aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins/setoid_ring/Ncring_initial.v
blob: 523c7b02ebb1f0ca949577661c02744351199f63 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import ZArith_base.
Require Import Zpow_def.
Require Import BinInt.
Require Import BinNat.
Require Import Setoid.
Require Import BinList.
Require Import BinPos.
Require Import BinNat.
Require Import BinInt.
Require Import Setoid.
Require Export Ncring.
Require Export Ncring_polynom.

Set Implicit Arguments.

(* An object to return when an expression is not recognized as a constant *)
Definition NotConstant := false.

(** Z is a ring and a setoid*)

Lemma Zsth : Equivalence (@eq Z).
Proof. exact Z.eq_equiv. Qed.

Instance Zops:@Ring_ops Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp (@eq Z).

Instance Zr: (@Ring _ _ _ _ _ _ _ _ Zops).
Proof.
constructor; try apply Zsth; try solve_proper.
 exact Z.add_comm. exact Z.add_assoc.
 exact Z.mul_1_l.  exact Z.mul_1_r. exact Z.mul_assoc.
 exact Z.mul_add_distr_r.  intros; apply Z.mul_add_distr_l.  exact Z.sub_diag.
Defined.

(*Instance ZEquality: @Equality Z:= (@eq Z).*)

(** Two generic morphisms from Z to (arbitrary) rings, *)
(**second one is more convenient for proofs but they are ext. equal*)
Section ZMORPHISM.
Context {R:Type}`{Ring R}.

 Ltac rrefl := reflexivity.

 Fixpoint gen_phiPOS1 (p:positive) : R :=
  match p with
  | xH => 1
  | xO p => (1 + 1) * (gen_phiPOS1 p)
  | xI p => 1 + ((1 + 1) * (gen_phiPOS1 p))
  end.

 Fixpoint gen_phiPOS (p:positive) : R :=
  match p with
  | xH => 1
  | xO xH => (1 + 1)
  | xO p => (1 + 1) * (gen_phiPOS p)
  | xI xH => 1 + (1 +1)
  | xI p => 1 + ((1 + 1) * (gen_phiPOS p))
  end.

 Definition gen_phiZ1 z :=
  match z with
  | Zpos p => gen_phiPOS1 p
  | Z0 => 0
  | Zneg p => -(gen_phiPOS1 p)
  end.

 Definition gen_phiZ z :=
  match z with
  | Zpos p => gen_phiPOS p
  | Z0 => 0
  | Zneg p => -(gen_phiPOS p)
  end.
 Local Notation "[ x ]" := (gen_phiZ x) : ZMORPHISM.
 Local Open Scope ZMORPHISM.

 Definition get_signZ z :=
  match z with
  | Zneg p => Some (Zpos p)
  | _ => None
  end.

   Ltac norm := gen_rewrite.
   Ltac add_push :=  Ncring.gen_add_push.
Ltac rsimpl := simpl.

 Lemma same_gen : forall x, gen_phiPOS1 x == gen_phiPOS x.
 Proof.
  induction x;rsimpl.
  rewrite IHx. destruct x;simpl;norm.
  rewrite IHx;destruct x;simpl;norm.
  reflexivity.
 Qed.

 Lemma ARgen_phiPOS_Psucc : forall x,
   gen_phiPOS1 (Pos.succ x) == 1 + (gen_phiPOS1 x).
 Proof.
  induction x;rsimpl;norm.
 rewrite IHx. gen_rewrite. add_push 1. reflexivity.
 Qed.

 Lemma ARgen_phiPOS_add : forall x y,
   gen_phiPOS1 (x + y) == (gen_phiPOS1 x) + (gen_phiPOS1 y).
 Proof.
  induction x;destruct y;simpl;norm.
  rewrite Pos.add_carry_spec.
  rewrite ARgen_phiPOS_Psucc.
  rewrite IHx;norm.
  add_push (gen_phiPOS1 y);add_push 1;reflexivity.
  rewrite IHx;norm;add_push (gen_phiPOS1 y);reflexivity.
  rewrite ARgen_phiPOS_Psucc;norm;add_push 1;reflexivity.
  rewrite IHx;norm;add_push(gen_phiPOS1 y); add_push 1;reflexivity.
  rewrite IHx;norm;add_push(gen_phiPOS1 y);reflexivity.
  add_push 1;reflexivity.
  rewrite ARgen_phiPOS_Psucc;norm;add_push 1;reflexivity.
 Qed.

 Lemma ARgen_phiPOS_mult :
   forall x y, gen_phiPOS1 (x * y) == gen_phiPOS1 x * gen_phiPOS1 y.
 Proof.
  induction x;intros;simpl;norm.
  rewrite ARgen_phiPOS_add;simpl;rewrite IHx;norm.
  rewrite IHx;reflexivity.
 Qed.


(*morphisms are extensionally equal*)
 Lemma same_genZ : forall x, [x] == gen_phiZ1 x.
 Proof.
  destruct x;rsimpl; try rewrite same_gen; reflexivity.
 Qed.

 Lemma gen_Zeqb_ok : forall x y,
   Zeq_bool x y = true -> [x] == [y].
 Proof.
  intros x y H7.
  assert (H10 := Zeq_bool_eq x y H7);unfold IDphi in H10.
  rewrite H10;reflexivity.
 Qed.

 Lemma gen_phiZ1_add_pos_neg : forall x y,
 gen_phiZ1 (Z.pos_sub x y)
 == gen_phiPOS1 x + -gen_phiPOS1 y.
 Proof.
  intros x y.
  generalize (Z.pos_sub_discr x y).
  destruct (Z.pos_sub x y) as [|p|p]; intros; subst.
  - now rewrite ring_opp_def.
  - rewrite ARgen_phiPOS_add;simpl;norm.
    add_push (gen_phiPOS1 p). rewrite ring_opp_def;norm.
  - rewrite ARgen_phiPOS_add;simpl;norm.
    rewrite ring_opp_def;norm.
 Qed.

 Lemma match_compOpp : forall x (B:Type) (be bl bg:B),
  match CompOpp x with Eq => be | Lt => bl | Gt => bg end
  = match x with Eq => be | Lt => bg | Gt => bl end.
 Proof. destruct x;simpl;intros;trivial. Qed.

 Lemma gen_phiZ_add : forall x y, [x + y] == [x] + [y].
 Proof.
  intros x y; repeat rewrite same_genZ; generalize x y;clear x y.
  induction x;destruct y;simpl;norm.
  apply ARgen_phiPOS_add.
  apply gen_phiZ1_add_pos_neg. 
   rewrite gen_phiZ1_add_pos_neg. rewrite ring_add_comm.
reflexivity.
 rewrite ARgen_phiPOS_add. rewrite ring_opp_add. reflexivity.
Qed.

Lemma gen_phiZ_opp : forall x, [- x] == - [x].
 Proof.
  intros x. repeat rewrite same_genZ. generalize x ;clear x.
  induction x;simpl;norm.
  rewrite ring_opp_opp.  reflexivity.
 Qed.

 Lemma gen_phiZ_mul : forall x y, [x * y] == [x] * [y].
 Proof.
  intros x y;repeat rewrite same_genZ.
  destruct x;destruct y;simpl;norm;
  rewrite  ARgen_phiPOS_mult;try (norm;fail).
  rewrite ring_opp_opp ;reflexivity.
 Qed.

 Lemma gen_phiZ_ext : forall x y : Z, x = y -> [x] == [y].
 Proof. intros;subst;reflexivity. Qed.

Declare Equivalent Keys bracket gen_phiZ.
(*proof that [.] satisfies morphism specifications*)
Global Instance gen_phiZ_morph :
(@Ring_morphism (Z:Type) R _ _ _ _ _ _ _ Zops Zr _ _ _ _ _ _ _ _ _ gen_phiZ) . (* beurk!*)
 apply Build_Ring_morphism; simpl;try reflexivity.
   apply gen_phiZ_add. intros. rewrite ring_sub_def.
replace (x-y)%Z with (x + (-y))%Z.
now rewrite gen_phiZ_add, gen_phiZ_opp, ring_sub_def.
reflexivity.
 apply gen_phiZ_mul. apply gen_phiZ_opp. apply gen_phiZ_ext.
 Defined.

End ZMORPHISM.

Instance multiplication_phi_ring{R:Type}`{Ring R} : Multiplication  :=
  {multiplication x y := (gen_phiZ x) * y}.