aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins/setoid_ring/Field_theory.v
blob: d9e32dbbf8749f2a08fd040252e6681e89a30686 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Ring.
Import Ring_polynom Ring_tac Ring_theory InitialRing Setoid List Morphisms.
Require Import ZArith_base.
Set Implicit Arguments.
(* Set Universe Polymorphism. *)

Section MakeFieldPol.

(* Field elements : R *)

Variable R:Type.
Bind Scope R_scope with R.
Delimit Scope R_scope with ring.
Local Open Scope R_scope.

Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R->R).
Variable (rdiv : R->R->R) (rinv : R->R).
Variable req : R -> R -> Prop.

Notation "0" := rO : R_scope.
Notation "1" := rI : R_scope.
Infix "+" := radd : R_scope.
Infix "-" := rsub : R_scope.
Infix "*" := rmul : R_scope.
Infix "/" := rdiv : R_scope.
Notation "- x" := (ropp x) : R_scope.
Notation "/ x" := (rinv x) : R_scope.
Infix "==" := req (at level 70, no associativity) : R_scope.

(* Equality properties *)
Variable Rsth : Equivalence req.
Variable Reqe : ring_eq_ext radd rmul ropp req.
Variable SRinv_ext : forall p q, p == q ->  / p == / q.

(* Field properties *)
Record almost_field_theory : Prop := mk_afield {
 AF_AR : almost_ring_theory rO rI radd rmul rsub ropp req;
 AF_1_neq_0 : ~ 1 == 0;
 AFdiv_def : forall p q, p / q == p * / q;
 AFinv_l : forall p, ~ p == 0 ->  / p * p == 1
}.

Section AlmostField.

Variable AFth : almost_field_theory.
Let ARth := AFth.(AF_AR).
Let rI_neq_rO := AFth.(AF_1_neq_0).
Let rdiv_def := AFth.(AFdiv_def).
Let rinv_l := AFth.(AFinv_l).

Add Morphism radd with signature (req ==> req ==> req) as radd_ext.
Proof. exact (Radd_ext Reqe). Qed.
Add Morphism rmul with signature (req ==> req ==> req) as rmul_ext.
Proof. exact (Rmul_ext Reqe). Qed.
Add Morphism ropp with signature (req ==> req) as ropp_ext.
Proof. exact (Ropp_ext Reqe). Qed.
Add Morphism rsub with signature (req ==> req ==> req) as rsub_ext.
Proof. exact (ARsub_ext Rsth Reqe ARth). Qed.
Add Morphism rinv with signature (req ==> req) as rinv_ext.
Proof. exact SRinv_ext. Qed.

Let eq_trans := Setoid.Seq_trans _ _ Rsth.
Let eq_sym := Setoid.Seq_sym _ _ Rsth.
Let eq_refl := Setoid.Seq_refl _ _ Rsth.

Let radd_0_l := ARadd_0_l ARth.
Let radd_comm := ARadd_comm ARth.
Let radd_assoc := ARadd_assoc ARth.
Let rmul_1_l := ARmul_1_l ARth.
Let rmul_0_l := ARmul_0_l ARth.
Let rmul_comm := ARmul_comm ARth.
Let rmul_assoc := ARmul_assoc ARth.
Let rdistr_l := ARdistr_l ARth.
Let ropp_mul_l := ARopp_mul_l ARth.
Let ropp_add := ARopp_add ARth.
Let rsub_def := ARsub_def ARth.

Let radd_0_r := ARadd_0_r Rsth ARth.
Let rmul_0_r := ARmul_0_r Rsth ARth.
Let rmul_1_r := ARmul_1_r Rsth ARth.
Let ropp_0 := ARopp_zero Rsth Reqe ARth.
Let rdistr_r := ARdistr_r Rsth Reqe ARth.

(* Coefficients : C *)

Variable C: Type.
Bind Scope C_scope with C.
Delimit Scope C_scope with coef.

Variable (cO cI: C) (cadd cmul csub : C->C->C) (copp : C->C).
Variable ceqb : C->C->bool.
Variable phi : C -> R.

Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req
                              cO cI cadd cmul csub copp ceqb phi.

Notation "0" := cO : C_scope.
Notation "1" := cI : C_scope.
Infix "+" := cadd : C_scope.
Infix "-" := csub : C_scope.
Infix "*" := cmul : C_scope.
Notation "- x" := (copp x) : C_scope.
Infix "=?" := ceqb : C_scope.
Notation "[ x ]" := (phi x) (at level 0).

Let phi_0 := CRmorph.(morph0).
Let phi_1 := CRmorph.(morph1).

Lemma ceqb_spec c c' : BoolSpec ([c] == [c']) True (c =? c')%coef.
Proof.
generalize (CRmorph.(morph_eq) c c').
destruct (c =? c')%coef; auto.
Qed.

(* Power coefficients : Cpow *)

Variable Cpow : Type.
Variable Cp_phi : N -> Cpow.
Variable rpow : R -> Cpow -> R.
Variable pow_th : power_theory rI rmul req Cp_phi rpow.
(* sign function *)
Variable get_sign : C -> option C.
Variable get_sign_spec : sign_theory copp ceqb get_sign.

Variable cdiv:C -> C -> C*C.
Variable cdiv_th : div_theory req cadd cmul phi cdiv.

Let rpow_pow := pow_th.(rpow_pow_N).

(* Polynomial expressions : (PExpr C) *)

Bind Scope PE_scope with PExpr.
Delimit Scope PE_scope with poly.

Notation NPEeval := (PEeval rO rI radd rmul rsub ropp phi Cp_phi rpow).
Notation "P @ l" := (NPEeval l P) (at level 10, no associativity).

Arguments PEc _ _%coef.

Notation "0" := (PEc 0) : PE_scope.
Notation "1" := (PEc 1) : PE_scope.
Infix "+" := PEadd : PE_scope.
Infix "-" := PEsub : PE_scope.
Infix "*" := PEmul : PE_scope.
Notation "- e" := (PEopp e) : PE_scope.
Infix "^" := PEpow : PE_scope.

Definition NPEequiv e e' := forall l, e@l == e'@l.
Infix "===" := NPEequiv (at level 70, no associativity) : PE_scope.

Instance NPEequiv_eq : Equivalence NPEequiv.
Proof.
 split; red; unfold NPEequiv; intros; [reflexivity|symmetry|etransitivity];
  eauto.
Qed.

Instance NPEeval_ext : Proper (eq ==> NPEequiv ==> req) NPEeval.
Proof.
 intros l l' <- e e' He. now rewrite (He l).
Qed.

Notation Nnorm :=
  (norm_subst cO cI cadd cmul csub copp ceqb cdiv).
Notation NPphi_dev :=
  (Pphi_dev rO rI radd rmul rsub ropp cO cI ceqb phi get_sign).
Notation NPphi_pow :=
  (Pphi_pow rO rI radd rmul rsub ropp cO cI ceqb phi Cp_phi rpow get_sign).

(* add abstract semi-ring to help with some proofs *)
Add Ring Rring : (ARth_SRth ARth).

(* additional ring properties *)

Lemma rsub_0_l r : 0 - r == - r.
Proof.
rewrite rsub_def; ring.
Qed.

Lemma rsub_0_r r : r - 0 == r.
Proof.
rewrite rsub_def, ropp_0; ring.
Qed.

(***************************************************************************

                       Properties of division

  ***************************************************************************)

Theorem rdiv_simpl p q : ~ q == 0 ->  q * (p / q) == p.
Proof.
intros.
rewrite rdiv_def.
transitivity (/ q * q * p); [ ring | ].
now rewrite rinv_l.
Qed.

Instance rdiv_ext: Proper (req ==> req ==> req) rdiv.
Proof.
intros p1 p2 Ep q1 q2 Eq. now rewrite !rdiv_def, Ep, Eq.
Qed.

Lemma rmul_reg_l p q1 q2 :
  ~ p == 0 -> p * q1 == p * q2 -> q1 == q2.
Proof.
intros H EQ.
assert (H' : p * (q1 / p) == p * (q2 / p)).
{ now rewrite !rdiv_def, !rmul_assoc, EQ. }
now rewrite !rdiv_simpl in H'.
Qed.

Theorem field_is_integral_domain r1 r2 :
  ~ r1 == 0 -> ~ r2 == 0 -> ~ r1 * r2 == 0.
Proof.
intros H1 H2. contradict H2.
transitivity (/r1 * r1 * r2).
- now rewrite rinv_l.
- now rewrite <- rmul_assoc, H2.
Qed.

Theorem ropp_neq_0 r :
  ~ -(1) == 0 -> ~ r == 0 -> ~ -r == 0.
Proof.
intros.
setoid_replace (- r) with (- (1) * r).
- apply field_is_integral_domain; trivial.
- now rewrite <- ropp_mul_l, rmul_1_l.
Qed.

Theorem rdiv_r_r r : ~ r == 0 -> r / r == 1.
Proof.
intros. rewrite rdiv_def, rmul_comm. now apply rinv_l.
Qed.

Theorem rdiv1 r : r == r / 1.
Proof.
transitivity (1 * (r / 1)).
- symmetry; apply rdiv_simpl. apply rI_neq_rO.
- apply rmul_1_l.
Qed.

Theorem rdiv2 a b c d :
 ~ b == 0 ->
 ~ d == 0 ->
 a / b + c / d == (a * d + c * b) / (b * d).
Proof.
intros H H0.
assert (~ b * d == 0) by now apply field_is_integral_domain.
apply rmul_reg_l with (b * d); trivial.
rewrite rdiv_simpl; trivial.
rewrite rdistr_r.
apply radd_ext.
- now rewrite <- rmul_assoc, (rmul_comm d), rmul_assoc, rdiv_simpl.
- now rewrite (rmul_comm c), <- rmul_assoc, rdiv_simpl.
Qed.


Theorem rdiv2b a b c d e :
 ~ (b*e) == 0 ->
 ~ (d*e) == 0 ->
 a / (b*e) + c / (d*e) == (a * d + c * b) / (b * (d * e)).
Proof.
intros H H0.
assert (~ b == 0) by (contradict H; rewrite H; ring).
assert (~ e == 0) by (contradict H; rewrite H; ring).
assert (~ d == 0) by (contradict H0; rewrite H0; ring).
assert (~ b * (d * e) == 0)
   by (repeat apply field_is_integral_domain; trivial).
apply rmul_reg_l with (b * (d * e)); trivial.
rewrite rdiv_simpl; trivial.
rewrite rdistr_r.
apply radd_ext.
- transitivity ((b * e) * (a / (b * e)) * d);
  [ ring | now rewrite rdiv_simpl ].
- transitivity ((d * e) * (c / (d * e)) * b);
  [ ring | now rewrite rdiv_simpl ].
Qed.

Theorem rdiv5 a b : - (a / b) == - a / b.
Proof.
now rewrite !rdiv_def, ropp_mul_l.
Qed.

Theorem rdiv3b a b c d e :
 ~ (b * e) == 0 ->
 ~ (d * e) == 0 ->
 a / (b*e) - c / (d*e) == (a * d - c * b) / (b * (d * e)).
Proof.
intros H H0.
rewrite !rsub_def, rdiv5, ropp_mul_l.
now apply rdiv2b.
Qed.

Theorem rdiv6 a b :
 ~ a == 0 -> ~ b == 0 ->  / (a / b) == b / a.
Proof.
intros H H0.
assert (Hk : ~ a / b == 0).
{ contradict H.
  transitivity (b * (a / b)).
  - now rewrite rdiv_simpl.
  - rewrite H. apply rmul_0_r. }
apply rmul_reg_l with (a / b); trivial.
rewrite (rmul_comm (a / b)), rinv_l; trivial.
rewrite !rdiv_def.
transitivity (/ a * a * (/ b * b)); [ | ring ].
now rewrite !rinv_l, rmul_1_l.
Qed.

Theorem rdiv4 a b c d :
 ~ b == 0 ->
 ~ d == 0 ->
 (a / b) * (c / d) == (a * c) / (b * d).
Proof.
intros H H0.
assert (~ b * d == 0) by now apply field_is_integral_domain.
apply rmul_reg_l with (b * d); trivial.
rewrite rdiv_simpl; trivial.
transitivity (b * (a / b) * (d * (c / d))); [ ring | ].
rewrite !rdiv_simpl; trivial.
Qed.

Theorem rdiv4b a b c d e f :
 ~ b * e == 0 ->
 ~ d * f == 0 ->
 ((a * f) / (b * e)) * ((c * e) / (d * f)) == (a * c) / (b * d).
Proof.
intros H H0.
assert (~ b == 0) by (contradict H; rewrite H; ring).
assert (~ e == 0) by (contradict H; rewrite H; ring).
assert (~ d == 0) by (contradict H0; rewrite H0; ring).
assert (~ f == 0) by (contradict H0; rewrite H0; ring).
assert (~ b*d == 0) by now apply field_is_integral_domain.
assert (~ e*f == 0) by now apply field_is_integral_domain.
rewrite rdiv4; trivial.
transitivity ((e * f) * (a * c) / ((e * f) * (b * d))).
- apply rdiv_ext; ring.
- rewrite <- rdiv4, rdiv_r_r; trivial.
Qed.

Theorem rdiv7 a b c d :
 ~ b == 0 ->
 ~ c == 0 ->
 ~ d == 0 ->
 (a / b) / (c / d) == (a * d) / (b * c).
Proof.
intros.
rewrite (rdiv_def (a / b)).
rewrite rdiv6; trivial.
apply rdiv4; trivial.
Qed.

Theorem rdiv7b a b c d e f :
 ~ b * f == 0 ->
 ~ c * e == 0 ->
 ~ d * f == 0 ->
 ((a * e) / (b * f)) / ((c * e) / (d * f)) == (a * d) / (b * c).
Proof.
intros Hbf Hce Hdf.
assert (~ c==0) by (contradict Hce; rewrite Hce; ring).
assert (~ e==0) by (contradict Hce; rewrite Hce; ring).
assert (~ b==0) by (contradict Hbf; rewrite Hbf; ring).
assert (~ f==0) by (contradict Hbf; rewrite Hbf; ring).
assert (~ b*c==0) by now apply field_is_integral_domain.
assert (~ e*f==0) by now apply field_is_integral_domain.
rewrite rdiv7; trivial.
transitivity ((e * f) * (a * d) / ((e * f) * (b * c))).
- apply rdiv_ext; ring.
- now rewrite <- rdiv4, rdiv_r_r.
Qed.

Theorem rinv_nz a : ~ a == 0 -> ~ /a == 0.
Proof.
intros H H0. apply rI_neq_rO.
rewrite <- (rdiv_r_r H), rdiv_def, H0. apply rmul_0_r.
Qed.

Theorem rdiv8 a b : ~ b == 0 -> a == 0 ->  a / b == 0.
Proof.
intros H H0.
now rewrite rdiv_def, H0, rmul_0_l.
Qed.

Theorem cross_product_eq a b c d :
  ~ b == 0 -> ~ d == 0 -> a * d == c * b -> a / b == c / d.
Proof.
intros.
transitivity (a / b * (d / d)).
- now rewrite rdiv_r_r, rmul_1_r.
- now rewrite rdiv4, H1, (rmul_comm b d), <- rdiv4, rdiv_r_r.
Qed.

(* Results about [pow_pos] and [pow_N] *)

Instance pow_ext : Proper (req ==> eq ==> req) (pow_pos rmul).
Proof.
intros x y H p p' <-.
induction p as [p IH| p IH|];simpl; trivial; now rewrite !IH, ?H.
Qed.

Instance pow_N_ext : Proper (req ==> eq ==> req) (pow_N rI rmul).
Proof.
intros x y H n n' <-. destruct n; simpl; trivial. now apply pow_ext.
Qed.

Lemma pow_pos_0 p : pow_pos rmul 0 p == 0.
Proof.
induction p;simpl;trivial; now rewrite !IHp.
Qed.

Lemma pow_pos_1 p : pow_pos rmul 1 p == 1.
Proof.
induction p;simpl;trivial; ring [IHp].
Qed.

Lemma pow_pos_cst c p : pow_pos rmul [c] p == [pow_pos cmul c p].
Proof.
induction p;simpl;trivial; now rewrite !CRmorph.(morph_mul), !IHp.
Qed.

Lemma pow_pos_mul_l x y p :
 pow_pos rmul (x * y) p == pow_pos rmul x p * pow_pos rmul y p.
Proof.
induction p;simpl;trivial; ring [IHp].
Qed.

Lemma pow_pos_add_r x p1 p2 :
 pow_pos rmul x (p1+p2) == pow_pos rmul x p1 * pow_pos rmul x p2.
Proof.
 exact (Ring_theory.pow_pos_add Rsth rmul_ext rmul_assoc x p1 p2).
Qed.

Lemma pow_pos_mul_r x p1 p2 :
  pow_pos rmul x (p1*p2) == pow_pos rmul (pow_pos rmul x p1) p2.
Proof.
induction p1;simpl;intros; rewrite ?pow_pos_mul_l, ?pow_pos_add_r;
 simpl; trivial; ring [IHp1].
Qed.

Lemma pow_pos_nz x p : ~x==0 -> ~pow_pos rmul x p == 0.
Proof.
 intros Hx. induction p;simpl;trivial;
  repeat (apply field_is_integral_domain; trivial).
Qed.

Lemma pow_pos_div a b p : ~ b == 0 ->
 pow_pos rmul (a / b) p == pow_pos rmul a p / pow_pos rmul b p.
Proof.
 intros.
 induction p; simpl; trivial.
 - rewrite IHp.
   assert (nz := pow_pos_nz p H).
   rewrite !rdiv4; trivial.
   apply field_is_integral_domain; trivial.
 - rewrite IHp.
   assert (nz := pow_pos_nz p H).
   rewrite !rdiv4; trivial.
Qed.

(* === is a morphism *)

Instance PEadd_ext : Proper (NPEequiv ==> NPEequiv ==> NPEequiv) (@PEadd C).
Proof. intros ? ? E ? ? E' l. simpl. now rewrite E, E'. Qed.
Instance PEsub_ext : Proper (NPEequiv ==> NPEequiv ==> NPEequiv) (@PEsub C).
Proof. intros ? ? E ? ? E' l. simpl. now rewrite E, E'. Qed.
Instance PEmul_ext : Proper (NPEequiv ==> NPEequiv ==> NPEequiv) (@PEmul C).
Proof. intros ? ? E ? ? E' l. simpl. now rewrite E, E'. Qed.
Instance PEopp_ext : Proper (NPEequiv ==> NPEequiv) (@PEopp C).
Proof. intros ? ? E l. simpl. now rewrite E. Qed.
Instance PEpow_ext : Proper (NPEequiv ==> eq ==> NPEequiv) (@PEpow C).
Proof.
 intros ? ? E ? ? <- l. simpl. rewrite !rpow_pow. apply pow_N_ext; trivial.
Qed.

Lemma PE_1_l (e : PExpr C) : (1 * e === e)%poly.
Proof.
 intros l. simpl. rewrite phi_1. apply rmul_1_l.
Qed.

Lemma PE_1_r (e : PExpr C) : (e * 1 === e)%poly.
Proof.
 intros l. simpl. rewrite phi_1. apply rmul_1_r.
Qed.

Lemma PEpow_0_r (e : PExpr C) : (e ^ 0 === 1)%poly.
Proof.
 intros l. simpl. now rewrite !rpow_pow.
Qed.

Lemma PEpow_1_r (e : PExpr C) : (e ^ 1 === e)%poly.
Proof.
 intros l. simpl. now rewrite !rpow_pow.
Qed.

Lemma PEpow_1_l n : (1 ^ n === 1)%poly.
Proof.
 intros l. simpl. rewrite rpow_pow. destruct n; simpl.
 - now rewrite phi_1.
 - now rewrite phi_1, pow_pos_1.
Qed.

Lemma PEpow_add_r (e : PExpr C) n n' :
 (e ^ (n+n') === e ^ n * e ^ n')%poly.
Proof.
 intros l. simpl. rewrite !rpow_pow.
 destruct n; simpl.
 - rewrite rmul_1_l. trivial.
 - destruct n'; simpl.
   + rewrite rmul_1_r. trivial.
   + apply pow_pos_add_r.
Qed.

Lemma PEpow_mul_l (e e' : PExpr C) n :
 ((e * e') ^ n === e ^ n * e' ^ n)%poly.
Proof.
 intros l. simpl. rewrite !rpow_pow. destruct n; simpl; trivial.
 - symmetry; apply rmul_1_l.
 - apply pow_pos_mul_l.
Qed.

Lemma PEpow_mul_r (e : PExpr C) n n' :
 (e ^ (n * n') === (e ^ n) ^ n')%poly.
Proof.
 intros l. simpl. rewrite !rpow_pow.
 destruct n, n'; simpl; trivial.
 - now rewrite pow_pos_1.
 - apply pow_pos_mul_r.
Qed.

Lemma PEpow_nz l e n : ~ e @ l == 0 -> ~ (e^n) @ l == 0.
Proof.
 intros. simpl. rewrite rpow_pow. destruct n; simpl.
 - apply rI_neq_rO.
 - now apply pow_pos_nz.
Qed.


(***************************************************************************

                       Some equality test

  ***************************************************************************)

Local Notation "a &&& b" := (if a then b else false)
 (at level 40, left associativity).

(* equality test *)
Fixpoint PExpr_eq (e e' : PExpr C) {struct e} : bool :=
 match e, e' with
  | PEc c, PEc c' => ceqb c c'
  | PEX _ p, PEX _ p' => Pos.eqb p p'
  | e1 + e2, e1' + e2' => PExpr_eq e1 e1' &&& PExpr_eq e2 e2'
  | e1 - e2, e1' - e2' => PExpr_eq e1 e1' &&& PExpr_eq e2 e2'
  | e1 * e2, e1' * e2' => PExpr_eq e1 e1' &&& PExpr_eq e2 e2'
  | - e, - e' => PExpr_eq e e'
  | e ^ n, e' ^ n' => N.eqb n n' &&& PExpr_eq e e'
  | _, _ => false
 end%poly.

Lemma if_true (a b : bool) : a &&& b = true -> a = true /\ b = true.
Proof.
 destruct a, b; split; trivial.
Qed.

Theorem PExpr_eq_semi_ok e e' :
 PExpr_eq e e' = true ->  (e === e')%poly.
Proof.
revert e'; induction e; destruct e'; simpl; try discriminate.
- intros H l. now apply (morph_eq CRmorph).
- case Pos.eqb_spec; intros; now subst.
- intros H; destruct (if_true _ _ H). now rewrite IHe1, IHe2.
- intros H; destruct (if_true _ _ H). now rewrite IHe1, IHe2.
- intros H; destruct (if_true _ _ H). now rewrite IHe1, IHe2.
- intros H. now rewrite IHe.
- intros H. destruct (if_true _ _ H).
  apply N.eqb_eq in H0. now rewrite IHe, H0.
Qed.

Lemma PExpr_eq_spec e e' : BoolSpec (e === e')%poly True (PExpr_eq e e').
Proof.
 assert (H := PExpr_eq_semi_ok e e').
 destruct PExpr_eq; constructor; intros; trivial. now apply H.
Qed.

(** Smart constructors for polynomial expression,
    with reduction of constants *)

Definition NPEadd e1 e2 :=
  match e1, e2 with
  | PEc c1, PEc c2 => PEc (c1 + c2)
  | PEc c, _ => if (c =? 0)%coef then e2 else e1 + e2
  |  _, PEc c => if (c =? 0)%coef then e1 else e1 + e2
    (* Peut t'on factoriser ici ??? *)
  | _, _ => (e1 + e2)
  end%poly.
Infix "++" := NPEadd (at level 60, right associativity).

Theorem NPEadd_ok e1 e2 : (e1 ++ e2 === e1 + e2)%poly.
Proof.
intros l.
destruct e1, e2; simpl; try reflexivity; try (case ceqb_spec);
try intro H; try rewrite H; simpl;
try apply eq_refl; try (ring [phi_0]).
apply (morph_add CRmorph).
Qed.

Definition NPEsub e1 e2 :=
  match e1, e2 with
  | PEc c1, PEc c2 => PEc (c1 - c2)
  | PEc c, _ => if (c =? 0)%coef then - e2 else e1 - e2
  |  _, PEc c => if (c =? 0)%coef then e1 else e1 - e2
     (* Peut-on factoriser ici *)
  | _, _ => e1 - e2
  end%poly.
Infix "--" := NPEsub (at level 50, left associativity).

Theorem NPEsub_ok e1 e2: (e1 -- e2 === e1 - e2)%poly.
Proof.
intros l.
destruct e1, e2; simpl; try reflexivity; try case ceqb_spec;
 try intro H; try rewrite H; simpl;
 try rewrite phi_0; try reflexivity;
 try (symmetry; apply rsub_0_l); try (symmetry; apply rsub_0_r).
apply (morph_sub CRmorph).
Qed.

Definition NPEopp e1 :=
  match e1 with PEc c1 => PEc (- c1) | _ => - e1 end%poly.

Theorem NPEopp_ok e : (NPEopp e === -e)%poly.
Proof.
intros l. destruct e; simpl; trivial. apply (morph_opp CRmorph).
Qed.

Definition NPEpow x n :=
  match n with
  | N0 => 1
  | Npos p =>
    if (p =? 1)%positive then x else
    match x with
    | PEc c =>
      if (c =? 1)%coef then 1
      else if (c =? 0)%coef then 0
      else PEc (pow_pos cmul c p)
    | _ => x ^ n
    end
  end%poly.
Infix "^^" := NPEpow (at level 35, right associativity).

Theorem NPEpow_ok e n : (e ^^ n === e ^ n)%poly.
Proof.
 intros l. unfold NPEpow; destruct n.
 - simpl; now rewrite rpow_pow.
 - case Pos.eqb_spec; [intro; subst | intros _].
   + simpl. now rewrite rpow_pow.
   + destruct e;simpl;trivial.
     repeat case ceqb_spec; intros; rewrite ?rpow_pow, ?H; simpl.
     * now rewrite phi_1, pow_pos_1.
     * now rewrite phi_0, pow_pos_0.
     * now rewrite pow_pos_cst.
Qed.

Fixpoint NPEmul (x y : PExpr C) {struct x} : PExpr C :=
  match x, y with
  | PEc c1, PEc c2 => PEc (c1 * c2)
  | PEc c, _ => if (c =? 1)%coef then y else if (c =? 0)%coef then 0 else x * y
  | _, PEc c => if (c =? 1)%coef then x else if (c =? 0)%coef then 0 else x * y
  | e1 ^ n1, e2 ^ n2 => if (n1 =? n2)%N then (NPEmul e1 e2)^^n1 else x * y
  | _, _ => x * y
  end%poly.
Infix "**" := NPEmul (at level 40, left associativity).

Theorem NPEmul_ok e1 e2 : (e1 ** e2 === e1 * e2)%poly.
Proof.
intros l.
revert e2; induction e1;destruct e2; simpl;try reflexivity;
 repeat (case ceqb_spec; intro H; try rewrite H; clear H);
 simpl; try reflexivity; try ring [phi_0 phi_1].
 apply (morph_mul CRmorph).
case N.eqb_spec; [intros <- | reflexivity].
rewrite NPEpow_ok. simpl.
rewrite !rpow_pow. rewrite IHe1.
destruct n; simpl; [ ring | apply pow_pos_mul_l ].
Qed.

(* simplification *)
Fixpoint PEsimp (e : PExpr C) : PExpr C :=
 match e with
  | e1 + e2 => (PEsimp e1) ++ (PEsimp e2)
  | e1 * e2 => (PEsimp e1) ** (PEsimp e2)
  | e1 - e2 => (PEsimp e1) -- (PEsimp e2)
  | - e1 => NPEopp (PEsimp e1)
  | e1 ^ n1 => (PEsimp e1) ^^ n1
  | _ => e
 end%poly.

Theorem PEsimp_ok e : (PEsimp e === e)%poly.
Proof.
induction e; simpl.
- reflexivity.
- reflexivity.
- intro l; trivial.
- intro l; trivial.
- rewrite NPEadd_ok. now f_equiv.
- rewrite NPEsub_ok. now f_equiv.
- rewrite NPEmul_ok. now f_equiv.
- rewrite NPEopp_ok. now f_equiv.
- rewrite NPEpow_ok. now f_equiv.
Qed.


(****************************************************************************

                               Datastructure

  ***************************************************************************)

(* The input: syntax of a field expression *)

Inductive FExpr : Type :=
 | FEO : FExpr
 | FEI : FExpr
 | FEc: C ->  FExpr
 | FEX: positive ->  FExpr
 | FEadd: FExpr -> FExpr ->  FExpr
 | FEsub: FExpr -> FExpr ->  FExpr
 | FEmul: FExpr -> FExpr ->  FExpr
 | FEopp: FExpr ->  FExpr
 | FEinv: FExpr ->  FExpr
 | FEdiv: FExpr -> FExpr ->  FExpr
 | FEpow: FExpr -> N -> FExpr .

Fixpoint FEeval (l : list R) (pe : FExpr) {struct pe} : R :=
  match pe with
  | FEO       => rO
  | FEI       => rI
  | FEc c     => phi c
  | FEX x     => BinList.nth 0 x l
  | FEadd x y => FEeval l x + FEeval l y
  | FEsub x y => FEeval l x - FEeval l y
  | FEmul x y => FEeval l x * FEeval l y
  | FEopp x   => - FEeval l x
  | FEinv x   => / FEeval l x
  | FEdiv x y => FEeval l x / FEeval l y
  | FEpow x n => rpow (FEeval l x) (Cp_phi n)
  end.

Strategy expand [FEeval].

(* The result of the normalisation *)

Record linear : Type := mk_linear {
   num : PExpr C;
   denum : PExpr C;
   condition : list (PExpr C) }.

(***************************************************************************

                Semantics and properties of side condition

  ***************************************************************************)

Fixpoint PCond (l : list R) (le : list (PExpr C)) {struct le} : Prop :=
  match le with
  | nil => True
  | e1 :: nil => ~ req (e1 @ l) rO
  | e1 :: l1 => ~ req (e1 @ l) rO /\ PCond l l1
  end.

Theorem PCond_cons l a l1 :
 PCond l (a :: l1) <-> ~ a @ l == 0 /\ PCond l l1.
Proof.
destruct l1.
- simpl. split; [split|destruct 1]; trivial.
- reflexivity.
Qed.

Theorem PCond_cons_inv_l l a l1 : PCond l (a::l1) ->  ~ a @ l == 0.
Proof.
rewrite PCond_cons. now destruct 1.
Qed.

Theorem PCond_cons_inv_r l a l1 : PCond l (a :: l1) ->  PCond l l1.
Proof.
rewrite PCond_cons. now destruct 1.
Qed.

Theorem PCond_app l l1 l2 :
 PCond l (l1 ++ l2) <-> PCond l l1 /\ PCond l l2.
Proof.
induction l1.
- simpl. split; [split|destruct 1]; trivial.
- simpl app. rewrite !PCond_cons, IHl1. symmetry; apply and_assoc.
Qed.


(* An unsatisfiable condition: issued when a division by zero is detected *)
Definition absurd_PCond := cons 0%poly nil.

Lemma absurd_PCond_bottom : forall l, ~ PCond l absurd_PCond.
Proof.
unfold absurd_PCond; simpl.
red; intros.
apply H.
apply phi_0.
Qed.

(***************************************************************************

                               Normalisation

  ***************************************************************************)

Definition default_isIn e1 p1 e2 p2 :=
  if PExpr_eq e1 e2 then
    match Z.pos_sub p1 p2 with
     | Zpos p => Some (Npos p, 1%poly)
     | Z0 => Some (N0, 1%poly)
     | Zneg p => Some (N0, e2 ^^ Npos p)
    end
  else None.

Fixpoint isIn e1 p1 e2 p2 {struct e2}: option (N * PExpr C) :=
  match e2 with
  | e3 * e4 =>
       match isIn e1 p1 e3 p2 with
       | Some (N0, e5) => Some (N0, e5 ** (e4 ^^ Npos p2))
       | Some (Npos p, e5) =>
          match isIn e1 p e4 p2 with
          | Some (n, e6) => Some (n, e5 ** e6)
          | None => Some (Npos p, e5 ** (e4 ^^ Npos p2))
          end
       | None =>
         match isIn e1 p1 e4 p2 with
         | Some (n, e5) => Some (n, (e3 ^^ Npos p2) ** e5)
         | None => None
         end
       end
  | e3 ^ N0 => None
  | e3 ^ Npos p3 => isIn e1 p1 e3 (Pos.mul p3 p2)
  | _ => default_isIn e1 p1 e2 p2
   end%poly.

 Definition ZtoN z := match z with Zpos p => Npos p | _ => N0 end.
 Definition NtoZ n := match n with Npos p => Zpos p | _ => Z0 end.

 Lemma Z_pos_sub_gt p q : (p > q)%positive ->
  Z.pos_sub p q = Zpos (p - q).
 Proof. intros; now apply Z.pos_sub_gt, Pos.gt_lt. Qed.

 Ltac simpl_pos_sub := rewrite ?Z_pos_sub_gt in * by assumption.

 Lemma default_isIn_ok e1 e2 p1 p2 :
  match default_isIn e1 p1 e2 p2 with
   | Some(n, e3) =>
       let n' := ZtoN (Zpos p1 - NtoZ n) in
       (e2 ^ N.pos p2 === e1 ^ n' * e3)%poly
       /\ (Zpos p1 > NtoZ n)%Z
   | _ => True
  end.
Proof.
  unfold default_isIn.
  case PExpr_eq_spec; trivial. intros EQ.
  rewrite Z.pos_sub_spec.
  case Pos.compare_spec;intros H; split; try reflexivity.
  - simpl. now rewrite PE_1_r, H, EQ.
  - rewrite NPEpow_ok, EQ, <- PEpow_add_r. f_equiv.
    simpl. f_equiv. now rewrite Pos.add_comm, Pos.sub_add.
  - simpl. rewrite PE_1_r, EQ. f_equiv.
    rewrite Z.pos_sub_gt by now apply Pos.sub_decr. simpl. f_equiv.
    rewrite Pos.sub_sub_distr, Pos.add_comm; trivial.
    rewrite Pos.add_sub; trivial.
    apply Pos.sub_decr; trivial.
  - simpl. now apply Z.lt_gt, Pos.sub_decr.
Qed.

Ltac npe_simpl := rewrite ?NPEmul_ok, ?NPEpow_ok, ?PEpow_mul_l.
Ltac npe_ring := intro l; simpl; ring.

Theorem isIn_ok e1 p1 e2 p2 :
  match isIn e1 p1 e2 p2 with
   | Some(n, e3) =>
       let n' := ZtoN (Zpos p1 - NtoZ n) in
       (e2 ^ N.pos p2 === e1 ^ n' * e3)%poly
       /\ (Zpos p1 > NtoZ n)%Z
   |  _ => True
  end.
Proof.
Opaque NPEpow.
revert p1 p2.
induction e2; intros p1 p2;
 try refine (default_isIn_ok e1 _ p1 p2); simpl isIn.
- specialize (IHe2_1 p1 p2).
  destruct isIn as [([|p],e)|].
  + split; [|reflexivity].
    clear IHe2_2.
    destruct IHe2_1 as (IH,_).
    npe_simpl. rewrite IH. npe_ring.
  + specialize (IHe2_2 p p2).
    destruct isIn as [([|p'],e')|].
    * destruct IHe2_1 as (IH1,GT1).
      destruct IHe2_2 as (IH2,GT2).
      split; [|simpl; apply Zgt_trans with (Z.pos p); trivial].
      npe_simpl. rewrite IH1, IH2. simpl. simpl_pos_sub. simpl.
      replace (N.pos p1) with (N.pos p + N.pos (p1 - p))%N.
      rewrite PEpow_add_r; npe_ring.
      { simpl. f_equal. rewrite Pos.add_comm, Pos.sub_add. trivial.
        now apply Pos.gt_lt. }
    * destruct IHe2_1 as (IH1,GT1).
      destruct IHe2_2 as (IH2,GT2).
      assert (Z.pos p1 > Z.pos p')%Z by (now apply Zgt_trans with (Zpos p)).
      split; [|simpl; trivial].
      npe_simpl. rewrite IH1, IH2. simpl. simpl_pos_sub. simpl.
      replace (N.pos (p1 - p')) with (N.pos (p1 - p) + N.pos (p - p'))%N.
      rewrite PEpow_add_r; npe_ring.
      { simpl. f_equal. rewrite Pos.add_sub_assoc, Pos.sub_add; trivial.
        now apply Pos.gt_lt.
        now apply Pos.gt_lt. }
    * destruct IHe2_1 as (IH,GT). split; trivial.
      npe_simpl. rewrite IH. npe_ring.
  + specialize (IHe2_2 p1 p2).
    destruct isIn as [(n,e)|]; trivial.
    destruct IHe2_2 as (IH,GT). split; trivial.
    set (d := ZtoN (Z.pos p1 - NtoZ n)) in *; clearbody d.
    npe_simpl. rewrite IH. npe_ring.
- destruct n; trivial.
  specialize (IHe2 p1 (p * p2)%positive).
  destruct isIn as [(n,e)|]; trivial.
  destruct IHe2 as (IH,GT). split; trivial.
  set (d := ZtoN (Z.pos p1 - NtoZ n)) in *; clearbody d.
  now rewrite <- PEpow_mul_r.
Qed.

Record rsplit : Type := mk_rsplit {
   rsplit_left : PExpr C;
   rsplit_common : PExpr C;
   rsplit_right : PExpr C}.

(* Stupid name clash *)
Notation left := rsplit_left.
Notation right := rsplit_right.
Notation common := rsplit_common.

Fixpoint split_aux e1 p e2 {struct e1}: rsplit :=
  match e1 with
  | e3 * e4 =>
      let r1 := split_aux e3 p e2 in
      let r2 := split_aux e4 p (right r1) in
      mk_rsplit (left r1 ** left r2)
                (common r1 ** common r2)
                (right r2)
  | e3 ^ N0 => mk_rsplit 1 1 e2
  | e3 ^ Npos p3 => split_aux e3 (Pos.mul p3 p) e2
  | _ =>
       match isIn e1 p e2 1 with
       | Some (N0,e3) => mk_rsplit 1 (e1 ^^ Npos p) e3
       | Some (Npos q, e3) => mk_rsplit (e1 ^^ Npos q) (e1 ^^ Npos (p - q)) e3
       | None => mk_rsplit (e1 ^^ Npos p) 1 e2
       end
  end%poly.

Lemma split_aux_ok1 e1 p e2 :
  (let res := match isIn e1 p e2 1 with
       | Some (N0,e3) => mk_rsplit 1 (e1 ^^ Npos p) e3
       | Some (Npos q, e3) => mk_rsplit (e1 ^^ Npos q) (e1 ^^ Npos (p - q)) e3
       | None => mk_rsplit (e1 ^^ Npos p) 1 e2
       end
  in
  e1 ^ Npos p === left res * common res
  /\ e2 === right res * common res)%poly.
Proof.
 Opaque NPEpow NPEmul.
 intros. unfold res;clear res; generalize (isIn_ok e1 p e2 xH).
 destruct (isIn e1 p e2 1) as [([|p'],e')|]; simpl.
 - intros (H1,H2); split; npe_simpl.
   + now rewrite PE_1_l.
   + rewrite PEpow_1_r in H1. rewrite H1. npe_ring.
 - intros (H1,H2); split; npe_simpl.
   + rewrite <- PEpow_add_r. f_equiv. simpl. f_equal.
     rewrite Pos.add_comm, Pos.sub_add; trivial.
     now apply Z.gt_lt in H2.
   + rewrite PEpow_1_r in H1. rewrite H1. simpl_pos_sub. simpl. npe_ring.
 - intros _; split; npe_simpl; now rewrite PE_1_r.
Qed.

Theorem split_aux_ok: forall e1 p e2,
  (e1 ^ Npos p === left (split_aux e1 p e2) * common (split_aux e1 p e2)
  /\ e2 === right (split_aux e1 p e2) * common (split_aux e1 p e2))%poly.
Proof.
induction e1;intros k e2; try refine (split_aux_ok1 _ k e2);simpl.
destruct (IHe1_1 k e2) as (H1,H2).
destruct (IHe1_2 k (right (split_aux e1_1 k e2))) as (H3,H4).
clear IHe1_1 IHe1_2.
- npe_simpl; split.
  * rewrite H1, H3. npe_ring.
  * rewrite H2 at 1. rewrite H4 at 1. npe_ring.
- destruct n; simpl.
  + rewrite PEpow_0_r, PEpow_1_l, !PE_1_r. now split.
  + rewrite <- PEpow_mul_r. simpl. apply IHe1.
Qed.

Definition split e1 e2 := split_aux e1 xH e2.

Theorem split_ok_l e1 e2 :
  (e1 === left (split e1 e2) * common (split e1 e2))%poly.
Proof.
destruct (split_aux_ok e1 xH e2) as (H,_). now rewrite <- H, PEpow_1_r.
Qed.

Theorem split_ok_r e1 e2 :
  (e2 === right (split e1 e2) * common (split e1 e2))%poly.
Proof.
destruct (split_aux_ok e1 xH e2) as (_,H). trivial.
Qed.

Lemma split_nz_l l e1 e2 :
 ~ e1 @ l == 0 -> ~ left (split e1 e2) @ l == 0.
Proof.
 intros H. contradict H. rewrite (split_ok_l e1 e2); simpl.
 now rewrite H, rmul_0_l.
Qed.

Lemma split_nz_r l e1 e2 :
 ~ e2 @ l == 0 -> ~ right (split e1 e2) @ l == 0.
Proof.
 intros H. contradict H. rewrite (split_ok_r e1 e2); simpl.
 now rewrite H, rmul_0_l.
Qed.

Fixpoint Fnorm (e : FExpr) : linear :=
  match e with
  | FEO => mk_linear 0 1 nil
  | FEI => mk_linear 1 1 nil
  | FEc c => mk_linear (PEc c) 1 nil
  | FEX x => mk_linear (PEX C x) 1 nil
  | FEadd e1 e2 =>
      let x := Fnorm e1 in
      let y := Fnorm e2 in
      let s := split (denum x) (denum y) in
      mk_linear
        ((num x ** right s) ++ (num y ** left s))
        (left s ** (right s ** common s))
        (condition x ++ condition y)%list
  | FEsub e1 e2 =>
      let x := Fnorm e1 in
      let y := Fnorm e2 in
      let s := split (denum x) (denum y) in
      mk_linear
        ((num x ** right s) -- (num y ** left s))
        (left s ** (right s ** common s))
        (condition x ++ condition y)%list
  | FEmul e1 e2 =>
      let x := Fnorm e1 in
      let y := Fnorm e2 in
      let s1 := split (num x) (denum y) in
      let s2 := split (num y) (denum x) in
      mk_linear (left s1 ** left s2)
        (right s2 ** right s1)
        (condition x ++ condition y)%list
  | FEopp e1 =>
      let x := Fnorm e1 in
      mk_linear (NPEopp (num x)) (denum x) (condition x)
  | FEinv e1 =>
      let x := Fnorm e1 in
      mk_linear (denum x) (num x) (num x :: condition x)
  | FEdiv e1 e2 =>
      let x := Fnorm e1 in
      let y := Fnorm e2 in
      let s1 := split (num x) (num y) in
      let s2 := split (denum x) (denum y) in
      mk_linear (left s1 ** right s2)
        (left s2 ** right s1)
        (num y :: condition x ++ condition y)%list
  | FEpow e1 n =>
      let x := Fnorm e1 in
      mk_linear ((num x)^^n) ((denum x)^^n) (condition x)
  end.

(* Example *)
(*
Eval compute
   in (Fnorm
        (FEdiv
          (FEc cI)
          (FEadd (FEinv (FEX xH%positive)) (FEinv (FEX (xO xH)%positive))))).
*)

Theorem Pcond_Fnorm l e :
 PCond l (condition (Fnorm e)) ->  ~ (denum (Fnorm e))@l == 0.
Proof.
induction e; simpl condition; rewrite ?PCond_cons, ?PCond_app;
 simpl denum; intros (Hc1,Hc2) || intros Hc; rewrite ?NPEmul_ok.
- simpl. rewrite phi_1; exact rI_neq_rO.
- simpl. rewrite phi_1; exact rI_neq_rO.
- simpl; intros. rewrite phi_1; exact rI_neq_rO.
- simpl; intros. rewrite phi_1; exact rI_neq_rO.
- rewrite <- split_ok_r. simpl. apply field_is_integral_domain.
  + apply split_nz_l, IHe1, Hc1.
  + apply IHe2, Hc2.
- rewrite <- split_ok_r. simpl. apply field_is_integral_domain.
  + apply split_nz_l, IHe1, Hc1.
  + apply IHe2, Hc2.
- simpl. apply field_is_integral_domain.
  + apply split_nz_r, IHe1, Hc1.
  + apply split_nz_r, IHe2, Hc2.
- now apply IHe.
- trivial.
- destruct Hc2 as (Hc2,_). simpl. apply field_is_integral_domain.
  + apply split_nz_l, IHe1, Hc2.
  + apply split_nz_r, Hc1.
- rewrite NPEpow_ok. apply PEpow_nz, IHe, Hc.
Qed.


(***************************************************************************

                       Main theorem

  ***************************************************************************)

Ltac uneval :=
 repeat match goal with
  | |- context [ ?x @ ?l * ?y @ ?l ] => change (x@l * y@l) with ((x*y)@l)
  | |- context [ ?x @ ?l + ?y @ ?l ] => change (x@l + y@l) with ((x+y)@l)
 end.

Theorem Fnorm_FEeval_PEeval l fe:
 PCond l (condition (Fnorm fe)) ->
 FEeval l fe == (num (Fnorm fe)) @ l / (denum (Fnorm fe)) @ l.
Proof.
induction fe; simpl condition; rewrite ?PCond_cons, ?PCond_app; simpl;
 intros (Hc1,Hc2) || intros Hc;
 try (specialize (IHfe1 Hc1);apply Pcond_Fnorm in Hc1);
 try (specialize (IHfe2 Hc2);apply Pcond_Fnorm in Hc2);
 try set (F1 := Fnorm fe1) in *; try set (F2 := Fnorm fe2) in *.

- now rewrite phi_1, phi_0, rdiv_def.
- now rewrite phi_1; apply rdiv1.
- rewrite phi_1; apply rdiv1.
- rewrite phi_1; apply rdiv1.
- rewrite NPEadd_ok, !NPEmul_ok. simpl.
  rewrite <- rdiv2b; uneval; rewrite <- ?split_ok_l, <- ?split_ok_r; trivial.
  now f_equiv.

- rewrite NPEsub_ok, !NPEmul_ok. simpl.
  rewrite <- rdiv3b; uneval; rewrite <- ?split_ok_l, <- ?split_ok_r; trivial.
  now f_equiv.

- rewrite !NPEmul_ok. simpl.
  rewrite IHfe1, IHfe2.
  rewrite (split_ok_l (num F1) (denum F2) l),
          (split_ok_r (num F1) (denum F2) l),
          (split_ok_l (num F2) (denum F1) l),
          (split_ok_r (num F2) (denum F1) l) in *.
  apply rdiv4b; trivial.

- rewrite NPEopp_ok; simpl; rewrite (IHfe Hc); apply rdiv5.

- rewrite (IHfe Hc2); apply rdiv6; trivial;
   apply Pcond_Fnorm; trivial.

- destruct Hc2 as (Hc2,Hc3).
  rewrite !NPEmul_ok. simpl.
  assert (U1 := split_ok_l (num F1) (num F2) l).
  assert (U2 := split_ok_r (num F1) (num F2) l).
  assert (U3 := split_ok_l (denum F1) (denum F2) l).
  assert (U4 := split_ok_r (denum F1) (denum F2) l).
  rewrite (IHfe1 Hc2), (IHfe2 Hc3), U1, U2, U3, U4.
  simpl in U2, U3, U4. apply rdiv7b;
   rewrite <- ?U2, <- ?U3, <- ?U4; try apply Pcond_Fnorm; trivial.

- rewrite !NPEpow_ok. simpl. rewrite !rpow_pow, (IHfe Hc).
  destruct n; simpl.
  + apply rdiv1.
  + apply pow_pos_div. apply Pcond_Fnorm; trivial.
Qed.

Theorem Fnorm_crossproduct l fe1 fe2 :
 let nfe1 := Fnorm fe1 in
 let nfe2 := Fnorm fe2 in
 (num nfe1 * denum nfe2) @ l == (num nfe2 * denum nfe1) @ l ->
 PCond l (condition nfe1 ++ condition nfe2) ->
 FEeval l fe1 == FEeval l fe2.
Proof.
simpl. rewrite PCond_app. intros Hcrossprod (Hc1,Hc2).
rewrite !Fnorm_FEeval_PEeval; trivial.
apply cross_product_eq; trivial;
 apply Pcond_Fnorm; trivial.
Qed.

(* Correctness lemmas of reflexive tactics *)
Notation Ninterp_PElist :=
  (interp_PElist rO rI radd rmul rsub ropp req phi Cp_phi rpow).
Notation Nmk_monpol_list :=
  (mk_monpol_list cO cI cadd cmul csub copp ceqb cdiv).

Theorem Fnorm_ok:
 forall n l lpe fe,
  Ninterp_PElist l lpe ->
  Peq ceqb (Nnorm n (Nmk_monpol_list lpe) (num (Fnorm fe))) (Pc cO) = true ->
  PCond l (condition (Fnorm fe)) ->  FEeval l fe == 0.
Proof.
intros n l lpe fe Hlpe H H1.
rewrite (Fnorm_FEeval_PEeval l fe H1).
apply rdiv8. apply Pcond_Fnorm; trivial.
transitivity (0@l); trivial.
rewrite (norm_subst_ok Rsth Reqe ARth CRmorph pow_th cdiv_th n l lpe); trivial.
change (0 @ l) with (Pphi 0 radd rmul phi l (Pc cO)).
apply (Peq_ok Rsth Reqe CRmorph); trivial.
Qed.

Notation ring_rw_correct :=
 (ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec).

Notation ring_rw_pow_correct :=
 (ring_rw_pow_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec).

Notation ring_correct :=
 (ring_correct Rsth Reqe ARth CRmorph pow_th cdiv_th).

(* simplify a field expression into a fraction *)
(* TODO: simplify when den is constant... *)
Definition display_linear l num den :=
  NPphi_dev l num / NPphi_dev l den.

Definition display_pow_linear l num den :=
  NPphi_pow l num / NPphi_pow l den.

Theorem Field_rw_correct n lpe l :
   Ninterp_PElist l lpe ->
   forall lmp, Nmk_monpol_list lpe = lmp ->
   forall fe nfe, Fnorm fe = nfe ->
   PCond l (condition nfe) ->
   FEeval l fe ==
     display_linear l (Nnorm n lmp (num nfe)) (Nnorm n lmp (denum nfe)).
Proof.
  intros Hlpe lmp lmp_eq fe nfe eq_nfe H; subst nfe lmp.
  rewrite (Fnorm_FEeval_PEeval _ _ H).
  unfold display_linear; apply rdiv_ext;
  eapply ring_rw_correct; eauto.
Qed.

Theorem Field_rw_pow_correct n lpe l :
   Ninterp_PElist l lpe ->
   forall lmp, Nmk_monpol_list lpe = lmp ->
   forall fe nfe, Fnorm fe = nfe ->
   PCond l (condition nfe) ->
   FEeval l fe ==
     display_pow_linear l (Nnorm n lmp (num nfe)) (Nnorm n lmp (denum nfe)).
Proof.
  intros Hlpe lmp lmp_eq fe nfe eq_nfe H; subst nfe lmp.
  rewrite (Fnorm_FEeval_PEeval _ _ H).
  unfold display_pow_linear; apply rdiv_ext;
  eapply ring_rw_pow_correct;eauto.
Qed.

Theorem Field_correct n l lpe fe1 fe2 :
 Ninterp_PElist l lpe ->
 forall lmp, Nmk_monpol_list lpe = lmp ->
 forall nfe1, Fnorm fe1 = nfe1 ->
 forall nfe2, Fnorm fe2 = nfe2 ->
 Peq ceqb (Nnorm n lmp (num nfe1 * denum nfe2))
          (Nnorm n lmp (num nfe2 * denum nfe1)) = true ->
 PCond l (condition nfe1 ++ condition nfe2) ->
 FEeval l fe1 == FEeval l fe2.
Proof.
intros Hlpe lmp eq_lmp nfe1 eq1 nfe2 eq2 Hnorm Hcond; subst nfe1 nfe2 lmp.
apply Fnorm_crossproduct; trivial.
eapply ring_correct; eauto.
Qed.

(* simplify a field equation : generate the crossproduct and simplify
   polynomials *)

(** This allows rewriting modulo the simplification of PEeval on PMul *)
Declare Equivalent Keys PEeval rmul.

Theorem Field_simplify_eq_correct :
 forall n l lpe fe1 fe2,
    Ninterp_PElist l lpe ->
 forall lmp, Nmk_monpol_list lpe = lmp ->
 forall nfe1, Fnorm fe1 = nfe1 ->
 forall nfe2, Fnorm fe2 = nfe2 ->
 forall den, split (denum nfe1) (denum nfe2) = den ->
 NPphi_dev l (Nnorm n lmp (num nfe1 * right den)) ==
 NPphi_dev l (Nnorm n lmp (num nfe2 * left den)) ->
 PCond l (condition nfe1 ++ condition nfe2) ->
 FEeval l fe1 == FEeval l fe2.
Proof.
intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond.
apply Fnorm_crossproduct; rewrite ?eq1, ?eq2; trivial.
simpl.
rewrite (split_ok_l (denum nfe1) (denum nfe2) l), eq3.
rewrite (split_ok_r (denum nfe1) (denum nfe2) l), eq3.
simpl.
rewrite !rmul_assoc.
apply rmul_ext; trivial.
rewrite (ring_rw_correct n lpe l Hlpe Logic.eq_refl (num nfe1 * right den) Logic.eq_refl),
 (ring_rw_correct n lpe l Hlpe Logic.eq_refl (num nfe2 * left den) Logic.eq_refl).
rewrite Hlmp.
apply Hcrossprod.
Qed.

Theorem Field_simplify_eq_pow_correct :
 forall n l lpe fe1 fe2,
    Ninterp_PElist l lpe ->
 forall lmp, Nmk_monpol_list lpe = lmp ->
 forall nfe1, Fnorm fe1 = nfe1 ->
 forall nfe2, Fnorm fe2 = nfe2 ->
 forall den, split (denum nfe1) (denum nfe2) = den ->
 NPphi_pow l (Nnorm n lmp (num nfe1 * right den)) ==
 NPphi_pow l (Nnorm n lmp (num nfe2 * left den)) ->
 PCond l (condition nfe1 ++ condition nfe2) ->
 FEeval l fe1 == FEeval l fe2.
Proof.
intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond.
apply Fnorm_crossproduct; rewrite ?eq1, ?eq2; trivial.
simpl.
rewrite (split_ok_l (denum nfe1) (denum nfe2) l), eq3.
rewrite (split_ok_r (denum nfe1) (denum nfe2) l), eq3.
simpl.
rewrite !rmul_assoc.
apply rmul_ext; trivial.
rewrite
 (ring_rw_pow_correct n lpe l Hlpe Logic.eq_refl (num nfe1 * right den) Logic.eq_refl),
 (ring_rw_pow_correct n lpe l Hlpe Logic.eq_refl (num nfe2 * left den) Logic.eq_refl).
rewrite Hlmp.
apply Hcrossprod.
Qed.

Theorem Field_simplify_aux_ok l fe1 fe2 den :
 FEeval l fe1 == FEeval l fe2 ->
 split (denum (Fnorm fe1)) (denum (Fnorm fe2)) = den ->
 PCond l (condition (Fnorm fe1) ++ condition (Fnorm fe2)) ->
 (num (Fnorm fe1) * right den) @ l == (num (Fnorm fe2) * left den) @ l.
Proof.
 rewrite PCond_app; intros Hfe Hden (Hc1,Hc2); simpl.
 assert (Hc1' := Pcond_Fnorm _ _ Hc1).
 assert (Hc2' := Pcond_Fnorm _ _ Hc2).
 set (N1 := num (Fnorm fe1)) in *. set (N2 := num (Fnorm fe2)) in *.
 set (D1 := denum (Fnorm fe1)) in *. set (D2 := denum (Fnorm fe2)) in *.
 assert (~ (common den) @ l == 0).
 { intro H. apply Hc1'.
   rewrite (split_ok_l D1 D2 l).
   rewrite Hden. simpl. ring [H]. }
 apply (@rmul_reg_l ((common den) @ l)); trivial.
 rewrite !(rmul_comm ((common den) @ l)), <- !rmul_assoc.
 change
  (N1@l * (right den * common den) @ l ==
   N2@l * (left den * common den) @ l).
 rewrite <- Hden, <- split_ok_l, <- split_ok_r.
 apply (@rmul_reg_l (/ D2@l)). { apply rinv_nz; trivial. }
 rewrite (rmul_comm (/ D2 @ l)), <- !rmul_assoc.
 rewrite <- rdiv_def, rdiv_r_r, rmul_1_r by trivial.
 apply (@rmul_reg_l (/ (D1@l))). { apply rinv_nz; trivial. }
 rewrite !(rmul_comm  (/ D1@l)), <- !rmul_assoc.
 rewrite <- !rdiv_def, rdiv_r_r, rmul_1_r by trivial.
 rewrite (rmul_comm (/ D2@l)), <- rdiv_def.
 unfold N1,N2,D1,D2; rewrite <- !Fnorm_FEeval_PEeval; trivial.
Qed.

Theorem Field_simplify_eq_pow_in_correct :
 forall n l lpe fe1 fe2,
    Ninterp_PElist l lpe ->
 forall lmp, Nmk_monpol_list lpe = lmp ->
 forall nfe1, Fnorm fe1 = nfe1 ->
 forall nfe2, Fnorm fe2 = nfe2 ->
 forall den, split (denum nfe1) (denum nfe2) = den ->
 forall np1, Nnorm n lmp (num nfe1 * right den) = np1 ->
 forall np2, Nnorm n lmp (num nfe2 * left den) = np2 ->
 FEeval l fe1 == FEeval l fe2 ->
 PCond l (condition nfe1 ++ condition nfe2) ->
 NPphi_pow l np1 ==
 NPphi_pow l np2.
Proof.
 intros. subst nfe1 nfe2 lmp np1 np2.
 rewrite !(Pphi_pow_ok Rsth Reqe ARth CRmorph pow_th get_sign_spec).
 repeat (rewrite <- (norm_subst_ok Rsth Reqe ARth CRmorph pow_th);trivial).
 simpl. apply Field_simplify_aux_ok; trivial.
Qed.

Theorem Field_simplify_eq_in_correct :
forall n l lpe fe1 fe2,
    Ninterp_PElist l lpe ->
 forall lmp, Nmk_monpol_list lpe = lmp ->
 forall nfe1, Fnorm fe1 = nfe1 ->
 forall nfe2, Fnorm fe2 = nfe2 ->
 forall den, split (denum nfe1) (denum nfe2) = den ->
 forall np1, Nnorm n lmp (num nfe1 * right den) = np1 ->
 forall np2, Nnorm n lmp (num nfe2 * left den) = np2 ->
 FEeval l fe1 == FEeval l fe2 ->
 PCond l (condition nfe1 ++ condition nfe2) ->
 NPphi_dev l np1 == NPphi_dev l np2.
Proof.
 intros. subst nfe1 nfe2 lmp np1 np2.
 rewrite !(Pphi_dev_ok Rsth Reqe ARth CRmorph  get_sign_spec).
 repeat (rewrite <- (norm_subst_ok Rsth Reqe ARth CRmorph pow_th);trivial).
 apply Field_simplify_aux_ok; trivial.
Qed.


Section Fcons_impl.

Variable Fcons : PExpr C -> list (PExpr C) -> list (PExpr C).

Hypothesis PCond_fcons_inv : forall l a l1,
  PCond l (Fcons a l1) ->  ~ a @ l == 0 /\ PCond l l1.

Fixpoint Fapp (l m:list (PExpr C)) {struct l} : list (PExpr C) :=
  match l with
  | nil => m
  | cons a l1 => Fcons a (Fapp l1 m)
  end.

Lemma fcons_ok : forall l l1,
  (forall lock, lock = PCond l -> lock (Fapp l1 nil)) -> PCond l l1.
Proof.
intros l l1 h1; assert (H := h1 (PCond l) (refl_equal _));clear h1.
induction l1; simpl; intros.
 trivial.
 elim PCond_fcons_inv with (1 := H); intros.
 destruct l1; trivial. split; trivial. apply IHl1; trivial.
Qed.

End Fcons_impl.

Section Fcons_simpl.

(* Some general simpifications of the condition: eliminate duplicates,
   split multiplications *)

Fixpoint Fcons (e:PExpr C) (l:list (PExpr C)) {struct l} : list (PExpr C) :=
 match l with
   nil       => cons e nil
 | cons a l1 => if PExpr_eq e a then l else cons a (Fcons e l1)
 end.

Theorem PFcons_fcons_inv:
 forall l a l1, PCond l (Fcons a l1) ->  ~ a @ l == 0 /\ PCond l l1.
Proof.
induction l1 as [|e l1]; simpl Fcons.
- simpl; now split.
- case PExpr_eq_spec; intros H; rewrite !PCond_cons; intros (H1,H2);
   repeat split; trivial.
  + now rewrite H.
  + now apply IHl1.
  + now apply IHl1.
Qed.

(* equality of normal forms rather than syntactic equality *)
Fixpoint Fcons0 (e:PExpr C) (l:list (PExpr C)) {struct l} : list (PExpr C) :=
 match l with
   nil       => cons e nil
 | cons a l1 =>
     if Peq ceqb (Nnorm O nil e) (Nnorm O nil a) then l
     else cons a (Fcons0 e l1)
 end.

Theorem PFcons0_fcons_inv:
 forall l a l1, PCond l (Fcons0 a l1) ->  ~ a @ l == 0 /\ PCond l l1.
Proof.
induction l1 as [|e l1]; simpl Fcons0.
- simpl; now split.
- generalize (ring_correct O l nil a e). lazy zeta; simpl Peq.
  case Peq; intros H; rewrite !PCond_cons; intros (H1,H2);
   repeat split; trivial.
  + now rewrite H.
  + now apply IHl1.
  + now apply IHl1.
Qed.

(* split factorized denominators *)
Fixpoint Fcons00 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) :=
 match e with
   PEmul e1 e2 => Fcons00 e1 (Fcons00 e2 l)
 | PEpow e1 _ => Fcons00 e1 l
 | _ => Fcons0 e l
 end.

Theorem PFcons00_fcons_inv:
  forall l a l1, PCond l (Fcons00 a l1) -> ~ a @ l == 0 /\ PCond l l1.
Proof.
intros l a; elim a; try (intros; apply PFcons0_fcons_inv; trivial; fail).
- intros p H p0 H0 l1 H1.
  simpl in H1.
  destruct (H _ H1) as (H2,H3).
  destruct (H0 _ H3) as (H4,H5). split; trivial.
  simpl.
  apply field_is_integral_domain; trivial.
- intros. destruct (H _ H0). split; trivial.
  apply PEpow_nz; trivial.
Qed.

Definition Pcond_simpl_gen :=
  fcons_ok _ PFcons00_fcons_inv.


(* Specific case when the equality test of coefs is complete w.r.t. the
   field equality: non-zero coefs can be eliminated, and opposite can
   be simplified (if -1 <> 0) *)

Hypothesis ceqb_complete : forall c1 c2, [c1] == [c2] -> ceqb c1 c2 = true.

Lemma ceqb_spec' c1 c2 : Bool.reflect ([c1] == [c2]) (ceqb c1 c2).
Proof.
assert (H := morph_eq CRmorph c1 c2).
assert (H' := @ceqb_complete c1 c2).
destruct (ceqb c1 c2); constructor.
- now apply H.
- intro E. specialize (H' E). discriminate.
Qed.

Fixpoint Fcons1 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) :=
 match e with
 | PEmul e1 e2 => Fcons1 e1 (Fcons1 e2 l)
 | PEpow e _ => Fcons1 e l
 | PEopp e => if (-(1) =? 0)%coef then absurd_PCond else Fcons1 e l
 | PEc c => if (c =? 0)%coef then absurd_PCond else l
 | _ => Fcons0 e l
 end.

Theorem PFcons1_fcons_inv:
  forall l a l1, PCond l (Fcons1 a l1) -> ~ a @ l == 0 /\ PCond l l1.
Proof.
intros l a; elim a; try (intros; apply PFcons0_fcons_inv; trivial; fail).
- simpl; intros c l1.
  case ceqb_spec'; intros H H0.
  + elim (@absurd_PCond_bottom l H0).
  + split; trivial. rewrite <- phi_0; trivial.
- intros p H p0 H0 l1 H1. simpl in H1.
  destruct (H _ H1) as (H2,H3).
  destruct (H0 _ H3) as (H4,H5).
  split; trivial. simpl. apply field_is_integral_domain; trivial.
- simpl; intros p H l1.
  case ceqb_spec'; intros H0 H1.
  + elim (@absurd_PCond_bottom l H1).
  + destruct (H _ H1).
    split; trivial.
    apply ropp_neq_0; trivial.
    rewrite (morph_opp CRmorph), phi_0, phi_1 in H0. trivial.
- intros. destruct (H _ H0);split;trivial. apply PEpow_nz; trivial.
Qed.

Definition Fcons2 e l := Fcons1 (PEsimp e) l.

Theorem PFcons2_fcons_inv:
 forall l a l1, PCond l (Fcons2 a l1) -> ~ a @ l == 0 /\ PCond l l1.
Proof.
unfold Fcons2; intros l a l1 H; split;
 case (PFcons1_fcons_inv l (PEsimp a) l1); trivial.
intros H1 H2 H3; case H1.
transitivity (a@l); trivial.
apply PEsimp_ok.
Qed.

Definition Pcond_simpl_complete :=
  fcons_ok _ PFcons2_fcons_inv.

End Fcons_simpl.

End AlmostField.

Section FieldAndSemiField.

  Record field_theory : Prop := mk_field {
    F_R : ring_theory rO rI radd rmul rsub ropp req;
    F_1_neq_0 : ~ 1 == 0;
    Fdiv_def : forall p q, p / q == p * / q;
    Finv_l : forall p, ~ p == 0 ->  / p * p == 1
  }.

  Definition F2AF f :=
    mk_afield
      (Rth_ARth Rsth Reqe f.(F_R)) f.(F_1_neq_0) f.(Fdiv_def) f.(Finv_l).

  Record semi_field_theory : Prop := mk_sfield {
    SF_SR : semi_ring_theory rO rI radd rmul req;
    SF_1_neq_0 : ~ 1 == 0;
    SFdiv_def : forall p q, p / q == p * / q;
    SFinv_l : forall p, ~ p == 0 ->  / p * p == 1
  }.

End FieldAndSemiField.

End MakeFieldPol.

  Definition SF2AF R (rO rI:R) radd rmul rdiv rinv req Rsth
    (sf:semi_field_theory rO rI radd rmul rdiv rinv req)  :=
    mk_afield _ _
      (SRth_ARth Rsth sf.(SF_SR))
      sf.(SF_1_neq_0)
      sf.(SFdiv_def)
      sf.(SFinv_l).


Section Complete.
 Variable R : Type.
 Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R).
 Variable (rdiv : R -> R ->  R) (rinv : R ->  R).
 Variable req : R -> R -> Prop.
  Notation "0" := rO.  Notation "1" := rI.
  Notation "x + y" := (radd x y).  Notation "x * y " := (rmul x y).
  Notation "x - y " := (rsub x y).  Notation "- x" := (ropp x).
  Notation "x / y " := (rdiv x y).  Notation "/ x" := (rinv x).
  Notation "x == y" := (req x y) (at level 70, no associativity).
 Variable Rsth : Setoid_Theory R req.
   Add Parametric Relation : R req
     reflexivity  proved by Rsth.(@Equivalence_Reflexive _ _)
     symmetry     proved by Rsth.(@Equivalence_Symmetric _ _)
     transitivity proved by Rsth.(@Equivalence_Transitive _ _)
    as R_setoid3.
 Variable Reqe : ring_eq_ext radd rmul ropp req.
   Add Morphism radd with signature (req ==> req ==> req) as radd_ext3.
   Proof. exact (Radd_ext Reqe). Qed.
   Add Morphism rmul with signature (req ==> req ==> req) as rmul_ext3.
   Proof. exact (Rmul_ext Reqe). Qed.
   Add Morphism ropp with signature (req ==> req) as ropp_ext3.
   Proof. exact (Ropp_ext Reqe). Qed.

Section AlmostField.

 Variable AFth : almost_field_theory rO rI radd rmul rsub ropp rdiv rinv req.
 Let ARth := AFth.(AF_AR).
 Let rI_neq_rO := AFth.(AF_1_neq_0).
 Let rdiv_def := AFth.(AFdiv_def).
 Let rinv_l := AFth.(AFinv_l).

Hypothesis S_inj : forall x y, 1+x==1+y -> x==y.

Hypothesis gen_phiPOS_not_0 : forall p, ~ gen_phiPOS1 rI radd rmul p == 0.

Lemma add_inj_r p x y :
   gen_phiPOS1 rI radd rmul p + x == gen_phiPOS1 rI radd rmul p + y -> x==y.
Proof.
elim p using Pos.peano_ind; simpl; intros.
 apply S_inj; trivial.
 apply H.
   apply S_inj.
   rewrite !(ARadd_assoc ARth).
   rewrite <- (ARgen_phiPOS_Psucc Rsth Reqe ARth); trivial.
Qed.

Lemma gen_phiPOS_inj x y :
  gen_phiPOS rI radd rmul x == gen_phiPOS rI radd rmul y ->
  x = y.
Proof.
rewrite <- !(same_gen Rsth Reqe ARth).
case (Pos.compare_spec x y).
 intros.
   trivial.
 intros.
   elim gen_phiPOS_not_0 with (y - x)%positive.
   apply add_inj_r with x.
   symmetry.
   rewrite (ARadd_0_r Rsth ARth).
   rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth).
   now rewrite Pos.add_comm, Pos.sub_add.
 intros.
   elim gen_phiPOS_not_0 with (x - y)%positive.
   apply add_inj_r with y.
   rewrite (ARadd_0_r Rsth ARth).
   rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth).
   now rewrite Pos.add_comm, Pos.sub_add.
Qed.


Lemma gen_phiN_inj x y :
  gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y ->
  x = y.
Proof.
destruct x; destruct y; simpl; intros; trivial.
 elim gen_phiPOS_not_0 with p.
   symmetry .
   rewrite (same_gen Rsth Reqe ARth); trivial.
 elim gen_phiPOS_not_0 with p.
   rewrite (same_gen Rsth Reqe ARth); trivial.
 rewrite gen_phiPOS_inj with (1 := H); trivial.
Qed.

Lemma gen_phiN_complete x y :
  gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y ->
  N.eqb x y = true.
Proof.
intros. now apply N.eqb_eq, gen_phiN_inj.
Qed.

End AlmostField.

Section Field.

 Variable Fth : field_theory rO rI radd rmul rsub ropp rdiv rinv req.
 Let Rth := Fth.(F_R).
 Let rI_neq_rO := Fth.(F_1_neq_0).
 Let rdiv_def := Fth.(Fdiv_def).
 Let rinv_l := Fth.(Finv_l).
 Let AFth := F2AF Rsth Reqe Fth.
 Let ARth := Rth_ARth Rsth Reqe Rth.

Lemma ring_S_inj x y : 1+x==1+y -> x==y.
Proof.
intros.
rewrite <- (ARadd_0_l ARth x), <- (ARadd_0_l ARth y).
rewrite <- (Ropp_def Rth 1), (ARadd_comm ARth 1).
rewrite <- !(ARadd_assoc ARth). now apply (Radd_ext Reqe).
Qed.

Hypothesis gen_phiPOS_not_0 : forall p, ~ gen_phiPOS1 rI radd rmul p == 0.

Let gen_phiPOS_inject :=
   gen_phiPOS_inj AFth ring_S_inj gen_phiPOS_not_0.

Lemma gen_phiPOS_discr_sgn x y :
  ~ gen_phiPOS rI radd rmul x == - gen_phiPOS rI radd rmul y.
Proof.
red; intros.
apply gen_phiPOS_not_0 with (y + x)%positive.
rewrite (ARgen_phiPOS_add Rsth Reqe ARth).
transitivity (gen_phiPOS1 1 radd rmul y + - gen_phiPOS1 1 radd rmul y).
 apply (Radd_ext Reqe); trivial.
  reflexivity.
  rewrite (same_gen Rsth Reqe ARth).
    rewrite (same_gen Rsth Reqe ARth).
    trivial.
 apply (Ropp_def Rth).
Qed.

Lemma gen_phiZ_inj x y :
  gen_phiZ rO rI radd rmul ropp x == gen_phiZ rO rI radd rmul ropp y ->
  x = y.
Proof.
destruct x; destruct y; simpl; intros.
 trivial.
 elim gen_phiPOS_not_0 with p.
   rewrite (same_gen Rsth Reqe ARth).
   symmetry ; trivial.
 elim gen_phiPOS_not_0 with p.
   rewrite (same_gen Rsth Reqe ARth).
   rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)).
   rewrite <- H.
   apply (ARopp_zero Rsth Reqe ARth).
 elim gen_phiPOS_not_0 with p.
   rewrite (same_gen Rsth Reqe ARth).
   trivial.
 rewrite gen_phiPOS_inject  with (1 := H); trivial.
 elim gen_phiPOS_discr_sgn with (1 := H).
 elim gen_phiPOS_not_0 with p.
   rewrite (same_gen Rsth Reqe ARth).
   rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)).
   rewrite H.
   apply (ARopp_zero Rsth Reqe ARth).
 elim gen_phiPOS_discr_sgn with p0 p.
   symmetry ; trivial.
 replace p0 with p; trivial.
   apply gen_phiPOS_inject.
   rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)).
   rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p0)).
   rewrite H; trivial.
   reflexivity.
Qed.

Lemma gen_phiZ_complete x y :
  gen_phiZ rO rI radd rmul ropp x == gen_phiZ rO rI radd rmul ropp y ->
  Zeq_bool x y = true.
Proof.
intros.
 replace y with x.
 unfold Zeq_bool.
   rewrite Z.compare_refl; trivial.
 apply gen_phiZ_inj; trivial.
Qed.

End Field.

End Complete.

Arguments FEO [C].
Arguments FEI [C].