aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins/setoid_ring/Cring_initial.v
blob: 4a0beb3fa491afdac555318dd5d49d97bb89e09c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

Require Import ZArith_base.
Require Import Zpow_def.
Require Import BinInt.
Require Import BinNat.
Require Import Setoid.
Require Import Algebra_syntax.
Require Export Ring_polynom.
Require Export Cring.
Import List.

Set Implicit Arguments.

(* An object to return when an expression is not recognized as a constant *)
Definition NotConstant := false.

(** Z is a ring and a setoid*)

Lemma Zsth : Setoid_Theory Z (@eq Z).
constructor;red;intros;subst;trivial.
Qed.

Definition Zr : Cring Z.
apply (@Build_Cring Z Z0 (Zpos xH) Zplus Zmult Zminus Zopp (@eq Z)); 
try apply Zsth; try (red; red; intros; rewrite H; reflexivity). 
 exact Zplus_comm. exact Zplus_assoc.
 exact Zmult_1_l.  exact Zmult_assoc. exact Zmult_comm.
 exact Zmult_plus_distr_l. trivial. exact Zminus_diag.
Defined.

(** Two generic morphisms from Z to (abrbitrary) rings, *)
(**second one is more convenient for proofs but they are ext. equal*)
Section ZMORPHISM.
 Variable R : Type.
 Variable Rr: Cring R.
Existing Instance Rr.
 
 Ltac rrefl := gen_reflexivity Rr.

(*
Print HintDb typeclass_instances.
Print Scopes.
*)

 Fixpoint gen_phiPOS1 (p:positive) : R :=
  match p with
  | xH => 1
  | xO p => (1 + 1) * (gen_phiPOS1 p)
  | xI p => 1 + ((1 + 1) * (gen_phiPOS1 p))
  end.

 Fixpoint gen_phiPOS (p:positive) : R :=
  match p with
  | xH => 1
  | xO xH => (1 + 1)
  | xO p => (1 + 1) * (gen_phiPOS p)
  | xI xH => 1 + (1 +1)
  | xI p => 1 + ((1 + 1) * (gen_phiPOS p))
  end.

 Definition gen_phiZ1 z :=
  match z with
  | Zpos p => gen_phiPOS1 p
  | Z0 => 0
  | Zneg p => -(gen_phiPOS1 p)
  end.

 Definition gen_phiZ z :=
  match z with
  | Zpos p => gen_phiPOS p
  | Z0 => 0
  | Zneg p => -(gen_phiPOS p)
  end.
 Notation "[ x ]" := (gen_phiZ x).

 Definition get_signZ z :=
  match z with
  | Zneg p => Some (Zpos p)
  | _ => None
  end.

   Ltac norm := gen_cring_rewrite.
   Ltac add_push :=  gen_add_push.
Ltac rsimpl := simpl;  set_cring_notations.

 Lemma same_gen : forall x, gen_phiPOS1 x == gen_phiPOS x.
 Proof.
  induction x;rsimpl.
  cring_rewrite IHx. destruct x;simpl;norm.
  cring_rewrite IHx;destruct x;simpl;norm.
  gen_reflexivity.
 Qed.

 Lemma ARgen_phiPOS_Psucc : forall x,
   gen_phiPOS1 (Psucc x) == 1 + (gen_phiPOS1 x).
 Proof.
  induction x;rsimpl;norm.
  cring_rewrite IHx ;norm.
  add_push 1;gen_reflexivity.
 Qed.

 Lemma ARgen_phiPOS_add : forall x y,
   gen_phiPOS1 (x + y) == (gen_phiPOS1 x) + (gen_phiPOS1 y).
 Proof.
  induction x;destruct y;simpl;norm.
  cring_rewrite Pplus_carry_spec.
  cring_rewrite ARgen_phiPOS_Psucc.
  cring_rewrite IHx;norm.
  add_push (gen_phiPOS1 y);add_push 1;gen_reflexivity.
  cring_rewrite IHx;norm;add_push (gen_phiPOS1 y);gen_reflexivity.
  cring_rewrite ARgen_phiPOS_Psucc;norm;add_push 1;gen_reflexivity.
  cring_rewrite IHx;norm;add_push(gen_phiPOS1 y); add_push 1;gen_reflexivity.
  cring_rewrite IHx;norm;add_push(gen_phiPOS1 y);gen_reflexivity.
  add_push 1;gen_reflexivity.
  cring_rewrite ARgen_phiPOS_Psucc;norm;add_push 1;gen_reflexivity.
 Qed.

 Lemma ARgen_phiPOS_mult :
   forall x y, gen_phiPOS1 (x * y) == gen_phiPOS1 x * gen_phiPOS1 y.
 Proof.
  induction x;intros;simpl;norm.
  cring_rewrite ARgen_phiPOS_add;simpl;cring_rewrite IHx;norm.
  cring_rewrite IHx;gen_reflexivity.
 Qed.


(*morphisms are extensionaly equal*)
 Lemma same_genZ : forall x, [x] == gen_phiZ1 x.
 Proof.
  destruct x;rsimpl; try cring_rewrite same_gen; gen_reflexivity.
 Qed.

 Lemma gen_Zeqb_ok : forall x y,
   Zeq_bool x y = true -> [x] == [y].
 Proof.
  intros x y H.
  assert (H1 := Zeq_bool_eq x y H);unfold IDphi in H1.
  cring_rewrite H1;gen_reflexivity.
 Qed.

 Lemma gen_phiZ1_add_pos_neg : forall x y,
 gen_phiZ1
    match (x ?= y)%positive Eq with
    | Eq => Z0
    | Lt => Zneg (y - x)
    | Gt => Zpos (x - y)
    end
 == gen_phiPOS1 x + -gen_phiPOS1 y.
 Proof.
  intros x y.
  assert (H:= (Pcompare_Eq_eq x y)); assert (H0 := Pminus_mask_Gt x y).
  generalize (Pminus_mask_Gt y x).
  replace Eq with (CompOpp Eq);[intro H1;simpl|trivial].
  rewrite <- Pcompare_antisym in H1.
  destruct ((x ?= y)%positive Eq).
  cring_rewrite H;trivial. cring_rewrite cring_opp_def;gen_reflexivity.
  destruct H1 as [h [Heq1 [Heq2 Hor]]];trivial.
  unfold Pminus; cring_rewrite Heq1;rewrite <- Heq2.
  cring_rewrite ARgen_phiPOS_add;simpl;norm.
  cring_rewrite cring_opp_def;norm.
  destruct H0 as [h [Heq1 [Heq2 Hor]]];trivial.
  unfold Pminus; rewrite Heq1;rewrite <- Heq2.
  cring_rewrite ARgen_phiPOS_add;simpl;norm.
  set_cring_notations. add_push (gen_phiPOS1 h). cring_rewrite cring_opp_def ; norm.
 Qed.

 Lemma match_compOpp : forall x (B:Type) (be bl bg:B),
  match CompOpp x with Eq => be | Lt => bl | Gt => bg end
  = match x with Eq => be | Lt => bg | Gt => bl end.
 Proof. destruct x;simpl;intros;trivial. Qed.

 Lemma gen_phiZ_add : forall x y, [x + y] == [x] + [y].
 Proof.
  intros x y; repeat cring_rewrite same_genZ; generalize x y;clear x y.
  induction x;destruct y;simpl;norm.
  apply ARgen_phiPOS_add.
  apply gen_phiZ1_add_pos_neg.
  replace Eq with (CompOpp Eq);trivial.
  rewrite <- Pcompare_antisym;simpl.
  cring_rewrite match_compOpp.
  cring_rewrite cring_add_comm.
  apply gen_phiZ1_add_pos_neg.
  cring_rewrite ARgen_phiPOS_add; norm.
 Qed.

Lemma gen_phiZ_opp : forall x, [- x] == - [x].
 Proof.
  intros x. repeat cring_rewrite same_genZ. generalize x ;clear x.
  induction x;simpl;norm.
  cring_rewrite cring_opp_opp.  gen_reflexivity.
 Qed.

 Lemma gen_phiZ_mul : forall x y, [x * y] == [x] * [y].
 Proof.
  intros x y;repeat cring_rewrite same_genZ.
  destruct x;destruct y;simpl;norm;
  cring_rewrite  ARgen_phiPOS_mult;try (norm;fail).
  cring_rewrite cring_opp_opp ;gen_reflexivity.
 Qed.

 Lemma gen_phiZ_ext : forall x y : Z, x = y -> [x] == [y].
 Proof. intros;subst;gen_reflexivity. Qed.

(*proof that [.] satisfies morphism specifications*)
 Lemma gen_phiZ_morph : @Cring_morphism Z R Zr Rr.
 apply (Build_Cring_morphism Zr Rr gen_phiZ);simpl;try gen_reflexivity.
   apply gen_phiZ_add. intros. cring_rewrite cring_sub_def. 
replace (x-y)%Z with (x + (-y))%Z. cring_rewrite gen_phiZ_add. 
cring_rewrite gen_phiZ_opp. gen_reflexivity.
reflexivity.
 apply gen_phiZ_mul. apply gen_phiZ_opp. apply gen_phiZ_ext. 
 Defined.

End ZMORPHISM.