1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
|
(*************************************************************************
PROJET RNRT Calife - 2001
Author: Pierre Crégut - France Télécom R&D
Licence : LGPL version 2.1
*************************************************************************)
open Pp
open Util
open Proofview.Notations
open Const_omega
module OmegaSolver = Omega_plugin.Omega.MakeOmegaSolver (Bigint)
open OmegaSolver
module Id = Names.Id
module IntSet = Int.Set
module IntHtbl = Hashtbl.Make(Int)
(* \section{Useful functions and flags} *)
(* Especially useful debugging functions *)
let debug = ref false
let show_goal = Tacticals.New.tclIDTAC
let pp i = print_int i; print_newline (); flush stdout
(* More readable than the prefix notation *)
let (>>) = Tacticals.New.tclTHEN
let mkApp = Term.mkApp
(* \section{Types}
\subsection{How to walk in a term}
To represent how to get to a proposition. Only choice points are
kept (branch to choose in a disjunction and identifier of the disjunctive
connector) *)
type direction = Left of int | Right of int
(* Step to find a proposition (operators are at most binary). A list is
a path *)
type occ_step = O_left | O_right | O_mono
type occ_path = occ_step list
(* chemin identifiant une proposition sous forme du nom de l'hypothèse et
d'une liste de pas à partir de la racine de l'hypothèse *)
type occurrence = {o_hyp : Id.t; o_path : occ_path}
(* \subsection{reifiable formulas} *)
type oformula =
(* integer *)
| Oint of Bigint.bigint
(* recognized binary and unary operations *)
| Oplus of oformula * oformula
| Omult of oformula * oformula
| Ominus of oformula * oformula
| Oopp of oformula
(* an atom in the environment *)
| Oatom of int
(* weird expression that cannot be translated *)
| Oufo of oformula
(* Operators for comparison recognized by Omega *)
type comparaison = Eq | Leq | Geq | Gt | Lt | Neq
(* Type des prédicats réifiés (fragment de calcul propositionnel. Les
* quantifications sont externes au langage) *)
type oproposition =
Pequa of Term.constr * oequation (* constr = copy of the Coq formula *)
| Ptrue
| Pfalse
| Pnot of oproposition
| Por of int * oproposition * oproposition
| Pand of int * oproposition * oproposition
| Pimp of int * oproposition * oproposition
| Pprop of Term.constr
(* Les équations ou propositions atomiques utiles du calcul *)
and oequation = {
e_comp: comparaison; (* comparaison *)
e_left: oformula; (* formule brute gauche *)
e_right: oformula; (* formule brute droite *)
e_trace: Term.constr; (* tactique de normalisation *)
e_origin: occurrence; (* l'hypothèse dont vient le terme *)
e_negated: bool; (* vrai si apparait en position nié
après normalisation *)
e_depends: direction list; (* liste des points de disjonction dont
dépend l'accès à l'équation avec la
direction (branche) pour y accéder *)
e_omega: afine (* la fonction normalisée *)
}
(* \subsection{Proof context}
This environment codes
\begin{itemize}
\item the terms and propositions that are given as
parameters of the reified proof (and are represented as variables in the
reified goals)
\item translation functions linking the decision procedure and the Coq proof
\end{itemize} *)
type environment = {
(* La liste des termes non reifies constituant l'environnement global *)
mutable terms : Term.constr list;
(* La meme chose pour les propositions *)
mutable props : Term.constr list;
(* Les variables introduites par omega *)
mutable om_vars : (oformula * int) list;
(* Traduction des indices utilisés ici en les indices finaux utilisés par
* la tactique Omega après dénombrement des variables utiles *)
real_indices : int IntHtbl.t;
mutable cnt_connectors : int;
equations : oequation IntHtbl.t;
constructors : occurrence IntHtbl.t
}
(* \subsection{Solution tree}
Définition d'une solution trouvée par Omega sous la forme d'un identifiant,
d'un ensemble d'équation dont dépend la solution et d'une trace *)
type solution = {
s_index : int;
s_equa_deps : IntSet.t;
s_trace : action list }
(* Arbre de solution résolvant complètement un ensemble de systèmes *)
type solution_tree =
Leaf of solution
(* un noeud interne représente un point de branchement correspondant à
l'élimination d'un connecteur générant plusieurs buts
(typ. disjonction). Le premier argument
est l'identifiant du connecteur *)
| Tree of int * solution_tree * solution_tree
(* Représentation de l'environnement extrait du but initial sous forme de
chemins pour extraire des equations ou d'hypothèses *)
type context_content =
CCHyp of occurrence
| CCEqua of int
(** Some dedicated equality tests *)
let occ_step_eq s1 s2 = match s1, s2 with
| O_left, O_left | O_right, O_right | O_mono, O_mono -> true
| _ -> false
let rec oform_eq f f' = match f,f' with
| Oint i, Oint i' -> Bigint.equal i i'
| Oplus (f1,f2), Oplus (f1',f2')
| Omult (f1,f2), Omult (f1',f2')
| Ominus (f1,f2), Ominus (f1',f2') -> oform_eq f1 f1' && oform_eq f2 f2'
| Oopp f, Oopp f' -> oform_eq f f'
| Oatom a, Oatom a' -> Int.equal a a'
| Oufo f, Oufo f' -> oform_eq f f'
| _ -> false
let dir_eq d d' = match d, d' with
| Left i, Left i' | Right i, Right i' -> Int.equal i i'
| _ -> false
(* \section{Specific utility functions to handle base types} *)
(* Nom arbitraire de l'hypothèse codant la négation du but final *)
let id_concl = Id.of_string "__goal__"
(* Initialisation de l'environnement de réification de la tactique *)
let new_environment () = {
terms = []; props = []; om_vars = []; cnt_connectors = 0;
real_indices = IntHtbl.create 7;
equations = IntHtbl.create 7;
constructors = IntHtbl.create 7;
}
(* Génération d'un nom d'équation *)
let new_connector_id env =
env.cnt_connectors <- succ env.cnt_connectors; env.cnt_connectors
(* Calcul de la branche complémentaire *)
let barre = function Left x -> Right x | Right x -> Left x
(* Identifiant associé à une branche *)
let indice = function Left x | Right x -> x
(* Affichage de l'environnement de réification (termes et propositions) *)
let print_env_reification env =
let rec loop c i = function
[] -> str " ===============================\n\n"
| t :: l ->
let s = Printf.sprintf "(%c%02d)" c i in
spc () ++ str s ++ str " := " ++ Printer.pr_lconstr t ++ fnl () ++
loop c (succ i) l
in
let prop_info = str "ENVIRONMENT OF PROPOSITIONS :" ++ fnl () ++ loop 'P' 0 env.props in
let term_info = str "ENVIRONMENT OF TERMS :" ++ fnl () ++ loop 'V' 0 env.terms in
Feedback.msg_debug (prop_info ++ fnl () ++ term_info)
(* \subsection{Gestion des environnements de variable pour Omega} *)
(* generation d'identifiant d'equation pour Omega *)
let new_omega_eq, rst_omega_eq =
let cpt = ref 0 in
(function () -> incr cpt; !cpt),
(function () -> cpt:=0)
(* generation d'identifiant de variable pour Omega *)
let new_omega_var, rst_omega_var =
let cpt = ref 0 in
(function () -> incr cpt; !cpt),
(function () -> cpt:=0)
(* Affichage des variables d'un système *)
let display_omega_var i = Printf.sprintf "OV%d" i
(* Recherche la variable codant un terme pour Omega et crée la variable dans
l'environnement si il n'existe pas. Cas ou la variable dans Omega représente
le terme d'un monome (le plus souvent un atome) *)
let intern_omega env t =
try List.assoc_f oform_eq t env.om_vars
with Not_found ->
let v = new_omega_var () in
env.om_vars <- (t,v) :: env.om_vars; v
(* Ajout forcé d'un lien entre un terme et une variable Cas où la
variable est créée par Omega et où il faut la lier après coup à un atome
réifié introduit de force *)
let intern_omega_force env t v = env.om_vars <- (t,v) :: env.om_vars
(* Récupère le terme associé à une variable *)
let unintern_omega env id =
let rec loop = function
| [] -> failwith "unintern"
| ((t,j)::l) -> if Int.equal id j then t else loop l in
loop env.om_vars
(* \subsection{Gestion des environnements de variable pour la réflexion}
Gestion des environnements de traduction entre termes des constructions
non réifiés et variables des termes reifies. Attention il s'agit de
l'environnement initial contenant tout. Il faudra le réduire après
calcul des variables utiles. *)
let add_reified_atom t env =
try List.index0 Term.eq_constr t env.terms
with Not_found ->
let i = List.length env.terms in
env.terms <- env.terms @ [t]; i
let get_reified_atom env =
try List.nth env.terms with Invalid_argument _ -> failwith "get_reified_atom"
(* \subsection{Gestion de l'environnement de proposition pour Omega} *)
(* ajout d'une proposition *)
let add_prop env t =
try List.index0 Term.eq_constr t env.props
with Not_found ->
let i = List.length env.props in env.props <- env.props @ [t]; i
(* accès a une proposition *)
let get_prop v env =
try List.nth v env with Invalid_argument _ -> failwith "get_prop"
(* \subsection{Gestion du nommage des équations} *)
(* Ajout d'une equation dans l'environnement de reification *)
let add_equation env e =
let id = e.e_omega.id in
if IntHtbl.mem env.equations id then () else IntHtbl.add env.equations id e
(* accès a une equation *)
let get_equation env id =
try IntHtbl.find env.equations id
with Not_found as e ->
Printf.printf "Omega Equation %d non trouvée\n" id; raise e
(* Affichage des termes réifiés *)
let rec oprint ch = function
| Oint n -> Printf.fprintf ch "%s" (Bigint.to_string n)
| Oplus (t1,t2) -> Printf.fprintf ch "(%a + %a)" oprint t1 oprint t2
| Omult (t1,t2) -> Printf.fprintf ch "(%a * %a)" oprint t1 oprint t2
| Ominus(t1,t2) -> Printf.fprintf ch "(%a - %a)" oprint t1 oprint t2
| Oopp t1 ->Printf.fprintf ch "~ %a" oprint t1
| Oatom n -> Printf.fprintf ch "V%02d" n
| Oufo x -> Printf.fprintf ch "?"
let print_comp = function
| Eq -> "=" | Leq -> "<=" | Geq -> ">="
| Gt -> ">" | Lt -> "<" | Neq -> "!="
let rec pprint ch = function
Pequa (_,{ e_comp=comp; e_left=t1; e_right=t2 }) ->
Printf.fprintf ch "%a %s %a" oprint t1 (print_comp comp) oprint t2
| Ptrue -> Printf.fprintf ch "TT"
| Pfalse -> Printf.fprintf ch "FF"
| Pnot t -> Printf.fprintf ch "not(%a)" pprint t
| Por (_,t1,t2) -> Printf.fprintf ch "(%a or %a)" pprint t1 pprint t2
| Pand(_,t1,t2) -> Printf.fprintf ch "(%a and %a)" pprint t1 pprint t2
| Pimp(_,t1,t2) -> Printf.fprintf ch "(%a => %a)" pprint t1 pprint t2
| Pprop c -> Printf.fprintf ch "Prop"
let rec weight env = function
| Oint _ -> -1
| Oopp c -> weight env c
| Omult(c,_) -> weight env c
| Oplus _ -> failwith "weight"
| Ominus _ -> failwith "weight minus"
| Oufo _ -> -1
| Oatom _ as c -> (intern_omega env c)
(* \section{Passage entre oformules et représentation interne de Omega} *)
(* \subsection{Oformula vers Omega} *)
let omega_of_oformula env kind =
let rec loop accu = function
| Oplus(Omult(v,Oint n),r) ->
loop ({v=intern_omega env v; c=n} :: accu) r
| Oint n ->
let id = new_omega_eq () in
(*i tag_equation name id; i*)
{kind = kind; body = List.rev accu;
constant = n; id = id}
| t -> print_string "CO"; oprint stdout t; failwith "compile_equation" in
loop []
(* \subsection{Omega vers Oformula} *)
let oformula_of_omega env af =
let rec loop = function
| ({v=v; c=n}::r) ->
Oplus(Omult(unintern_omega env v,Oint n),loop r)
| [] -> Oint af.constant in
loop af.body
let app f v = mkApp(Lazy.force f,v)
(* \subsection{Oformula vers COQ reel} *)
let coq_of_formula env t =
let rec loop = function
| Oplus (t1,t2) -> app Z.plus [| loop t1; loop t2 |]
| Oopp t -> app Z.opp [| loop t |]
| Omult(t1,t2) -> app Z.mult [| loop t1; loop t2 |]
| Oint v -> Z.mk v
| Oufo t -> loop t
| Oatom var ->
(* attention ne traite pas les nouvelles variables si on ne les
* met pas dans env.term *)
get_reified_atom env var
| Ominus(t1,t2) -> app Z.minus [| loop t1; loop t2 |] in
loop t
(* \subsection{Oformula vers COQ reifié} *)
let reified_of_atom env i =
try IntHtbl.find env.real_indices i
with Not_found ->
Printf.printf "Atome %d non trouvé\n" i;
IntHtbl.iter (fun k v -> Printf.printf "%d -> %d\n" k v) env.real_indices;
raise Not_found
let rec reified_of_formula env = function
| Oplus (t1,t2) ->
app coq_t_plus [| reified_of_formula env t1; reified_of_formula env t2 |]
| Oopp t ->
app coq_t_opp [| reified_of_formula env t |]
| Omult(t1,t2) ->
app coq_t_mult [| reified_of_formula env t1; reified_of_formula env t2 |]
| Oint v -> app coq_t_int [| Z.mk v |]
| Oufo t -> reified_of_formula env t
| Oatom i -> app coq_t_var [| mk_nat (reified_of_atom env i) |]
| Ominus(t1,t2) ->
app coq_t_minus [| reified_of_formula env t1; reified_of_formula env t2 |]
let reified_of_formula env f =
try reified_of_formula env f
with reraise -> oprint stderr f; raise reraise
let rec reified_of_proposition env = function
Pequa (_,{ e_comp=Eq; e_left=t1; e_right=t2 }) ->
app coq_p_eq [| reified_of_formula env t1; reified_of_formula env t2 |]
| Pequa (_,{ e_comp=Leq; e_left=t1; e_right=t2 }) ->
app coq_p_leq [| reified_of_formula env t1; reified_of_formula env t2 |]
| Pequa(_,{ e_comp=Geq; e_left=t1; e_right=t2 }) ->
app coq_p_geq [| reified_of_formula env t1; reified_of_formula env t2 |]
| Pequa(_,{ e_comp=Gt; e_left=t1; e_right=t2 }) ->
app coq_p_gt [| reified_of_formula env t1; reified_of_formula env t2 |]
| Pequa(_,{ e_comp=Lt; e_left=t1; e_right=t2 }) ->
app coq_p_lt [| reified_of_formula env t1; reified_of_formula env t2 |]
| Pequa(_,{ e_comp=Neq; e_left=t1; e_right=t2 }) ->
app coq_p_neq [| reified_of_formula env t1; reified_of_formula env t2 |]
| Ptrue -> Lazy.force coq_p_true
| Pfalse -> Lazy.force coq_p_false
| Pnot t ->
app coq_p_not [| reified_of_proposition env t |]
| Por (_,t1,t2) ->
app coq_p_or
[| reified_of_proposition env t1; reified_of_proposition env t2 |]
| Pand(_,t1,t2) ->
app coq_p_and
[| reified_of_proposition env t1; reified_of_proposition env t2 |]
| Pimp(_,t1,t2) ->
app coq_p_imp
[| reified_of_proposition env t1; reified_of_proposition env t2 |]
| Pprop t -> app coq_p_prop [| mk_nat (add_prop env t) |]
let reified_of_proposition env f =
try reified_of_proposition env f
with reraise -> pprint stderr f; raise reraise
(* \subsection{Omega vers COQ réifié} *)
let reified_of_omega env body constant =
let coeff_constant =
app coq_t_int [| Z.mk constant |] in
let mk_coeff {c=c; v=v} t =
let coef =
app coq_t_mult
[| reified_of_formula env (unintern_omega env v);
app coq_t_int [| Z.mk c |] |] in
app coq_t_plus [|coef; t |] in
List.fold_right mk_coeff body coeff_constant
let reified_of_omega env body c =
try reified_of_omega env body c
with reraise -> display_eq display_omega_var (body,c); raise reraise
(* \section{Opérations sur les équations}
Ces fonctions préparent les traces utilisées par la tactique réfléchie
pour faire des opérations de normalisation sur les équations. *)
(* \subsection{Extractions des variables d'une équation} *)
(* Extraction des variables d'une équation. *)
(* Chaque fonction retourne une liste triée sans redondance *)
let (@@) = IntSet.union
let rec vars_of_formula = function
| Oint _ -> IntSet.empty
| Oplus (e1,e2) -> (vars_of_formula e1) @@ (vars_of_formula e2)
| Omult (e1,e2) -> (vars_of_formula e1) @@ (vars_of_formula e2)
| Ominus (e1,e2) -> (vars_of_formula e1) @@ (vars_of_formula e2)
| Oopp e -> vars_of_formula e
| Oatom i -> IntSet.singleton i
| Oufo _ -> IntSet.empty
let rec vars_of_equations = function
| [] -> IntSet.empty
| e::l ->
(vars_of_formula e.e_left) @@
(vars_of_formula e.e_right) @@
(vars_of_equations l)
let rec vars_of_prop = function
| Pequa(_,e) -> vars_of_equations [e]
| Pnot p -> vars_of_prop p
| Por(_,p1,p2) -> (vars_of_prop p1) @@ (vars_of_prop p2)
| Pand(_,p1,p2) -> (vars_of_prop p1) @@ (vars_of_prop p2)
| Pimp(_,p1,p2) -> (vars_of_prop p1) @@ (vars_of_prop p2)
| Pprop _ | Ptrue | Pfalse -> IntSet.empty
(* \subsection{Multiplication par un scalaire} *)
let rec scalar n = function
Oplus(t1,t2) ->
let tac1,t1' = scalar n t1 and
tac2,t2' = scalar n t2 in
do_list [Lazy.force coq_c_mult_plus_distr; do_both tac1 tac2],
Oplus(t1',t2')
| Oopp t ->
do_list [Lazy.force coq_c_mult_opp_left], Omult(t,Oint(Bigint.neg n))
| Omult(t1,Oint x) ->
do_list [Lazy.force coq_c_mult_assoc_reduced], Omult(t1,Oint (n*x))
| Omult(t1,t2) ->
CErrors.error "Omega: Can't solve a goal with non-linear products"
| (Oatom _ as t) -> do_list [], Omult(t,Oint n)
| Oint i -> do_list [Lazy.force coq_c_reduce],Oint(n*i)
| (Oufo _ as t)-> do_list [], Oufo (Omult(t,Oint n))
| Ominus _ -> failwith "scalar minus"
(* \subsection{Propagation de l'inversion} *)
let rec negate = function
Oplus(t1,t2) ->
let tac1,t1' = negate t1 and
tac2,t2' = negate t2 in
do_list [Lazy.force coq_c_opp_plus ; (do_both tac1 tac2)],
Oplus(t1',t2')
| Oopp t ->
do_list [Lazy.force coq_c_opp_opp], t
| Omult(t1,Oint x) ->
do_list [Lazy.force coq_c_opp_mult_r], Omult(t1,Oint (Bigint.neg x))
| Omult(t1,t2) ->
CErrors.error "Omega: Can't solve a goal with non-linear products"
| (Oatom _ as t) ->
do_list [Lazy.force coq_c_opp_one], Omult(t,Oint(negone))
| Oint i -> do_list [Lazy.force coq_c_reduce] ,Oint(Bigint.neg i)
| Oufo c -> do_list [], Oufo (Oopp c)
| Ominus _ -> failwith "negate minus"
let norm l = (List.length l)
(* \subsection{Mélange (fusion) de deux équations} *)
(* \subsubsection{Version avec coefficients} *)
let shuffle_path k1 e1 k2 e2 =
let rec loop = function
(({c=c1;v=v1}::l1) as l1'),
(({c=c2;v=v2}::l2) as l2') ->
if Int.equal v1 v2 then
if Bigint.equal (k1 * c1 + k2 * c2) zero then (
Lazy.force coq_f_cancel :: loop (l1,l2))
else (
Lazy.force coq_f_equal :: loop (l1,l2) )
else if v1 > v2 then (
Lazy.force coq_f_left :: loop(l1,l2'))
else (
Lazy.force coq_f_right :: loop(l1',l2))
| ({c=c1;v=v1}::l1), [] ->
Lazy.force coq_f_left :: loop(l1,[])
| [],({c=c2;v=v2}::l2) ->
Lazy.force coq_f_right :: loop([],l2)
| [],[] -> flush stdout; [] in
mk_shuffle_list (loop (e1,e2))
(* \subsubsection{Version sans coefficients} *)
let rec shuffle env (t1,t2) =
match t1,t2 with
Oplus(l1,r1), Oplus(l2,r2) ->
if weight env l1 > weight env l2 then
let l_action,t' = shuffle env (r1,t2) in
do_list [Lazy.force coq_c_plus_assoc_r;do_right l_action], Oplus(l1,t')
else
let l_action,t' = shuffle env (t1,r2) in
do_list [Lazy.force coq_c_plus_permute;do_right l_action], Oplus(l2,t')
| Oplus(l1,r1), t2 ->
if weight env l1 > weight env t2 then
let (l_action,t') = shuffle env (r1,t2) in
do_list [Lazy.force coq_c_plus_assoc_r;do_right l_action],Oplus(l1, t')
else do_list [Lazy.force coq_c_plus_comm], Oplus(t2,t1)
| t1,Oplus(l2,r2) ->
if weight env l2 > weight env t1 then
let (l_action,t') = shuffle env (t1,r2) in
do_list [Lazy.force coq_c_plus_permute;do_right l_action], Oplus(l2,t')
else do_list [],Oplus(t1,t2)
| Oint t1,Oint t2 ->
do_list [Lazy.force coq_c_reduce], Oint(t1+t2)
| t1,t2 ->
if weight env t1 < weight env t2 then
do_list [Lazy.force coq_c_plus_comm], Oplus(t2,t1)
else do_list [],Oplus(t1,t2)
(* \subsection{Fusion avec réduction} *)
let shrink_pair f1 f2 =
begin match f1,f2 with
Oatom v,Oatom _ ->
Lazy.force coq_c_red1, Omult(Oatom v,Oint two)
| Oatom v, Omult(_,c2) ->
Lazy.force coq_c_red2, Omult(Oatom v,Oplus(c2,Oint one))
| Omult (v1,c1),Oatom v ->
Lazy.force coq_c_red3, Omult(Oatom v,Oplus(c1,Oint one))
| Omult (Oatom v,c1),Omult (v2,c2) ->
Lazy.force coq_c_red4, Omult(Oatom v,Oplus(c1,c2))
| t1,t2 ->
oprint stdout t1; print_newline (); oprint stdout t2; print_newline ();
flush Pervasives.stdout; CErrors.error "shrink.1"
end
(* \subsection{Calcul d'une sous formule constante} *)
let reduce_factor = function
Oatom v ->
let r = Omult(Oatom v,Oint one) in
[Lazy.force coq_c_red0],r
| Omult(Oatom v,Oint n) as f -> [],f
| Omult(Oatom v,c) ->
let rec compute = function
Oint n -> n
| Oplus(t1,t2) -> compute t1 + compute t2
| _ -> CErrors.error "condense.1" in
[Lazy.force coq_c_reduce], Omult(Oatom v,Oint(compute c))
| t -> CErrors.error "reduce_factor.1"
(* \subsection{Réordonnancement} *)
let rec condense env = function
Oplus(f1,(Oplus(f2,r) as t)) ->
if Int.equal (weight env f1) (weight env f2) then begin
let shrink_tac,t = shrink_pair f1 f2 in
let assoc_tac = Lazy.force coq_c_plus_assoc_l in
let tac_list,t' = condense env (Oplus(t,r)) in
assoc_tac :: do_left (do_list [shrink_tac]) :: tac_list, t'
end else begin
let tac,f = reduce_factor f1 in
let tac',t' = condense env t in
[do_both (do_list tac) (do_list tac')], Oplus(f,t')
end
| Oplus(f1,Oint n) ->
let tac,f1' = reduce_factor f1 in
[do_left (do_list tac)],Oplus(f1',Oint n)
| Oplus(f1,f2) ->
if Int.equal (weight env f1) (weight env f2) then begin
let tac_shrink,t = shrink_pair f1 f2 in
let tac,t' = condense env t in
tac_shrink :: tac,t'
end else begin
let tac,f = reduce_factor f1 in
let tac',t' = condense env f2 in
[do_both (do_list tac) (do_list tac')],Oplus(f,t')
end
| (Oint _ as t)-> [],t
| t ->
let tac,t' = reduce_factor t in
let final = Oplus(t',Oint zero) in
tac @ [Lazy.force coq_c_red6], final
(* \subsection{Elimination des zéros} *)
let rec clear_zero = function
Oplus(Omult(Oatom v,Oint n),r) when Bigint.equal n zero ->
let tac',t = clear_zero r in
Lazy.force coq_c_red5 :: tac',t
| Oplus(f,r) ->
let tac,t = clear_zero r in
(if List.is_empty tac then [] else [do_right (do_list tac)]),Oplus(f,t)
| t -> [],t;;
(* \subsection{Transformation des hypothèses} *)
let rec reduce env = function
Oplus(t1,t2) ->
let t1', trace1 = reduce env t1 in
let t2', trace2 = reduce env t2 in
let trace3,t' = shuffle env (t1',t2') in
t', do_list [do_both trace1 trace2; trace3]
| Ominus(t1,t2) ->
let t,trace = reduce env (Oplus(t1, Oopp t2)) in
t, do_list [Lazy.force coq_c_minus; trace]
| Omult(t1,t2) as t ->
let t1', trace1 = reduce env t1 in
let t2', trace2 = reduce env t2 in
begin match t1',t2' with
| (_, Oint n) ->
let tac,t' = scalar n t1' in
t', do_list [do_both trace1 trace2; tac]
| (Oint n,_) ->
let tac,t' = scalar n t2' in
t', do_list [do_both trace1 trace2; Lazy.force coq_c_mult_comm; tac]
| _ -> Oufo t, Lazy.force coq_c_nop
end
| Oopp t ->
let t',trace = reduce env t in
let trace',t'' = negate t' in
t'', do_list [do_left trace; trace']
| (Oint _ | Oatom _ | Oufo _) as t -> t, Lazy.force coq_c_nop
let normalize_linear_term env t =
let t1,trace1 = reduce env t in
let trace2,t2 = condense env t1 in
let trace3,t3 = clear_zero t2 in
do_list [trace1; do_list trace2; do_list trace3], t3
(* Cette fonction reproduit très exactement le comportement de [p_invert] *)
let negate_oper = function
Eq -> Neq | Neq -> Eq | Leq -> Gt | Geq -> Lt | Lt -> Geq | Gt -> Leq
let normalize_equation env (negated,depends,origin,path) (oper,t1,t2) =
let mk_step t1 t2 f kind =
let t = f t1 t2 in
let trace, oterm = normalize_linear_term env t in
let equa = omega_of_oformula env kind oterm in
{ e_comp = oper; e_left = t1; e_right = t2;
e_negated = negated; e_depends = depends;
e_origin = { o_hyp = origin; o_path = List.rev path };
e_trace = trace; e_omega = equa } in
try match (if negated then (negate_oper oper) else oper) with
| Eq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o1,Oopp o2)) EQUA
| Neq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o1,Oopp o2)) DISE
| Leq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o2,Oopp o1)) INEQ
| Geq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o1,Oopp o2)) INEQ
| Lt ->
mk_step t1 t2 (fun o1 o2 -> Oplus (Oplus(o2,Oint negone),Oopp o1))
INEQ
| Gt ->
mk_step t1 t2 (fun o1 o2 -> Oplus (Oplus(o1,Oint negone),Oopp o2))
INEQ
with e when Logic.catchable_exception e -> raise e
(* \section{Compilation des hypothèses} *)
let rec oformula_of_constr env t =
match Z.parse_term t with
| Tplus (t1,t2) -> binop env (fun x y -> Oplus(x,y)) t1 t2
| Tminus (t1,t2) -> binop env (fun x y -> Ominus(x,y)) t1 t2
| Tmult (t1,t2) when Z.is_scalar t1 || Z.is_scalar t2 ->
binop env (fun x y -> Omult(x,y)) t1 t2
| Topp t -> Oopp(oformula_of_constr env t)
| Tsucc t -> Oplus(oformula_of_constr env t, Oint one)
| Tnum n -> Oint n
| _ -> Oatom (add_reified_atom t env)
and binop env c t1 t2 =
let t1' = oformula_of_constr env t1 in
let t2' = oformula_of_constr env t2 in
c t1' t2'
and binprop env (neg2,depends,origin,path)
add_to_depends neg1 gl c t1 t2 =
let i = new_connector_id env in
let depends1 = if add_to_depends then Left i::depends else depends in
let depends2 = if add_to_depends then Right i::depends else depends in
if add_to_depends then
IntHtbl.add env.constructors i {o_hyp = origin; o_path = List.rev path};
let t1' =
oproposition_of_constr env (neg1,depends1,origin,O_left::path) gl t1 in
let t2' =
oproposition_of_constr env (neg2,depends2,origin,O_right::path) gl t2 in
(* On numérote le connecteur dans l'environnement. *)
c i t1' t2'
and mk_equation env ctxt c connector t1 t2 =
let t1' = oformula_of_constr env t1 in
let t2' = oformula_of_constr env t2 in
(* On ajoute l'equation dans l'environnement. *)
let omega = normalize_equation env ctxt (connector,t1',t2') in
add_equation env omega;
Pequa (c,omega)
and oproposition_of_constr env ((negated,depends,origin,path) as ctxt) gl c =
match Z.parse_rel gl c with
| Req (t1,t2) -> mk_equation env ctxt c Eq t1 t2
| Rne (t1,t2) -> mk_equation env ctxt c Neq t1 t2
| Rle (t1,t2) -> mk_equation env ctxt c Leq t1 t2
| Rlt (t1,t2) -> mk_equation env ctxt c Lt t1 t2
| Rge (t1,t2) -> mk_equation env ctxt c Geq t1 t2
| Rgt (t1,t2) -> mk_equation env ctxt c Gt t1 t2
| Rtrue -> Ptrue
| Rfalse -> Pfalse
| Rnot t ->
let t' =
oproposition_of_constr
env (not negated, depends, origin,(O_mono::path)) gl t in
Pnot t'
| Ror (t1,t2) ->
binprop env ctxt (not negated) negated gl (fun i x y -> Por(i,x,y)) t1 t2
| Rand (t1,t2) ->
binprop env ctxt negated negated gl
(fun i x y -> Pand(i,x,y)) t1 t2
| Rimp (t1,t2) ->
binprop env ctxt (not negated) (not negated) gl
(fun i x y -> Pimp(i,x,y)) t1 t2
| Riff (t1,t2) ->
binprop env ctxt negated negated gl
(fun i x y -> Pand(i,x,y)) (Term.mkArrow t1 t2) (Term.mkArrow t2 t1)
| _ -> Pprop c
(* Destructuration des hypothèses et de la conclusion *)
let display_gl env t_concl t_lhyps =
Printf.printf "REIFED PROBLEM\n\n";
Printf.printf " CONCL: %a\n" pprint t_concl;
List.iter
(fun (i,t) -> Printf.printf " %s: %a\n" (Id.to_string i) pprint t)
t_lhyps;
print_env_reification env
let reify_gl env gl =
let concl = Tacmach.New.pf_concl gl in
let concl = EConstr.Unsafe.to_constr concl in
let hyps = Tacmach.New.pf_hyps_types gl in
let hyps = List.map (fun (i,t) -> (i,EConstr.Unsafe.to_constr t)) hyps in
let t_concl =
oproposition_of_constr env (true,[],id_concl,[O_mono]) gl concl in
let t_lhyps =
List.map
(fun (i,t) -> i,oproposition_of_constr env (false,[],i,[]) gl t)
hyps
in
let () = if !debug then display_gl env t_concl t_lhyps in
t_concl, t_lhyps
let rec destruct_pos_hyp eqns = function
| Pequa (_,e) -> [e :: eqns]
| Ptrue | Pfalse | Pprop _ -> [eqns]
| Pnot t -> destruct_neg_hyp eqns t
| Por (_,t1,t2) ->
let s1 = destruct_pos_hyp eqns t1 in
let s2 = destruct_pos_hyp eqns t2 in
s1 @ s2
| Pand(_,t1,t2) ->
List.map_append
(fun le1 -> destruct_pos_hyp le1 t2)
(destruct_pos_hyp eqns t1)
| Pimp(_,t1,t2) ->
let s1 = destruct_neg_hyp eqns t1 in
let s2 = destruct_pos_hyp eqns t2 in
s1 @ s2
and destruct_neg_hyp eqns = function
| Pequa (_,e) -> [e :: eqns]
| Ptrue | Pfalse | Pprop _ -> [eqns]
| Pnot t -> destruct_pos_hyp eqns t
| Pand (_,t1,t2) ->
let s1 = destruct_neg_hyp eqns t1 in
let s2 = destruct_neg_hyp eqns t2 in
s1 @ s2
| Por(_,t1,t2) ->
List.map_append
(fun le1 -> destruct_neg_hyp le1 t2)
(destruct_neg_hyp eqns t1)
| Pimp(_,t1,t2) ->
List.map_append
(fun le1 -> destruct_neg_hyp le1 t2)
(destruct_pos_hyp eqns t1)
let rec destructurate_hyps = function
| [] -> [[]]
| (i,t) :: l ->
let l_syst1 = destruct_pos_hyp [] t in
let l_syst2 = destructurate_hyps l in
List.cartesian (@) l_syst1 l_syst2
(* \subsection{Affichage d'un système d'équation} *)
(* Affichage des dépendances de système *)
let display_depend = function
Left i -> Printf.printf " L%d" i
| Right i -> Printf.printf " R%d" i
let display_systems syst_list =
let display_omega om_e =
Printf.printf " E%d : %a %s 0\n"
om_e.id
(fun _ -> display_eq display_omega_var)
(om_e.body, om_e.constant)
(operator_of_eq om_e.kind) in
let display_equation oformula_eq =
pprint stdout (Pequa (Lazy.force coq_c_nop,oformula_eq)); print_newline ();
display_omega oformula_eq.e_omega;
Printf.printf " Depends on:";
List.iter display_depend oformula_eq.e_depends;
Printf.printf "\n Path: %s"
(String.concat ""
(List.map (function O_left -> "L" | O_right -> "R" | O_mono -> "M")
oformula_eq.e_origin.o_path));
Printf.printf "\n Origin: %s (negated : %s)\n\n"
(Id.to_string oformula_eq.e_origin.o_hyp)
(if oformula_eq.e_negated then "yes" else "no") in
let display_system syst =
Printf.printf "=SYSTEM===================================\n";
List.iter display_equation syst in
List.iter display_system syst_list
(* Extraction des prédicats utilisées dans une trace. Permet ensuite le
calcul des hypothèses *)
let rec hyps_used_in_trace = function
| [] -> IntSet.empty
| act :: l ->
match act with
| HYP e -> IntSet.add e.id (hyps_used_in_trace l)
| SPLIT_INEQ (_,(_,act1),(_,act2)) ->
hyps_used_in_trace act1 @@ hyps_used_in_trace act2
| _ -> hyps_used_in_trace l
(* Extraction des variables déclarées dans une équation. Permet ensuite
de les déclarer dans l'environnement de la procédure réflexive et
éviter les créations de variable au vol *)
let rec variable_stated_in_trace = function
| [] -> []
| act :: l ->
match act with
| STATE action ->
(*i nlle_equa: afine, def: afine, eq_orig: afine, i*)
(*i coef: int, var:int i*)
action :: variable_stated_in_trace l
| SPLIT_INEQ (_,(_,act1),(_,act2)) ->
variable_stated_in_trace act1 @ variable_stated_in_trace act2
| _ -> variable_stated_in_trace l
let add_stated_equations env tree =
(* Il faut trier les variables par ordre d'introduction pour ne pas risquer
de définir dans le mauvais ordre *)
let stated_equations =
let cmpvar x y = Int.compare x.st_var y.st_var in
let rec loop = function
| Tree(_,t1,t2) -> List.merge cmpvar (loop t1) (loop t2)
| Leaf s -> List.sort cmpvar (variable_stated_in_trace s.s_trace)
in loop tree
in
let add_env st =
(* On retransforme la définition de v en formule reifiée *)
let v_def = oformula_of_omega env st.st_def in
(* Notez que si l'ordre de création des variables n'est pas respecté,
* ca va planter *)
let coq_v = coq_of_formula env v_def in
let v = add_reified_atom coq_v env in
(* Le terme qu'il va falloir introduire *)
let term_to_generalize = app coq_refl_equal [|Lazy.force Z.typ; coq_v|] in
(* sa représentation sous forme d'équation mais non réifié car on n'a pas
* l'environnement pour le faire correctement *)
let term_to_reify = (v_def,Oatom v) in
(* enregistre le lien entre la variable omega et la variable Coq *)
intern_omega_force env (Oatom v) st.st_var;
(v, term_to_generalize,term_to_reify,st.st_def.id) in
List.map add_env stated_equations
(* Calcule la liste des éclatements à réaliser sur les hypothèses
nécessaires pour extraire une liste d'équations donnée *)
(* PL: experimentally, the result order of the following function seems
_very_ crucial for efficiency. No idea why. Do not remove the List.rev
or modify the current semantics of Util.List.union (some elements of first
arg, then second arg), unless you know what you're doing. *)
let rec get_eclatement env = function
| [] -> []
| i :: r ->
let l = try (get_equation env i).e_depends with Not_found -> [] in
List.union dir_eq (List.rev l) (get_eclatement env r)
let select_smaller l =
let comp (_,x) (_,y) = Int.compare (List.length x) (List.length y) in
try List.hd (List.sort comp l) with Failure _ -> failwith "select_smaller"
let filter_compatible_systems required systems =
let rec select = function
| [] -> []
| (x::l) ->
if List.mem_f dir_eq x required then select l
else if List.mem_f dir_eq (barre x) required then raise Exit
else x :: select l
in
List.map_filter
(function (sol, splits) ->
try Some (sol, select splits) with Exit -> None)
systems
let rec equas_of_solution_tree = function
Tree(_,t1,t2) -> (equas_of_solution_tree t1)@@(equas_of_solution_tree t2)
| Leaf s -> s.s_equa_deps
(* [really_useful_prop] pushes useless props in a new Pprop variable *)
(* Things get shorter, but may also get wrong, since a Prop is considered
to be undecidable in ReflOmegaCore.concl_to_hyp, whereas for instance
Pfalse is decidable. So should not be used on conclusion (??) *)
let rec coq_of_oprop = function
| Pequa(t,_) -> t
| Ptrue -> app coq_True [||]
| Pfalse -> app coq_False [||]
| Pnot t1 -> app coq_not [|coq_of_oprop t1|]
| Por(_,t1,t2) -> app coq_or [|coq_of_oprop t1; coq_of_oprop t2|]
| Pand(_,t1,t2) -> app coq_and [|coq_of_oprop t1; coq_of_oprop t2|]
(* Attention : implications sur le lifting des variables à comprendre ! *)
| Pimp(_,t1,t2) -> Term.mkArrow (coq_of_oprop t1) (coq_of_oprop t2)
| Pprop t -> t
let really_useful_prop equas c =
let rec loop c = match c with
| Pequa(_,e) -> if IntSet.mem e.e_omega.id equas then Some c else None
| Pnot t1 ->
begin match loop t1 with None -> None | Some t1' -> Some (Pnot t1') end
| Por(i,t1,t2) -> binop (fun (t1,t2) -> Por(i,t1,t2)) t1 t2
| Pand(i,t1,t2) -> binop (fun (t1,t2) -> Pand(i,t1,t2)) t1 t2
| Pimp(i,t1,t2) -> binop (fun (t1,t2) -> Pimp(i,t1,t2)) t1 t2
| Ptrue | Pfalse | Pprop _ -> None
and binop f t1 t2 =
begin match loop t1, loop t2 with
None, None -> None
| Some t1',Some t2' -> Some (f(t1',t2'))
| Some t1',None -> Some (f(t1',Pprop (coq_of_oprop t2)))
| None,Some t2' -> Some (f(Pprop (coq_of_oprop t1),t2'))
end
in
match loop c with
| None -> Pprop (coq_of_oprop c)
| Some t -> t
let rec display_solution_tree ch = function
Leaf t ->
output_string ch
(Printf.sprintf "%d[%s]"
t.s_index
(String.concat " " (List.map string_of_int
(IntSet.elements t.s_equa_deps))))
| Tree(i,t1,t2) ->
Printf.fprintf ch "S%d(%a,%a)" i
display_solution_tree t1 display_solution_tree t2
let rec solve_with_constraints all_solutions path =
let rec build_tree sol buf = function
[] -> Leaf sol
| (Left i :: remainder) ->
Tree(i,
build_tree sol (Left i :: buf) remainder,
solve_with_constraints all_solutions (List.rev(Right i :: buf)))
| (Right i :: remainder) ->
Tree(i,
solve_with_constraints all_solutions (List.rev (Left i :: buf)),
build_tree sol (Right i :: buf) remainder) in
let weighted = filter_compatible_systems path all_solutions in
let (winner_sol,winner_deps) =
try select_smaller weighted
with reraise ->
Printf.printf "%d - %d\n"
(List.length weighted) (List.length all_solutions);
List.iter display_depend path; raise reraise
in
build_tree winner_sol (List.rev path) winner_deps
let find_path {o_hyp=id;o_path=p} env =
let rec loop_path = function
([],l) -> Some l
| (x1::l1,x2::l2) when occ_step_eq x1 x2 -> loop_path (l1,l2)
| _ -> None in
let rec loop_id i = function
CCHyp{o_hyp=id';o_path=p'} :: l when Id.equal id id' ->
begin match loop_path (p',p) with
Some r -> i,r
| None -> loop_id (succ i) l
end
| _ :: l -> loop_id (succ i) l
| [] -> failwith "find_path" in
loop_id 0 env
let mk_direction_list l =
let trans = function
| O_left -> Some (Lazy.force coq_d_left)
| O_right -> Some (Lazy.force coq_d_right)
| O_mono -> None (* No more [D_mono] constructor now *)
in
mk_list (Lazy.force coq_direction) (List.map_filter trans l)
(* \section{Rejouer l'historique} *)
let get_hyp env_hyp i =
let rec loop count = function
| [] -> failwith (Printf.sprintf "get_hyp %d" i)
| CCEqua i' :: _ when Int.equal i i' -> count
| _ :: l -> loop (succ count) l
in loop 0 env_hyp
let replay_history env env_hyp =
let rec loop env_hyp t =
match t with
| CONTRADICTION (e1,e2) :: l ->
let trace = mk_nat (List.length e1.body) in
mkApp (Lazy.force coq_s_contradiction,
[| trace ; mk_nat (get_hyp env_hyp e1.id);
mk_nat (get_hyp env_hyp e2.id) |])
| DIVIDE_AND_APPROX (e1,e2,k,d) :: l ->
mkApp (Lazy.force coq_s_div_approx,
[| Z.mk k; Z.mk d;
reified_of_omega env e2.body e2.constant;
mk_nat (List.length e2.body);
loop env_hyp l; mk_nat (get_hyp env_hyp e1.id) |])
| NOT_EXACT_DIVIDE (e1,k) :: l ->
let e2_constant = floor_div e1.constant k in
let d = e1.constant - e2_constant * k in
let e2_body = map_eq_linear (fun c -> c / k) e1.body in
mkApp (Lazy.force coq_s_not_exact_divide,
[|Z.mk k; Z.mk d;
reified_of_omega env e2_body e2_constant;
mk_nat (List.length e2_body);
mk_nat (get_hyp env_hyp e1.id)|])
| EXACT_DIVIDE (e1,k) :: l ->
let e2_body =
map_eq_linear (fun c -> c / k) e1.body in
let e2_constant = floor_div e1.constant k in
mkApp (Lazy.force coq_s_exact_divide,
[|Z.mk k;
reified_of_omega env e2_body e2_constant;
mk_nat (List.length e2_body);
loop env_hyp l; mk_nat (get_hyp env_hyp e1.id)|])
| (MERGE_EQ(e3,e1,e2)) :: l ->
let n1 = get_hyp env_hyp e1.id and n2 = get_hyp env_hyp e2 in
mkApp (Lazy.force coq_s_merge_eq,
[| mk_nat (List.length e1.body);
mk_nat n1; mk_nat n2;
loop (CCEqua e3:: env_hyp) l |])
| SUM(e3,(k1,e1),(k2,e2)) :: l ->
let n1 = get_hyp env_hyp e1.id
and n2 = get_hyp env_hyp e2.id in
let trace = shuffle_path k1 e1.body k2 e2.body in
mkApp (Lazy.force coq_s_sum,
[| Z.mk k1; mk_nat n1; Z.mk k2;
mk_nat n2; trace; (loop (CCEqua e3 :: env_hyp) l) |])
| CONSTANT_NOT_NUL(e,k) :: l ->
mkApp (Lazy.force coq_s_constant_not_nul,
[| mk_nat (get_hyp env_hyp e) |])
| CONSTANT_NEG(e,k) :: l ->
mkApp (Lazy.force coq_s_constant_neg,
[| mk_nat (get_hyp env_hyp e) |])
| STATE {st_new_eq=new_eq; st_def =def;
st_orig=orig; st_coef=m;
st_var=sigma } :: l ->
let n1 = get_hyp env_hyp orig.id
and n2 = get_hyp env_hyp def.id in
let v = unintern_omega env sigma in
let o_def = oformula_of_omega env def in
let o_orig = oformula_of_omega env orig in
let body =
Oplus (o_orig,Omult (Oplus (Oopp v,o_def), Oint m)) in
let trace,_ = normalize_linear_term env body in
mkApp (Lazy.force coq_s_state,
[| Z.mk m; trace; mk_nat n1; mk_nat n2;
loop (CCEqua new_eq.id :: env_hyp) l |])
| HYP _ :: l -> loop env_hyp l
| CONSTANT_NUL e :: l ->
mkApp (Lazy.force coq_s_constant_nul,
[| mk_nat (get_hyp env_hyp e) |])
| NEGATE_CONTRADICT(e1,e2,true) :: l ->
mkApp (Lazy.force coq_s_negate_contradict,
[| mk_nat (get_hyp env_hyp e1.id);
mk_nat (get_hyp env_hyp e2.id) |])
| NEGATE_CONTRADICT(e1,e2,false) :: l ->
mkApp (Lazy.force coq_s_negate_contradict_inv,
[| mk_nat (List.length e2.body);
mk_nat (get_hyp env_hyp e1.id);
mk_nat (get_hyp env_hyp e2.id) |])
| SPLIT_INEQ(e,(e1,l1),(e2,l2)) :: l ->
let i = get_hyp env_hyp e.id in
let r1 = loop (CCEqua e1 :: env_hyp) l1 in
let r2 = loop (CCEqua e2 :: env_hyp) l2 in
mkApp (Lazy.force coq_s_split_ineq,
[| mk_nat (List.length e.body); mk_nat i; r1 ; r2 |])
| (FORGET_C _ | FORGET _ | FORGET_I _) :: l ->
loop env_hyp l
| (WEAKEN _ ) :: l -> failwith "not_treated"
| [] -> failwith "no contradiction"
in loop env_hyp
let rec decompose_tree env ctxt = function
Tree(i,left,right) ->
let org =
try IntHtbl.find env.constructors i
with Not_found ->
failwith (Printf.sprintf "Cannot find constructor %d" i) in
let (index,path) = find_path org ctxt in
let left_hyp = CCHyp{o_hyp=org.o_hyp;o_path=org.o_path @ [O_left]} in
let right_hyp = CCHyp{o_hyp=org.o_hyp;o_path=org.o_path @ [O_right]} in
app coq_e_split
[| mk_nat index;
mk_direction_list path;
decompose_tree env (left_hyp::ctxt) left;
decompose_tree env (right_hyp::ctxt) right |]
| Leaf s ->
decompose_tree_hyps s.s_trace env ctxt (IntSet.elements s.s_equa_deps)
and decompose_tree_hyps trace env ctxt = function
[] -> app coq_e_solve [| replay_history env ctxt trace |]
| (i::l) ->
let equation =
try IntHtbl.find env.equations i
with Not_found ->
failwith (Printf.sprintf "Cannot find equation %d" i) in
let (index,path) = find_path equation.e_origin ctxt in
let cont =
decompose_tree_hyps trace env
(CCEqua equation.e_omega.id :: ctxt) l in
app coq_e_extract [|mk_nat index; mk_direction_list path; cont |]
(* \section{La fonction principale} *)
(* Cette fonction construit la
trace pour la procédure de décision réflexive. A partir des résultats
de l'extraction des systèmes, elle lance la résolution par Omega, puis
l'extraction d'un ensemble minimal de solutions permettant la
résolution globale du système et enfin construit la trace qui permet
de faire rejouer cette solution par la tactique réflexive. *)
let resolution env (reified_concl,reified_hyps) systems_list =
let num = ref 0 in
let solve_system list_eq =
let index = !num in
let system = List.map (fun eq -> eq.e_omega) list_eq in
let trace =
simplify_strong
(new_omega_eq,new_omega_var,display_omega_var)
system in
(* Hypotheses used for this solution *)
let vars = hyps_used_in_trace trace in
let splits = get_eclatement env (IntSet.elements vars) in
if !debug then begin
Printf.printf "SYSTEME %d\n" index;
display_action display_omega_var trace;
print_string "\n Depend :";
IntSet.iter (fun i -> Printf.printf " %d" i) vars;
print_string "\n Split points :";
List.iter display_depend splits;
Printf.printf "\n------------------------------------\n"
end;
incr num;
{s_index = index; s_trace = trace; s_equa_deps = vars}, splits in
if !debug then Printf.printf "\n====================================\n";
let all_solutions = List.map solve_system systems_list in
let solution_tree = solve_with_constraints all_solutions [] in
if !debug then begin
display_solution_tree stdout solution_tree;
print_newline()
end;
(* Collect all hypotheses used in the solution tree *)
let useful_equa_ids = equas_of_solution_tree solution_tree in
let equations = List.map (get_equation env) (IntSet.elements useful_equa_ids)
in
let hyps_of_eqns =
List.fold_left (fun s e -> Id.Set.add e.e_origin.o_hyp s) Id.Set.empty in
let hyps = hyps_of_eqns equations in
let useful_hypnames = Id.Set.elements (Id.Set.remove id_concl hyps) in
let all_names = id_concl :: useful_hypnames in
let useful_hyptypes =
List.map (fun id -> List.assoc_f Id.equal id reified_hyps) useful_hypnames
in
let useful_vars = vars_of_equations equations @@ vars_of_prop reified_concl
in
(* variables a introduire *)
let to_introduce = add_stated_equations env solution_tree in
let stated_vars = List.map (fun (v,_,_,_) -> v) to_introduce in
let l_generalize_arg = List.map (fun (_,t,_,_) -> EConstr.of_constr t) to_introduce in
let hyp_stated_vars = List.map (fun (_,_,_,id) -> CCEqua id) to_introduce in
(* L'environnement de base se construit en deux morceaux :
- les variables des équations utiles (et de la conclusion)
- les nouvelles variables declarées durant les preuves *)
let all_vars_env = (IntSet.elements useful_vars) @ stated_vars in
let basic_env =
let rec loop i = function
| [] -> []
| var :: l ->
let t = get_reified_atom env var in
IntHtbl.add env.real_indices var i; t :: loop (succ i) l
in
loop 0 all_vars_env in
let env_terms_reified = mk_list (Lazy.force Z.typ) basic_env in
(* On peut maintenant généraliser le but : env est a jour *)
let l_reified_stated =
List.map (fun (_,_,(l,r),_) ->
app coq_p_eq [| reified_of_formula env l;
reified_of_formula env r |])
to_introduce in
let reified_concl = reified_of_proposition env reified_concl in
let l_reified_terms =
List.map
(fun p ->
reified_of_proposition env (really_useful_prop useful_equa_ids p))
useful_hyptypes
in
let env_props_reified = mk_plist env.props in
let reified_goal =
mk_list (Lazy.force coq_proposition)
(l_reified_stated @ l_reified_terms) in
let reified =
app coq_interp_sequent
[| reified_concl;env_props_reified;env_terms_reified;reified_goal|] in
let reified = EConstr.of_constr reified in
let normalize_equation e =
let rec loop = function
[] -> app (if e.e_negated then coq_p_invert else coq_p_step)
[| e.e_trace |]
| ((O_left | O_mono) :: l) -> app coq_p_left [| loop l |]
| (O_right :: l) -> app coq_p_right [| loop l |] in
let correct_index =
let i = List.index0 Id.equal e.e_origin.o_hyp all_names in
(* PL: it seems that additionally introduced hyps are in the way during
normalization, hence this index shifting... *)
if Int.equal i 0 then 0 else Pervasives.(+) i (List.length to_introduce)
in
app coq_pair_step [| mk_nat correct_index; loop e.e_origin.o_path |] in
let normalization_trace =
mk_list (Lazy.force coq_h_step) (List.map normalize_equation equations) in
let initial_context =
List.map (fun id -> CCHyp{o_hyp=id;o_path=[]}) useful_hypnames in
let context =
CCHyp{o_hyp=id_concl;o_path=[]} :: hyp_stated_vars @ initial_context in
let decompose_tactic = decompose_tree env context solution_tree in
Tactics.generalize
(l_generalize_arg @ List.map EConstr.mkVar useful_hypnames) >>
Tactics.change_concl reified >>
Tactics.apply (EConstr.of_constr (app coq_do_omega [|decompose_tactic; normalization_trace|])) >>
show_goal >>
Tactics.normalise_vm_in_concl >>
(*i Alternatives to the previous line:
- Normalisation without VM:
Tactics.normalise_in_concl
- Skip the conversion check and rely directly on the QED:
Tacmach.convert_concl_no_check (Lazy.force coq_True) Term.VMcast >>
i*)
Tactics.apply (EConstr.of_constr (Lazy.force coq_I))
let total_reflexive_omega_tactic =
Proofview.Goal.nf_enter { enter = begin fun gl ->
Coqlib.check_required_library ["Coq";"romega";"ROmega"];
rst_omega_eq ();
rst_omega_var ();
try
let env = new_environment () in
let (concl,hyps) as reified_goal = reify_gl env gl in
let full_reified_goal = (id_concl,Pnot concl) :: hyps in
let systems_list = destructurate_hyps full_reified_goal in
if !debug then display_systems systems_list;
resolution env reified_goal systems_list
with NO_CONTRADICTION -> CErrors.error "ROmega can't solve this system"
end }
(*i let tester = Tacmach.hide_atomic_tactic "TestOmega" test_tactic i*)
|