 P3 l H.
generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l);
case (POneSubst P2 M1 P3); [idtac | intros; rsimpl].
intros P4 Hrec1; rewrite (Hrec1 P4); auto; rsimpl.
Qed.
Lemma PNSubst_ok: forall n P1 M1 P2 l P3,
PNSubst P1 M1 P2 n = Some P3 -> [fst M1] * Mphi l (snd M1) == P2@l -> P1@l == P3@l.
Proof.
intros n P2 (cc, M1) P3 l P4; unfold PNSubst.
generalize (fun P4 => @POneSubst_ok P2 (cc,M1) P3 P4 l);
case (POneSubst P2 (cc,M1) P3); [idtac | intros; discriminate].
intros P5 H1; case n; try (intros; discriminate).
intros n1 H2; injection H2; intros; subst.
rewrite <- PNSubst1_ok; auto.
Qed.
Fixpoint MPcond (LM1: list (C * Mon * Pol)) (l: list R) {struct LM1} : Prop :=
match LM1 with
cons (M1,P2) LM2 => ([fst M1] * Mphi l (snd M1) == P2@l) /\ (MPcond LM2 l)
| _ => True
end.
Lemma PSubstL1_ok: forall n LM1 P1 l,
MPcond LM1 l -> P1@l == (PSubstL1 P1 LM1 n)@l.
Proof.
intros n LM1; elim LM1; simpl; auto.
intros; rsimpl.
intros (M2,P2) LM2 Hrec P3 l [H H1].
rewrite <- Hrec; auto.
apply PNSubst1_ok; auto.
Qed.
Lemma PSubstL_ok: forall n LM1 P1 P2 l,
PSubstL P1 LM1 n = Some P2 -> MPcond LM1 l -> P1@l == P2@l.
Proof.
intros n LM1; elim LM1; simpl; auto.
intros; discriminate.
intros (M2,P2) LM2 Hrec P3 P4 l.
generalize (PNSubst_ok n P3 M2 P2); case (PNSubst P3 M2 P2 n).
intros P5 H0 H1 [H2 H3]; injection H1; intros; subst.
rewrite <- PSubstL1_ok; auto.
intros l1 H [H1 H2]; auto.
Qed.
Lemma PNSubstL_ok: forall m n LM1 P1 l,
MPcond LM1 l -> P1@l == (PNSubstL P1 LM1 m n)@l.
Proof.
intros m; elim m; simpl; auto.
intros n LM1 P2 l H; generalize (fun P3 => @PSubstL_ok n LM1 P2 P3 l);
case (PSubstL P2 LM1 n); intros; rsimpl; auto.
intros m1 Hrec n LM1 P2 l H.
generalize (fun P3 => @PSubstL_ok n LM1 P2 P3 l);
case (PSubstL P2 LM1 n); intros; rsimpl; auto.
rewrite <- Hrec; auto.
Qed.
(** Definition of polynomial expressions *)
Inductive PExpr : Type :=
| PEc : C -> PExpr
| PEX : positive -> PExpr
| PEadd : PExpr -> PExpr -> PExpr
| PEsub : PExpr -> PExpr -> PExpr
| PEmul : PExpr -> PExpr -> PExpr
| PEopp : PExpr -> PExpr
| PEpow : PExpr -> N -> PExpr.
(** evaluation of polynomial expressions towards R *)
Definition mk_X j := mkPinj_pred j mkX.
(** evaluation of polynomial expressions towards R *)
Fixpoint PEeval (l:list R) (pe:PExpr) {struct pe} : R :=
match pe with
| PEc c => phi c
| PEX j => nth 0 j l
| PEadd pe1 pe2 => (PEeval l pe1) + (PEeval l pe2)
| PEsub pe1 pe2 => (PEeval l pe1) - (PEeval l pe2)
| PEmul pe1 pe2 => (PEeval l pe1) * (PEeval l pe2)
| PEopp pe1 => - (PEeval l pe1)
| PEpow pe1 n => rpow (PEeval l pe1) (Cp_phi n)
end.
Strategy expand [PEeval].
(** Correctness proofs *)
Lemma mkX_ok : forall p l, nth 0 p l == (mk_X p) @ l.
Proof.
destruct p;simpl;intros;Esimpl;trivial.
rewrite <-jump_tl;rewrite nth_jump;rrefl.
rewrite <- nth_jump.
rewrite nth_Pdouble_minus_one;rrefl.
Qed.
Ltac Esimpl3 :=
repeat match goal with
| |- context [(?P1 ++ ?P2)@?l] => rewrite (Padd_ok P2 P1 l)
| |- context [(?P1 -- ?P2)@?l] => rewrite (Psub_ok P2 P1 l)
end;Esimpl2;try rrefl;try apply (ARadd_comm ARth).
(* Power using the chinise algorithm *)
(*Section POWER.
Variable subst_l : Pol -> Pol.
Fixpoint Ppow_pos (P:Pol) (p:positive){struct p} : Pol :=
match p with
| xH => P
| xO p => subst_l (Psquare (Ppow_pos P p))
| xI p => subst_l (Pmul P (Psquare (Ppow_pos P p)))
end.
Definition Ppow_N P n :=
match n with
| N0 => P1
| Npos p => Ppow_pos P p
end.
Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) ->
forall P p, (Ppow_pos P p)@l == (pow_pos Pmul P p)@l.
Proof.
intros l subst_l_ok P.
induction p;simpl;intros;try rrefl;try rewrite subst_l_ok.
repeat rewrite Pmul_ok;rewrite Psquare_ok;rewrite IHp;rrefl.
repeat rewrite Pmul_ok;rewrite Psquare_ok;rewrite IHp;rrefl.
Qed.
Lemma Ppow_N_ok : forall l, (forall P, subst_l P@l == P@l) ->
forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l.
Proof. destruct n;simpl. rrefl. apply Ppow_pos_ok. trivial. Qed.
End POWER. *)
Section POWER.
Variable subst_l : Pol -> Pol.
Fixpoint Ppow_pos (res P:Pol) (p:positive){struct p} : Pol :=
match p with
| xH => subst_l (Pmul res P)
| xO p => Ppow_pos (Ppow_pos res P p) P p
| xI p => subst_l (Pmul (Ppow_pos (Ppow_pos res P p) P p) P)
end.
Definition Ppow_N P n :=
match n with
| N0 => P1
| Npos p => Ppow_pos P1 P p
end.
Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) ->
forall res P p, (Ppow_pos res P p)@l == res@l * (pow_pos Pmul P p)@l.
Proof.
intros l subst_l_ok res P p. generalize res;clear res.
induction p;simpl;intros;try rewrite subst_l_ok; repeat rewrite Pmul_ok;repeat rewrite IHp.
rsimpl. mul_push (P@l);rsimpl. rsimpl. rrefl.
Qed.
Lemma Ppow_N_ok : forall l, (forall P, subst_l P@l == P@l) ->
forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l.
Proof. destruct n;simpl. rrefl. rewrite Ppow_pos_ok by trivial. Esimpl. Qed.
End POWER.
(** Normalization and rewriting *)
Section NORM_SUBST_REC.
Variable n : nat.
Variable lmp:list (C*Mon*Pol).
Let subst_l P := PNSubstL P lmp n n.
Let Pmul_subst P1 P2 := subst_l (Pmul P1 P2).
Let Ppow_subst := Ppow_N subst_l.
Fixpoint norm_aux (pe:PExpr) : Pol :=
match pe with
| PEc c => Pc c
| PEX j => mk_X j
| PEadd (PEopp pe1) pe2 => Psub (norm_aux pe2) (norm_aux pe1)
| PEadd pe1 (PEopp pe2) =>
Psub (norm_aux pe1) (norm_aux pe2)
| PEadd pe1 pe2 => Padd (norm_aux pe1) (norm_aux pe2)
| PEsub pe1 pe2 => Psub (norm_aux pe1) (norm_aux pe2)
| PEmul pe1 pe2 => Pmul (norm_aux pe1) (norm_aux pe2)
| PEopp pe1 => Popp (norm_aux pe1)
| PEpow pe1 n => Ppow_N (fun p => p) (norm_aux pe1) n
end.
Definition norm_subst pe := subst_l (norm_aux pe).
(*
Fixpoint norm_subst (pe:PExpr) : Pol :=
match pe with
| PEc c => Pc c
| PEX j => subst_l (mk_X j)
| PEadd (PEopp pe1) pe2 => Psub (norm_subst pe2) (norm_subst pe1)
| PEadd pe1 (PEopp pe2) =>
Psub (norm_subst pe1) (norm_subst pe2)
| PEadd pe1 pe2 => Padd (norm_subst pe1) (norm_subst pe2)
| PEsub pe1 pe2 => Psub (norm_subst pe1) (norm_subst pe2)
| PEmul pe1 pe2 => Pmul_subst (norm_subst pe1) (norm_subst pe2)
| PEopp pe1 => Popp (norm_subst pe1)
| PEpow pe1 n => Ppow_subst (norm_subst pe1) n
end.
Lemma norm_subst_spec :
forall l pe, MPcond lmp l ->
PEeval l pe == (norm_subst pe)@l.
Proof.
intros;assert (subst_l_ok:forall P, (subst_l P)@l == P@l).
unfold subst_l;intros.
rewrite <- PNSubstL_ok;trivial. rrefl.
assert (Pms_ok:forall P1 P2, (Pmul_subst P1 P2)@l == P1@l*P2@l).
intros;unfold Pmul_subst;rewrite subst_l_ok;rewrite Pmul_ok;rrefl.
induction pe;simpl;Esimpl3.
rewrite subst_l_ok;apply mkX_ok.
rewrite IHpe1;rewrite IHpe2;destruct pe1;destruct pe2;Esimpl3.
rewrite IHpe1;rewrite IHpe2;rrefl.
rewrite Pms_ok;rewrite IHpe1;rewrite IHpe2;rrefl.
rewrite IHpe;rrefl.
unfold Ppow_subst. rewrite Ppow_N_ok. trivial.
rewrite pow_th.(rpow_pow_N). destruct n0;Esimpl3.
induction p;simpl;try rewrite IHp;try rewrite IHpe;repeat rewrite Pms_ok;
repeat rewrite Pmul_ok;rrefl.
Qed.
*)
Lemma norm_aux_spec :
forall l pe, MPcond lmp l ->
PEeval l pe == (norm_aux pe)@l.
Proof.
intros.
induction pe;simpl;Esimpl3.
apply mkX_ok.
rewrite IHpe1;rewrite IHpe2;destruct pe1;destruct pe2;Esimpl3.
rewrite IHpe1;rewrite IHpe2;rrefl.
rewrite IHpe1;rewrite IHpe2. rewrite Pmul_ok. rrefl.
rewrite IHpe;rrefl.
rewrite Ppow_N_ok by (intros;rrefl).
rewrite pow_th.(rpow_pow_N). destruct n0;Esimpl3.
induction p;simpl;try rewrite IHp;try rewrite IHpe;repeat rewrite Pms_ok;
repeat rewrite Pmul_ok;rrefl.
Qed.
Lemma norm_subst_spec :
forall l pe, MPcond lmp l ->
PEeval l pe == (norm_subst pe)@l.
Proof.
intros;unfold norm_subst.
unfold subst_l;rewrite <- PNSubstL_ok;trivial. apply norm_aux_spec. trivial.
Qed.
End NORM_SUBST_REC.
Fixpoint interp_PElist (l:list R) (lpe:list (PExpr*PExpr)) {struct lpe} : Prop :=
match lpe with
| nil => True
| (me,pe)::lpe =>
match lpe with
| nil => PEeval l me == PEeval l pe
| _ => PEeval l me == PEeval l pe /\ interp_PElist l lpe
end
end.
Fixpoint mon_of_pol (P:Pol) : option (C * Mon) :=
match P with
| Pc c => if (c ?=! cO) then None else Some (c, mon0)
| Pinj j P =>
match mon_of_pol P with
| None => None
| Some (c,m) => Some (c, mkZmon j m)
end
| PX P i Q =>
if Peq Q P0 then
match mon_of_pol P with
| None => None
| Some (c,m) => Some (c, mkVmon i m)
end
else None
end.
Fixpoint mk_monpol_list (lpe:list (PExpr * PExpr)) : list (C*Mon*Pol) :=
match lpe with
| nil => nil
| (me,pe)::lpe =>
match mon_of_pol (norm_subst 0 nil me) with
| None => mk_monpol_list lpe
| Some m => (m,norm_subst 0 nil pe):: mk_monpol_list lpe
end
end.
Lemma mon_of_pol_ok : forall P m, mon_of_pol P = Some m ->
forall l, [fst m] * Mphi l (snd m) == P@l.
Proof.
induction P;simpl;intros;Esimpl.
assert (H1 := (morph_eq CRmorph) c cO).
destruct (c ?=! cO).
discriminate.
inversion H;trivial;Esimpl.
generalize H;clear H;case_eq (mon_of_pol P).
intros (c1,P2) H0 H1; inversion H1; Esimpl.
generalize (IHP (c1, P2) H0 (jump p l)).
rewrite mkZmon_ok;simpl;auto.
intros; discriminate.
generalize H;clear H;change match P3 with
| Pc c => c ?=! cO
| Pinj _ _ => false
| PX _ _ _ => false
end with (P3 ?== P0).
assert (H := Peq_ok P3 P0).
destruct (P3 ?== P0).
case_eq (mon_of_pol P2);try intros (cc, pp); intros.
inversion H1.
simpl.
rewrite mkVmon_ok;simpl.
rewrite H;trivial;Esimpl.
generalize (IHP1 _ H0); simpl; intros HH; rewrite HH; rsimpl.
discriminate.
intros;discriminate.
Qed.
Lemma interp_PElist_ok : forall l lpe,
interp_PElist l lpe -> MPcond (mk_monpol_list lpe) l.
Proof.
induction lpe;simpl. trivial.
destruct a;simpl;intros.
assert (HH:=mon_of_pol_ok (norm_subst 0 nil p));
destruct (mon_of_pol (norm_subst 0 nil p)).
split.
rewrite <- norm_subst_spec by exact I.
destruct lpe;try destruct H;rewrite <- H;
rewrite (norm_subst_spec 0 nil); try exact I;apply HH;trivial.
apply IHlpe. destruct lpe;simpl;trivial. destruct H. exact H0.
apply IHlpe. destruct lpe;simpl;trivial. destruct H. exact H0.
Qed.
Lemma norm_subst_ok : forall n l lpe pe,
interp_PElist l lpe ->
PEeval l pe == (norm_subst n (mk_monpol_list lpe) pe)@l.
Proof.
intros;apply norm_subst_spec. apply interp_PElist_ok;trivial.
Qed.
Lemma ring_correct : forall n l lpe pe1 pe2,
interp_PElist l lpe ->
(let lmp := mk_monpol_list lpe in
norm_subst n lmp pe1 ?== norm_subst n lmp pe2) = true ->
PEeval l pe1 == PEeval l pe2.
Proof.
simpl;intros.
do 2 (rewrite (norm_subst_ok n l lpe);trivial).
apply Peq_ok;trivial.
Qed.
(** Generic evaluation of polynomial towards R avoiding parenthesis *)
Variable get_sign : C -> option C.
Variable get_sign_spec : sign_theory copp ceqb get_sign.
Section EVALUATION.
(* [mkpow x p] = x^p *)
Variable mkpow : R -> positive -> R.
(* [mkpow x p] = -(x^p) *)
Variable mkopp_pow : R -> positive -> R.
(* [mkmult_pow r x p] = r * x^p *)
Variable mkmult_pow : R -> R -> positive -> R.
Fixpoint mkmult_rec (r:R) (lm:list (R*positive)) {struct lm}: R :=
match lm with
| nil => r
| cons (x,p) t => mkmult_rec (mkmult_pow r x p) t
end.
Definition mkmult1 lm :=
match lm with
| nil => 1
| cons (x,p) t => mkmult_rec (mkpow x p) t
end.
Definition mkmultm1 lm :=
match lm with
| nil => ropp rI
| cons (x,p) t => mkmult_rec (mkopp_pow x p) t
end.
Definition mkmult_c_pos c lm :=
if c ?=! cI then mkmult1 (rev' lm)
else mkmult_rec [c] (rev' lm).
Definition mkmult_c c lm :=
match get_sign c with
| None => mkmult_c_pos c lm
| Some c' =>
if c' ?=! cI then mkmultm1 (rev' lm)
else mkmult_rec [c] (rev' lm)
end.
Definition mkadd_mult rP c lm :=
match get_sign c with
| None => rP + mkmult_c_pos c lm
| Some c' => rP - mkmult_c_pos c' lm
end.
Definition add_pow_list (r:R) n l :=
match n with
| N0 => l
| Npos p => (r,p)::l
end.
Fixpoint add_mult_dev
(rP:R) (P:Pol) (fv:list R) (n:N) (lm:list (R*positive)) {struct P} : R :=
match P with
| Pc c =>
let lm := add_pow_list (hd 0 fv) n lm in
mkadd_mult rP c lm
| Pinj j Q =>
add_mult_dev rP Q (jump j fv) N0 (add_pow_list (hd 0 fv) n lm)
| PX P i Q =>
let rP := add_mult_dev rP P fv (Nplus (Npos i) n) lm in
if Q ?== P0 then rP
else add_mult_dev rP Q (tail fv) N0 (add_pow_list (hd 0 fv) n lm)
end.
Fixpoint mult_dev (P:Pol) (fv : list R) (n:N)
(lm:list (R*positive)) {struct P} : R :=
(* P@l * (hd 0 l)^n * lm *)
match P with
| Pc c => mkmult_c c (add_pow_list (hd 0 fv) n lm)
| Pinj j Q => mult_dev Q (jump j fv) N0 (add_pow_list (hd 0 fv) n lm)
| PX P i Q =>
let rP := mult_dev P fv (Nplus (Npos i) n) lm in
if Q ?== P0 then rP
else
let lmq := add_pow_list (hd 0 fv) n lm in
add_mult_dev rP Q (tail fv) N0 lmq
end.
Definition Pphi_avoid fv P := mult_dev P fv N0 nil.
Fixpoint r_list_pow (l:list (R*positive)) : R :=
match l with
| nil => rI
| cons (r,p) l => pow_pos rmul r p * r_list_pow l
end.
Hypothesis mkpow_spec : forall r p, mkpow r p == pow_pos rmul r p.
Hypothesis mkopp_pow_spec : forall r p, mkopp_pow r p == - (pow_pos rmul r p).
Hypothesis mkmult_pow_spec : forall r x p, mkmult_pow r x p == r * pow_pos rmul x p.
Lemma mkmult_rec_ok : forall lm r, mkmult_rec r lm == r * r_list_pow lm.
Proof.
induction lm;intros;simpl;Esimpl.
destruct a as (x,p);Esimpl.
rewrite IHlm. rewrite mkmult_pow_spec. Esimpl.
Qed.
Lemma mkmult1_ok : forall lm, mkmult1 lm == r_list_pow lm.
Proof.
destruct lm;simpl;Esimpl.
destruct p. rewrite mkmult_rec_ok;rewrite mkpow_spec;Esimpl.
Qed.
Lemma mkmultm1_ok : forall lm, mkmultm1 lm == - r_list_pow lm.
Proof.
destruct lm;simpl;Esimpl.
destruct p;rewrite mkmult_rec_ok. rewrite mkopp_pow_spec;Esimpl.
Qed.
Lemma r_list_pow_rev : forall l, r_list_pow (rev' l) == r_list_pow l.
Proof.
assert
(forall l lr : list (R * positive), r_list_pow (rev_append l lr) == r_list_pow lr * r_list_pow l).
induction l;intros;simpl;Esimpl.
destruct a;rewrite IHl;Esimpl.
rewrite (ARmul_comm ARth (pow_pos rmul r p)). rrefl.
intros;unfold rev'. rewrite H;simpl;Esimpl.
Qed.
Lemma mkmult_c_pos_ok : forall c lm, mkmult_c_pos c lm == [c]* r_list_pow lm.
Proof.
intros;unfold mkmult_c_pos;simpl.
assert (H := (morph_eq CRmorph) c cI).
rewrite <- r_list_pow_rev; destruct (c ?=! cI).
rewrite H;trivial;Esimpl.
apply mkmult1_ok. apply mkmult_rec_ok.
Qed.
Lemma mkmult_c_ok : forall c lm, mkmult_c c lm == [c] * r_list_pow lm.
Proof.
intros;unfold mkmult_c;simpl.
case_eq (get_sign c);intros.
assert (H1 := (morph_eq CRmorph) c0 cI).
destruct (c0 ?=! cI).
rewrite (CRmorph.(morph_eq) _ _ (get_sign_spec.(sign_spec) _ H)). Esimpl. rewrite H1;trivial.
rewrite <- r_list_pow_rev;trivial;Esimpl.
apply mkmultm1_ok.
rewrite <- r_list_pow_rev; apply mkmult_rec_ok.
apply mkmult_c_pos_ok.
Qed.
Lemma mkadd_mult_ok : forall rP c lm, mkadd_mult rP c lm == rP + [c]*r_list_pow lm.
Proof.
intros;unfold mkadd_mult.
case_eq (get_sign c);intros.
rewrite (CRmorph.(morph_eq) _ _ (get_sign_spec.(sign_spec) _ H));Esimpl.
rewrite mkmult_c_pos_ok;Esimpl.
rewrite mkmult_c_pos_ok;Esimpl.
Qed.
Lemma add_pow_list_ok :
forall r n l, r_list_pow (add_pow_list r n l) == pow_N rI rmul r n * r_list_pow l.
Proof.
destruct n;simpl;intros;Esimpl.
Qed.
Lemma add_mult_dev_ok : forall P rP fv n lm,
add_mult_dev rP P fv n lm == rP + P@fv*pow_N rI rmul (hd 0 fv) n * r_list_pow lm.
Proof.
induction P;simpl;intros.
rewrite mkadd_mult_ok. rewrite add_pow_list_ok; Esimpl.
rewrite IHP. simpl. rewrite add_pow_list_ok; Esimpl.
change (match P3 with
| Pc c => c ?=! cO
| Pinj _ _ => false
| PX _ _ _ => false
end) with (Peq P3 P0).
change match n with
| N0 => Npos p
| Npos q => Npos (p + q)
end with (Nplus (Npos p) n);trivial.
assert (H := Peq_ok P3 P0).
destruct (P3 ?== P0).
rewrite (H (refl_equal true)).
rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_Pplus;Esimpl.
rewrite IHP2.
rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_Pplus;Esimpl.
Qed.
Lemma mult_dev_ok : forall P fv n lm,
mult_dev P fv n lm == P@fv * pow_N rI rmul (hd 0 fv) n * r_list_pow lm.
Proof.
induction P;simpl;intros;Esimpl.
rewrite mkmult_c_ok;rewrite add_pow_list_ok;Esimpl.
rewrite IHP. simpl;rewrite add_pow_list_ok;Esimpl.
change (match P3 with
| Pc c => c ?=! cO
| Pinj _ _ => false
| PX _ _ _ => false
end) with (Peq P3 P0).
change match n with
| N0 => Npos p
| Npos q => Npos (p + q)
end with (Nplus (Npos p) n);trivial.
assert (H := Peq_ok P3 P0).
destruct (P3 ?== P0).
rewrite (H (refl_equal true)).
rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_Pplus;Esimpl.
rewrite add_mult_dev_ok. rewrite IHP1; rewrite add_pow_list_ok.
destruct n;simpl;Esimpl;rewrite pow_pos_Pplus;Esimpl.
Qed.
Lemma Pphi_avoid_ok : forall P fv, Pphi_avoid fv P == P@fv.
Proof.
unfold Pphi_avoid;intros;rewrite mult_dev_ok;simpl;Esimpl.
Qed.
End EVALUATION.
Definition Pphi_pow :=
let mkpow x p :=
match p with xH => x | _ => rpow x (Cp_phi (Npos p)) end in
let mkopp_pow x p := ropp (mkpow x p) in
let mkmult_pow r x p := rmul r (mkpow x p) in
Pphi_avoid mkpow mkopp_pow mkmult_pow.
Lemma local_mkpow_ok :
forall (r : R) (p : positive),
match p with
| xI _ => rpow r (Cp_phi (Npos p))
| xO _ => rpow r (Cp_phi (Npos p))
| 1 => r
end == pow_pos rmul r p.
Proof. intros r p;destruct p;try rewrite pow_th.(rpow_pow_N);reflexivity. Qed.
Lemma Pphi_pow_ok : forall P fv, Pphi_pow fv P == P@fv.
Proof.
unfold Pphi_pow;intros;apply Pphi_avoid_ok;intros;try rewrite local_mkpow_ok;rrefl.
Qed.
Lemma ring_rw_pow_correct : forall n lH l,
interp_PElist l lH ->
forall lmp, mk_monpol_list lH = lmp ->
forall pe npe, norm_subst n lmp pe = npe ->
PEeval l pe == Pphi_pow l npe.
Proof.
intros n lH l H1 lmp Heq1 pe npe Heq2.
rewrite Pphi_pow_ok. rewrite <- Heq2;rewrite <- Heq1.
apply norm_subst_ok. trivial.
Qed.
Fixpoint mkmult_pow (r x:R) (p: positive) {struct p} : R :=
match p with
| xH => r*x
| xO p => mkmult_pow (mkmult_pow r x p) x p
| xI p => mkmult_pow (mkmult_pow (r*x) x p) x p
end.
Definition mkpow x p :=
match p with
| xH => x
| xO p => mkmult_pow x x (Pdouble_minus_one p)
| xI p => mkmult_pow x x (xO p)
end.
Definition mkopp_pow x p :=
match p with
| xH => -x
| xO p => mkmult_pow (-x) x (Pdouble_minus_one p)
| xI p => mkmult_pow (-x) x (xO p)
end.
Definition Pphi_dev := Pphi_avoid mkpow mkopp_pow mkmult_pow.
Lemma mkmult_pow_ok : forall p r x, mkmult_pow r x p == r*pow_pos rmul x p.
Proof.
induction p;intros;simpl;Esimpl.
repeat rewrite IHp;Esimpl.
repeat rewrite IHp;Esimpl.
Qed.
Lemma mkpow_ok : forall p x, mkpow x p == pow_pos rmul x p.
Proof.
destruct p;simpl;intros;Esimpl.
repeat rewrite mkmult_pow_ok;Esimpl.
rewrite mkmult_pow_ok;Esimpl.
pattern x at 1;replace x with (pow_pos rmul x 1).
rewrite <- pow_pos_Pplus.
rewrite <- Pplus_one_succ_l.
rewrite Psucc_o_double_minus_one_eq_xO.
simpl;Esimpl.
trivial.
Qed.
Lemma mkopp_pow_ok : forall p x, mkopp_pow x p == - pow_pos rmul x p.
Proof.
destruct p;simpl;intros;Esimpl.
repeat rewrite mkmult_pow_ok;Esimpl.
rewrite mkmult_pow_ok;Esimpl.
pattern x at 1;replace x with (pow_pos rmul x 1).
rewrite <- pow_pos_Pplus.
rewrite <- Pplus_one_succ_l.
rewrite Psucc_o_double_minus_one_eq_xO.
simpl;Esimpl.
trivial.
Qed.
Lemma Pphi_dev_ok : forall P fv, Pphi_dev fv P == P@fv.
Proof.
unfold Pphi_dev;intros;apply Pphi_avoid_ok.
intros;apply mkpow_ok.
intros;apply mkopp_pow_ok.
intros;apply mkmult_pow_ok.
Qed.
Lemma ring_rw_correct : forall n lH l,
interp_PElist l lH ->
forall lmp, mk_monpol_list lH = lmp ->
forall pe npe, norm_subst n lmp pe = npe ->
PEeval l pe == Pphi_dev l npe.
Proof.
intros n lH l H1 lmp Heq1 pe npe Heq2.
rewrite Pphi_dev_ok. rewrite <- Heq2;rewrite <- Heq1.
apply norm_subst_ok. trivial.
Qed.
End MakeRingPol.
|