1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
|
(* -*- coding: utf-8 -*- *)
(*************************************************************************
PROJET RNRT Calife - 2001
Author: Pierre Crégut - France Télécom R&D
Licence du projet : LGPL version 2.1
*************************************************************************)
Require Import List Bool Sumbool EqNat Setoid Ring_theory Decidable ZArith_base.
Delimit Scope Int_scope with I.
(* Abstract Integers. *)
Module Type Int.
Parameter t : Set.
Parameter zero : t.
Parameter one : t.
Parameter plus : t -> t -> t.
Parameter opp : t -> t.
Parameter minus : t -> t -> t.
Parameter mult : t -> t -> t.
Notation "0" := zero : Int_scope.
Notation "1" := one : Int_scope.
Infix "+" := plus : Int_scope.
Infix "-" := minus : Int_scope.
Infix "*" := mult : Int_scope.
Notation "- x" := (opp x) : Int_scope.
Open Scope Int_scope.
(* First, int is a ring: *)
Axiom ring : @ring_theory t 0 1 plus mult minus opp (@eq t).
(* int should also be ordered: *)
Parameter le : t -> t -> Prop.
Parameter lt : t -> t -> Prop.
Parameter ge : t -> t -> Prop.
Parameter gt : t -> t -> Prop.
Notation "x <= y" := (le x y): Int_scope.
Notation "x < y" := (lt x y) : Int_scope.
Notation "x >= y" := (ge x y) : Int_scope.
Notation "x > y" := (gt x y): Int_scope.
Axiom le_lt_iff : forall i j, (i<=j) <-> ~(j<i).
Axiom ge_le_iff : forall i j, (i>=j) <-> (j<=i).
Axiom gt_lt_iff : forall i j, (i>j) <-> (j<i).
(* Basic properties of this order *)
Axiom lt_trans : forall i j k, i<j -> j<k -> i<k.
Axiom lt_not_eq : forall i j, i<j -> i<>j.
(* Compatibilities *)
Axiom lt_0_1 : 0<1.
Axiom plus_le_compat : forall i j k l, i<=j -> k<=l -> i+k<=j+l.
Axiom opp_le_compat : forall i j, i<=j -> (-j)<=(-i).
Axiom mult_lt_compat_l :
forall i j k, 0 < k -> i < j -> k*i<k*j.
(* We should have a way to decide the equality and the order*)
Parameter compare : t -> t -> comparison.
Infix "?=" := compare (at level 70, no associativity) : Int_scope.
Axiom compare_Eq : forall i j, compare i j = Eq <-> i=j.
Axiom compare_Lt : forall i j, compare i j = Lt <-> i<j.
Axiom compare_Gt : forall i j, compare i j = Gt <-> i>j.
(* Up to here, these requirements could be fulfilled
by any totally ordered ring. Let's now be int-specific: *)
Axiom le_lt_int : forall x y, x<y <-> x<=y+-(1).
(* Btw, lt_0_1 could be deduced from this last axiom *)
End Int.
(* Of course, Z is a model for our abstract int *)
Module Z_as_Int <: Int.
Open Scope Z_scope.
Definition t := Z.
Definition zero := 0.
Definition one := 1.
Definition plus := Z.add.
Definition opp := Z.opp.
Definition minus := Z.sub.
Definition mult := Z.mul.
Lemma ring : @ring_theory t zero one plus mult minus opp (@eq t).
Proof.
constructor.
exact Z.add_0_l.
exact Z.add_comm.
exact Z.add_assoc.
exact Z.mul_1_l.
exact Z.mul_comm.
exact Z.mul_assoc.
exact Z.mul_add_distr_r.
unfold minus, Z.sub; auto.
exact Z.add_opp_diag_r.
Qed.
Definition le := Z.le.
Definition lt := Z.lt.
Definition ge := Z.ge.
Definition gt := Z.gt.
Definition le_lt_iff := Z.le_ngt.
Definition ge_le_iff := Z.ge_le_iff.
Definition gt_lt_iff := Z.gt_lt_iff.
Definition lt_trans := Z.lt_trans.
Definition lt_not_eq := Z.lt_neq.
Definition lt_0_1 := Z.lt_0_1.
Definition plus_le_compat := Z.add_le_mono.
Definition mult_lt_compat_l := Zmult_lt_compat_l.
Lemma opp_le_compat i j : i<=j -> (-j)<=(-i).
Proof. apply -> Z.opp_le_mono. Qed.
Definition compare := Z.compare.
Definition compare_Eq := Z.compare_eq_iff.
Lemma compare_Lt i j : compare i j = Lt <-> i<j.
Proof. reflexivity. Qed.
Lemma compare_Gt i j : compare i j = Gt <-> i>j.
Proof. reflexivity. Qed.
Definition le_lt_int := Z.lt_le_pred.
End Z_as_Int.
Module IntProperties (I:Int).
Import I.
Local Notation int := I.t.
(* Primo, some consequences of being a ring theory... *)
Definition two := 1+1.
Notation "2" := two : Int_scope.
(* Aliases for properties packed in the ring record. *)
Definition plus_assoc := ring.(Radd_assoc).
Definition plus_comm := ring.(Radd_comm).
Definition plus_0_l := ring.(Radd_0_l).
Definition mult_assoc := ring.(Rmul_assoc).
Definition mult_comm := ring.(Rmul_comm).
Definition mult_1_l := ring.(Rmul_1_l).
Definition mult_plus_distr_r := ring.(Rdistr_l).
Definition opp_def := ring.(Ropp_def).
Definition minus_def := ring.(Rsub_def).
Opaque plus_assoc plus_comm plus_0_l mult_assoc mult_comm mult_1_l
mult_plus_distr_r opp_def minus_def.
(* More facts about plus *)
Lemma plus_0_r : forall x, x+0 = x.
Proof. intros; rewrite plus_comm; apply plus_0_l. Qed.
Lemma plus_0_r_reverse : forall x, x = x+0.
Proof. intros; symmetry; apply plus_0_r. Qed.
Lemma plus_assoc_reverse : forall x y z, x+y+z = x+(y+z).
Proof. intros; symmetry; apply plus_assoc. Qed.
Lemma plus_permute : forall x y z, x+(y+z) = y+(x+z).
Proof. intros; do 2 rewrite plus_assoc; f_equal; apply plus_comm. Qed.
Lemma plus_reg_l : forall x y z, x+y = x+z -> y = z.
Proof.
intros.
rewrite (plus_0_r_reverse y), (plus_0_r_reverse z), <-(opp_def x).
now rewrite plus_permute, plus_assoc, H, <- plus_assoc, plus_permute.
Qed.
(* More facts about mult *)
Lemma mult_assoc_reverse : forall x y z, x*y*z = x*(y*z).
Proof. intros; symmetry; apply mult_assoc. Qed.
Lemma mult_plus_distr_l : forall x y z, x*(y+z)=x*y+x*z.
Proof.
intros.
rewrite (mult_comm x (y+z)), (mult_comm x y), (mult_comm x z).
apply mult_plus_distr_r.
Qed.
Lemma mult_0_l : forall x, 0*x = 0.
Proof.
intros.
generalize (mult_plus_distr_r 0 1 x).
rewrite plus_0_l, mult_1_l, plus_comm; intros.
apply plus_reg_l with x.
rewrite <- H.
apply plus_0_r_reverse.
Qed.
(* More facts about opp *)
Definition plus_opp_r := opp_def.
Lemma plus_opp_l : forall x, -x + x = 0.
Proof. intros; now rewrite plus_comm, opp_def. Qed.
Lemma mult_opp_comm : forall x y, - x * y = x * - y.
Proof.
intros.
apply plus_reg_l with (x*y).
rewrite <- mult_plus_distr_l, <- mult_plus_distr_r.
now rewrite opp_def, opp_def, mult_0_l, mult_comm, mult_0_l.
Qed.
Lemma opp_eq_mult_neg_1 : forall x, -x = x * -(1).
Proof.
intros; now rewrite mult_comm, mult_opp_comm, mult_1_l.
Qed.
Lemma opp_involutive : forall x, -(-x) = x.
Proof.
intros.
apply plus_reg_l with (-x).
now rewrite opp_def, plus_comm, opp_def.
Qed.
Lemma opp_plus_distr : forall x y, -(x+y) = -x + -y.
Proof.
intros.
apply plus_reg_l with (x+y).
rewrite opp_def.
rewrite plus_permute.
do 2 rewrite plus_assoc.
now rewrite (plus_comm (-x)), opp_def, plus_0_l, opp_def.
Qed.
Lemma opp_mult_distr_r : forall x y, -(x*y) = x * -y.
Proof.
intros.
rewrite <- mult_opp_comm.
apply plus_reg_l with (x*y).
now rewrite opp_def, <-mult_plus_distr_r, opp_def, mult_0_l.
Qed.
Lemma egal_left : forall n m, n=m -> n+-m = 0.
Proof. intros; subst; apply opp_def. Qed.
Lemma ne_left_2 : forall x y : int, x<>y -> 0<>(x + - y).
Proof.
intros; contradict H.
apply (plus_reg_l (-y)).
now rewrite plus_opp_l, plus_comm, H.
Qed.
(* Special lemmas for factorisation. *)
Lemma red_factor0 : forall n, n = n*1.
Proof. symmetry; rewrite mult_comm; apply mult_1_l. Qed.
Lemma red_factor1 : forall n, n+n = n*2.
Proof.
intros; unfold two.
now rewrite mult_comm, mult_plus_distr_r, mult_1_l.
Qed.
Lemma red_factor2 : forall n m, n + n*m = n * (1+m).
Proof.
intros; rewrite mult_plus_distr_l.
f_equal; now rewrite mult_comm, mult_1_l.
Qed.
Lemma red_factor3 : forall n m, n*m + n = n*(1+m).
Proof. intros; now rewrite plus_comm, red_factor2. Qed.
Lemma red_factor4 : forall n m p, n*m + n*p = n*(m+p).
Proof.
intros; now rewrite mult_plus_distr_l.
Qed.
Lemma red_factor5 : forall n m , n * 0 + m = m.
Proof. intros; now rewrite mult_comm, mult_0_l, plus_0_l. Qed.
Definition red_factor6 := plus_0_r_reverse.
(* Specialized distributivities *)
Hint Rewrite mult_plus_distr_l mult_plus_distr_r mult_assoc : int.
Hint Rewrite <- plus_assoc : int.
Lemma OMEGA10 :
forall v c1 c2 l1 l2 k1 k2 : int,
(v * c1 + l1) * k1 + (v * c2 + l2) * k2 =
v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2).
Proof.
intros; autorewrite with int; f_equal; now rewrite plus_permute.
Qed.
Lemma OMEGA11 :
forall v1 c1 l1 l2 k1 : int,
(v1 * c1 + l1) * k1 + l2 = v1 * (c1 * k1) + (l1 * k1 + l2).
Proof.
intros; now autorewrite with int.
Qed.
Lemma OMEGA12 :
forall v2 c2 l1 l2 k2 : int,
l1 + (v2 * c2 + l2) * k2 = v2 * (c2 * k2) + (l1 + l2 * k2).
Proof.
intros; autorewrite with int; now rewrite plus_permute.
Qed.
Lemma OMEGA13 :
forall v l1 l2 x : int,
v * -x + l1 + (v * x + l2) = l1 + l2.
Proof.
intros; autorewrite with int.
rewrite plus_permute; f_equal.
rewrite plus_assoc.
now rewrite <- mult_plus_distr_l, plus_opp_l, mult_comm, mult_0_l, plus_0_l.
Qed.
Lemma OMEGA15 :
forall v c1 c2 l1 l2 k2 : int,
v * c1 + l1 + (v * c2 + l2) * k2 = v * (c1 + c2 * k2) + (l1 + l2 * k2).
Proof.
intros; autorewrite with int; f_equal; now rewrite plus_permute.
Qed.
Lemma OMEGA16 : forall v c l k : int, (v * c + l) * k = v * (c * k) + l * k.
Proof.
intros; now autorewrite with int.
Qed.
Lemma sum1 : forall a b c d : int, 0 = a -> 0 = b -> 0 = a * c + b * d.
Proof.
intros; elim H; elim H0; simpl; auto.
now rewrite mult_0_l, mult_0_l, plus_0_l.
Qed.
(* Secondo, some results about order (and equality) *)
Lemma lt_irrefl : forall n, ~ n<n.
Proof.
intros n H.
elim (lt_not_eq _ _ H); auto.
Qed.
Lemma lt_antisym : forall n m, n<m -> m<n -> False.
Proof.
intros; elim (lt_irrefl _ (lt_trans _ _ _ H H0)); auto.
Qed.
Lemma lt_le_weak : forall n m, n<m -> n<=m.
Proof.
intros; rewrite le_lt_iff; intro H'; eapply lt_antisym; eauto.
Qed.
Lemma le_refl : forall n, n<=n.
Proof.
intros; rewrite le_lt_iff; apply lt_irrefl; auto.
Qed.
Lemma le_antisym : forall n m, n<=m -> m<=n -> n=m.
Proof.
intros n m; do 2 rewrite le_lt_iff; intros.
rewrite <- compare_Lt in H0.
rewrite <- gt_lt_iff, <- compare_Gt in H.
rewrite <- compare_Eq.
destruct compare; intuition.
Qed.
Lemma lt_eq_lt_dec : forall n m, { n<m }+{ n=m }+{ m<n }.
Proof.
intros.
generalize (compare_Lt n m)(compare_Eq n m)(compare_Gt n m).
destruct compare; [ left; right | left; left | right ]; intuition.
rewrite gt_lt_iff in H1; intuition.
Qed.
Lemma lt_dec : forall n m: int, { n<m } + { ~n<m }.
Proof.
intros.
generalize (compare_Lt n m)(compare_Eq n m)(compare_Gt n m).
destruct compare; [ right | left | right ]; intuition discriminate.
Qed.
Lemma lt_le_iff : forall n m, (n<m) <-> ~(m<=n).
Proof.
intros.
rewrite le_lt_iff.
destruct (lt_dec n m); intuition.
Qed.
Lemma le_dec : forall n m: int, { n<=m } + { ~n<=m }.
Proof.
intros; destruct (lt_dec m n); [right|left]; rewrite le_lt_iff; intuition.
Qed.
Lemma le_lt_dec : forall n m, { n<=m } + { m<n }.
Proof.
intros; destruct (le_dec n m); [left|right]; auto; now rewrite lt_le_iff.
Qed.
Definition beq i j := match compare i j with Eq => true | _ => false end.
Lemma beq_iff : forall i j, beq i j = true <-> i=j.
Proof.
intros; unfold beq; generalize (compare_Eq i j).
destruct compare; intuition discriminate.
Qed.
Lemma beq_true : forall i j, beq i j = true -> i=j.
Proof.
intros.
rewrite <- beq_iff; auto.
Qed.
Lemma beq_false : forall i j, beq i j = false -> i<>j.
Proof.
intros.
intro H'.
rewrite <- beq_iff in H'; rewrite H' in H; discriminate.
Qed.
Lemma eq_dec : forall n m:int, { n=m } + { n<>m }.
Proof.
intros; generalize (beq_iff n m); destruct beq; [left|right]; intuition.
Qed.
Definition bgt i j := match compare i j with Gt => true | _ => false end.
Lemma bgt_iff : forall i j, bgt i j = true <-> i>j.
Proof.
intros; unfold bgt; generalize (compare_Gt i j).
destruct compare; intuition discriminate.
Qed.
Lemma bgt_true : forall i j, bgt i j = true -> i>j.
Proof. intros; now rewrite <- bgt_iff. Qed.
Lemma bgt_false : forall i j, bgt i j = false -> i<=j.
Proof.
intros.
rewrite le_lt_iff, <-gt_lt_iff, <-bgt_iff; intro H'; now rewrite H' in H.
Qed.
Lemma le_is_lt_or_eq : forall n m, n<=m -> { n<m } + { n=m }.
Proof.
intros.
destruct (eq_dec n m) as [H'|H'].
right; intuition.
left; rewrite lt_le_iff.
contradict H'.
apply le_antisym; auto.
Qed.
Lemma le_neq_lt : forall n m, n<=m -> n<>m -> n<m.
Proof.
intros.
destruct (le_is_lt_or_eq _ _ H); intuition.
Qed.
Lemma le_trans : forall n m p, n<=m -> m<=p -> n<=p.
Proof.
intros n m p; do 3 rewrite le_lt_iff; intros A B C.
destruct (lt_eq_lt_dec p m) as [[H|H]|H]; subst; auto.
generalize (lt_trans _ _ _ H C); intuition.
Qed.
(* order and operations *)
Lemma le_0_neg : forall n, 0 <= n <-> -n <= 0.
Proof.
intros.
pattern 0 at 2; rewrite <- (mult_0_l (-(1))).
rewrite <- opp_eq_mult_neg_1.
split; intros.
apply opp_le_compat; auto.
rewrite <-(opp_involutive 0), <-(opp_involutive n).
apply opp_le_compat; auto.
Qed.
Lemma le_0_neg' : forall n, n <= 0 <-> 0 <= -n.
Proof.
intros; rewrite le_0_neg, opp_involutive; intuition.
Qed.
Lemma plus_le_reg_r : forall n m p, n + p <= m + p -> n <= m.
Proof.
intros.
replace n with ((n+p)+-p).
replace m with ((m+p)+-p).
apply plus_le_compat; auto.
apply le_refl.
now rewrite <- plus_assoc, opp_def, plus_0_r.
now rewrite <- plus_assoc, opp_def, plus_0_r.
Qed.
Lemma plus_le_lt_compat : forall n m p q, n<=m -> p<q -> n+p<m+q.
Proof.
intros.
apply le_neq_lt.
apply plus_le_compat; auto.
apply lt_le_weak; auto.
rewrite lt_le_iff in H0.
contradict H0.
apply plus_le_reg_r with m.
rewrite (plus_comm q m), <-H0, (plus_comm p m).
apply plus_le_compat; auto.
apply le_refl; auto.
Qed.
Lemma plus_lt_compat : forall n m p q, n<m -> p<q -> n+p<m+q.
Proof.
intros.
apply plus_le_lt_compat; auto.
apply lt_le_weak; auto.
Qed.
Lemma opp_lt_compat : forall n m, n<m -> -m < -n.
Proof.
intros n m; do 2 rewrite lt_le_iff; intros H; contradict H.
rewrite <-(opp_involutive m), <-(opp_involutive n).
apply opp_le_compat; auto.
Qed.
Lemma lt_0_neg : forall n, 0 < n <-> -n < 0.
Proof.
intros.
pattern 0 at 2; rewrite <- (mult_0_l (-(1))).
rewrite <- opp_eq_mult_neg_1.
split; intros.
apply opp_lt_compat; auto.
rewrite <-(opp_involutive 0), <-(opp_involutive n).
apply opp_lt_compat; auto.
Qed.
Lemma lt_0_neg' : forall n, n < 0 <-> 0 < -n.
Proof.
intros; rewrite lt_0_neg, opp_involutive; intuition.
Qed.
Lemma mult_lt_0_compat : forall n m, 0 < n -> 0 < m -> 0 < n*m.
Proof.
intros.
rewrite <- (mult_0_l n), mult_comm.
apply mult_lt_compat_l; auto.
Qed.
Lemma mult_integral : forall n m, n * m = 0 -> n = 0 \/ m = 0.
Proof.
intros.
destruct (lt_eq_lt_dec n 0) as [[Hn|Hn]|Hn]; auto;
destruct (lt_eq_lt_dec m 0) as [[Hm|Hm]|Hm]; auto; exfalso.
rewrite lt_0_neg' in Hn.
rewrite lt_0_neg' in Hm.
generalize (mult_lt_0_compat _ _ Hn Hm).
rewrite <- opp_mult_distr_r, mult_comm, <- opp_mult_distr_r, opp_involutive.
rewrite mult_comm, H.
exact (lt_irrefl 0).
rewrite lt_0_neg' in Hn.
generalize (mult_lt_0_compat _ _ Hn Hm).
rewrite mult_comm, <- opp_mult_distr_r, mult_comm.
rewrite H.
rewrite opp_eq_mult_neg_1, mult_0_l.
exact (lt_irrefl 0).
rewrite lt_0_neg' in Hm.
generalize (mult_lt_0_compat _ _ Hn Hm).
rewrite <- opp_mult_distr_r.
rewrite H.
rewrite opp_eq_mult_neg_1, mult_0_l.
exact (lt_irrefl 0).
generalize (mult_lt_0_compat _ _ Hn Hm).
rewrite H.
exact (lt_irrefl 0).
Qed.
Lemma mult_le_compat :
forall i j k l, i<=j -> k<=l -> 0<=i -> 0<=k -> i*k<=j*l.
Proof.
intros.
destruct (le_is_lt_or_eq _ _ H1).
apply le_trans with (i*l).
destruct (le_is_lt_or_eq _ _ H0); [ | subst; apply le_refl].
apply lt_le_weak.
apply mult_lt_compat_l; auto.
generalize (le_trans _ _ _ H2 H0); clear H0 H1 H2; intros.
rewrite (mult_comm i), (mult_comm j).
destruct (le_is_lt_or_eq _ _ H0);
[ | subst; do 2 rewrite mult_0_l; apply le_refl].
destruct (le_is_lt_or_eq _ _ H);
[ | subst; apply le_refl].
apply lt_le_weak.
apply mult_lt_compat_l; auto.
subst i.
rewrite mult_0_l.
generalize (le_trans _ _ _ H2 H0); clear H0 H1 H2; intros.
destruct (le_is_lt_or_eq _ _ H);
[ | subst; rewrite mult_0_l; apply le_refl].
destruct (le_is_lt_or_eq _ _ H0);
[ | subst; rewrite mult_comm, mult_0_l; apply le_refl].
apply lt_le_weak.
apply mult_lt_0_compat; auto.
Qed.
Lemma sum5 :
forall a b c d : int, c <> 0 -> 0 <> a -> 0 = b -> 0 <> a * c + b * d.
Proof.
intros.
subst b; rewrite mult_0_l, plus_0_r.
contradict H.
symmetry in H; destruct (mult_integral _ _ H); congruence.
Qed.
Lemma one_neq_zero : 1 <> 0.
Proof.
red; intro.
symmetry in H.
apply (lt_not_eq 0 1); auto.
apply lt_0_1.
Qed.
Lemma minus_one_neq_zero : -(1) <> 0.
Proof.
apply lt_not_eq.
rewrite <- lt_0_neg.
apply lt_0_1.
Qed.
Lemma le_left : forall n m, n <= m -> 0 <= m + - n.
Proof.
intros.
rewrite <- (opp_def m).
apply plus_le_compat.
apply le_refl.
apply opp_le_compat; auto.
Qed.
Lemma OMEGA2 : forall x y, 0 <= x -> 0 <= y -> 0 <= x + y.
Proof.
intros.
replace 0 with (0+0).
apply plus_le_compat; auto.
rewrite plus_0_l; auto.
Qed.
Lemma OMEGA8 : forall x y, 0 <= x -> 0 <= y -> x = - y -> x = 0.
Proof.
intros.
assert (y=-x).
subst x; symmetry; apply opp_involutive.
clear H1; subst y.
destruct (eq_dec 0 x) as [H'|H']; auto.
assert (H'':=le_neq_lt _ _ H H').
generalize (plus_le_lt_compat _ _ _ _ H0 H'').
rewrite plus_opp_l, plus_0_l.
intros.
elim (lt_not_eq _ _ H1); auto.
Qed.
Lemma sum2 :
forall a b c d : int, 0 <= d -> 0 = a -> 0 <= b -> 0 <= a * c + b * d.
Proof.
intros.
subst a; rewrite mult_0_l, plus_0_l.
rewrite <- (mult_0_l 0).
apply mult_le_compat; auto; apply le_refl.
Qed.
Lemma sum3 :
forall a b c d : int,
0 <= c -> 0 <= d -> 0 <= a -> 0 <= b -> 0 <= a * c + b * d.
Proof.
intros.
rewrite <- (plus_0_l 0).
apply plus_le_compat; auto.
rewrite <- (mult_0_l 0).
apply mult_le_compat; auto; apply le_refl.
rewrite <- (mult_0_l 0).
apply mult_le_compat; auto; apply le_refl.
Qed.
Lemma sum4 : forall k : int, k>0 -> 0 <= k.
Proof.
intros k; rewrite gt_lt_iff; apply lt_le_weak.
Qed.
(* Lemmas specific to integers (they use lt_le_int) *)
Lemma lt_left : forall n m, n < m -> 0 <= m + -(1) + - n.
Proof.
intros; apply le_left.
now rewrite <- le_lt_int.
Qed.
Lemma lt_left_inv : forall x y, 0 <= y + -(1) + - x -> x < y.
Proof.
intros.
generalize (plus_le_compat _ _ _ _ H (le_refl x)); clear H.
now rewrite plus_0_l, <-plus_assoc, plus_opp_l, plus_0_r, le_lt_int.
Qed.
Lemma OMEGA4 : forall x y z, x > 0 -> y > x -> z * y + x <> 0.
Proof.
intros.
intro H'.
rewrite gt_lt_iff in H,H0.
destruct (lt_eq_lt_dec z 0) as [[G|G]|G].
rewrite lt_0_neg' in G.
generalize (plus_le_lt_compat _ _ _ _ (le_refl (z*y)) H0).
rewrite H'.
pattern y at 2; rewrite <-(mult_1_l y), <-mult_plus_distr_r.
intros.
rewrite le_lt_int in G.
rewrite <- opp_plus_distr in G.
assert (0 < y) by (apply lt_trans with x; auto).
generalize (mult_le_compat _ _ _ _ G (lt_le_weak _ _ H2) (le_refl 0) (le_refl 0)).
rewrite mult_0_l, mult_comm, <- opp_mult_distr_r, mult_comm, <-le_0_neg', le_lt_iff.
intuition.
subst; rewrite mult_0_l, plus_0_l in H'; subst.
apply (lt_not_eq _ _ H); auto.
apply (lt_not_eq 0 (z*y+x)); auto.
rewrite <- (plus_0_l 0).
apply plus_lt_compat; auto.
apply mult_lt_0_compat; auto.
apply lt_trans with x; auto.
Qed.
Lemma OMEGA19 : forall x, x<>0 -> 0 <= x + -(1) \/ 0 <= x * -(1) + -(1).
Proof.
intros.
do 2 rewrite <- le_lt_int.
rewrite <- opp_eq_mult_neg_1.
destruct (lt_eq_lt_dec 0 x) as [[H'|H']|H'].
auto.
congruence.
right.
rewrite <-(mult_0_l (-(1))), <-(opp_eq_mult_neg_1 0).
apply opp_lt_compat; auto.
Qed.
Lemma mult_le_approx :
forall n m p, n > 0 -> n > p -> 0 <= m * n + p -> 0 <= m.
Proof.
intros n m p.
do 2 rewrite gt_lt_iff.
do 2 rewrite le_lt_iff; intros.
contradict H1.
rewrite lt_0_neg' in H1.
rewrite lt_0_neg'.
rewrite opp_plus_distr.
rewrite mult_comm, opp_mult_distr_r.
rewrite le_lt_int.
rewrite <- plus_assoc, (plus_comm (-p)), plus_assoc.
apply lt_left.
rewrite le_lt_int.
rewrite le_lt_int in H0.
apply le_trans with (n+-(1)); auto.
apply plus_le_compat; [ | apply le_refl ].
rewrite le_lt_int in H1.
generalize (mult_le_compat _ _ _ _ (lt_le_weak _ _ H) H1 (le_refl 0) (le_refl 0)).
rewrite mult_0_l.
rewrite mult_plus_distr_l.
rewrite <- opp_eq_mult_neg_1.
intros.
generalize (plus_le_compat _ _ _ _ (le_refl n) H2).
now rewrite plus_permute, opp_def, plus_0_r, plus_0_r.
Qed.
(* Some decidabilities *)
Lemma dec_eq : forall i j:int, decidable (i=j).
Proof.
red; intros; destruct (eq_dec i j); auto.
Qed.
Lemma dec_ne : forall i j:int, decidable (i<>j).
Proof.
red; intros; destruct (eq_dec i j); auto.
Qed.
Lemma dec_le : forall i j:int, decidable (i<=j).
Proof.
red; intros; destruct (le_dec i j); auto.
Qed.
Lemma dec_lt : forall i j:int, decidable (i<j).
Proof.
red; intros; destruct (lt_dec i j); auto.
Qed.
Lemma dec_ge : forall i j:int, decidable (i>=j).
Proof.
red; intros; rewrite ge_le_iff; destruct (le_dec j i); auto.
Qed.
Lemma dec_gt : forall i j:int, decidable (i>j).
Proof.
red; intros; rewrite gt_lt_iff; destruct (lt_dec j i); auto.
Qed.
End IntProperties.
Module IntOmega (I:Int).
Import I.
Module IP:=IntProperties(I).
Import IP.
Local Notation int := I.t.
(* \subsubsection{Definition of reified integer expressions}
Terms are either:
\begin{itemize}
\item integers [Tint]
\item variables [Tvar]
\item operation over integers (addition, product, opposite, subtraction)
The last two are translated in additions and products. *)
Inductive term : Set :=
| Tint : int -> term
| Tplus : term -> term -> term
| Tmult : term -> term -> term
| Tminus : term -> term -> term
| Topp : term -> term
| Tvar : nat -> term.
Delimit Scope romega_scope with term.
Arguments Tint _%I.
Arguments Tplus (_ _)%term.
Arguments Tmult (_ _)%term.
Arguments Tminus (_ _)%term.
Arguments Topp _%term.
Infix "+" := Tplus : romega_scope.
Infix "*" := Tmult : romega_scope.
Infix "-" := Tminus : romega_scope.
Notation "- x" := (Topp x) : romega_scope.
Notation "[ x ]" := (Tvar x) (at level 0) : romega_scope.
(* \subsubsection{Definition of reified goals} *)
(* Very restricted definition of handled predicates that should be extended
to cover a wider set of operations.
Taking care of negations and disequations require solving more than a
goal in parallel. This is a major improvement over previous versions. *)
Inductive proposition : Set :=
| EqTerm : term -> term -> proposition (* equality between terms *)
| LeqTerm : term -> term -> proposition (* less or equal on terms *)
| TrueTerm : proposition (* true *)
| FalseTerm : proposition (* false *)
| Tnot : proposition -> proposition (* negation *)
| GeqTerm : term -> term -> proposition
| GtTerm : term -> term -> proposition
| LtTerm : term -> term -> proposition
| NeqTerm : term -> term -> proposition
| Tor : proposition -> proposition -> proposition
| Tand : proposition -> proposition -> proposition
| Timp : proposition -> proposition -> proposition
| Tprop : nat -> proposition.
(* Definition of goals as a list of hypothesis *)
Notation hyps := (list proposition).
(* Definition of lists of subgoals (set of open goals) *)
Notation lhyps := (list hyps).
(* a single goal packed in a subgoal list *)
Notation singleton := (fun a : hyps => a :: nil).
(* an absurd goal *)
Definition absurd := FalseTerm :: nil.
(* \subsubsection{Traces for merging equations}
This inductive type describes how the monomial of two equations should be
merged when the equations are added.
For [F_equal], both equations have the same head variable and coefficient
must be added, furthermore if coefficients are opposite, [F_cancel] should
be used to collapse the term. [F_left] and [F_right] indicate which monomial
should be put first in the result *)
Inductive t_fusion : Set :=
| F_equal : t_fusion
| F_cancel : t_fusion
| F_left : t_fusion
| F_right : t_fusion.
(* \subsubsection{Rewriting steps to normalize terms} *)
Inductive step : Set :=
(* apply the rewriting steps to both subterms of an operation *)
| C_DO_BOTH : step -> step -> step
(* apply the rewriting step to the first branch *)
| C_LEFT : step -> step
(* apply the rewriting step to the second branch *)
| C_RIGHT : step -> step
(* apply two steps consecutively to a term *)
| C_SEQ : step -> step -> step
(* empty step *)
| C_NOP : step
(* the following operations correspond to actual rewriting *)
| C_OPP_PLUS : step
| C_OPP_OPP : step
| C_OPP_MULT_R : step
| C_OPP_ONE : step
(* This is a special step that reduces the term (computation) *)
| C_REDUCE : step
| C_MULT_PLUS_DISTR : step
| C_MULT_OPP_LEFT : step
| C_MULT_ASSOC_R : step
| C_PLUS_ASSOC_R : step
| C_PLUS_ASSOC_L : step
| C_PLUS_PERMUTE : step
| C_PLUS_COMM : step
| C_RED0 : step
| C_RED1 : step
| C_RED2 : step
| C_RED3 : step
| C_RED4 : step
| C_RED5 : step
| C_RED6 : step
| C_MULT_ASSOC_REDUCED : step
| C_MINUS : step
| C_MULT_COMM : step.
(* \subsubsection{Omega steps} *)
(* The following inductive type describes steps as they can be found in
the trace coming from the decision procedure Omega. *)
Inductive t_omega : Set :=
(* n = 0 and n!= 0 *)
| O_CONSTANT_NOT_NUL : nat -> t_omega
| O_CONSTANT_NEG : nat -> t_omega
(* division and approximation of an equation *)
| O_DIV_APPROX : int -> int -> term -> nat -> t_omega -> nat -> t_omega
(* no solution because no exact division *)
| O_NOT_EXACT_DIVIDE : int -> int -> term -> nat -> nat -> t_omega
(* exact division *)
| O_EXACT_DIVIDE : int -> term -> nat -> t_omega -> nat -> t_omega
| O_SUM : int -> nat -> int -> nat -> list t_fusion -> t_omega -> t_omega
| O_CONTRADICTION : nat -> nat -> nat -> t_omega
| O_MERGE_EQ : nat -> nat -> nat -> t_omega -> t_omega
| O_SPLIT_INEQ : nat -> nat -> t_omega -> t_omega -> t_omega
| O_CONSTANT_NUL : nat -> t_omega
| O_NEGATE_CONTRADICT : nat -> nat -> t_omega
| O_NEGATE_CONTRADICT_INV : nat -> nat -> nat -> t_omega
| O_STATE : int -> step -> nat -> nat -> t_omega -> t_omega.
(* \subsubsection{Rules for normalizing the hypothesis} *)
(* These rules indicate how to normalize useful propositions
of each useful hypothesis before the decomposition of hypothesis.
The rules include the inversion phase for negation removal. *)
Inductive p_step : Set :=
| P_LEFT : p_step -> p_step
| P_RIGHT : p_step -> p_step
| P_INVERT : step -> p_step
| P_STEP : step -> p_step
| P_NOP : p_step.
(* List of normalizations to perform : if the type [p_step] had a constructor
that indicated visiting both left and right branches, we would be able to
restrict ourselves to the case of only one normalization by hypothesis.
And since all hypothesis are useful (otherwise they wouldn't be included),
we would be able to replace [h_step] by a simple list. *)
Inductive h_step : Set :=
pair_step : nat -> p_step -> h_step.
(* \subsubsection{Rules for decomposing the hypothesis} *)
(* This type allows navigation in the logical constructors that
form the predicats of the hypothesis in order to decompose them.
This allows in particular to extract one hypothesis from a
conjunction with possibly the right level of negations. *)
Inductive direction : Set :=
| D_left : direction
| D_right : direction
| D_mono : direction.
(* This type allows extracting useful components from hypothesis, either
hypothesis generated by splitting a disjonction, or equations.
The last constructor indicates how to solve the obtained system
via the use of the trace type of Omega [t_omega] *)
Inductive e_step : Set :=
| E_SPLIT : nat -> list direction -> e_step -> e_step -> e_step
| E_EXTRACT : nat -> list direction -> e_step -> e_step
| E_SOLVE : t_omega -> e_step.
(* \subsection{Efficient decidable equality} *)
(* For each reified data-type, we define an efficient equality test.
It is not the one produced by [Decide Equality].
Then we prove two theorem allowing elimination of such equalities :
\begin{verbatim}
(t1,t2: typ) (eq_typ t1 t2) = true -> t1 = t2.
(t1,t2: typ) (eq_typ t1 t2) = false -> ~ t1 = t2.
\end{verbatim} *)
(* \subsubsection{Reified terms} *)
Open Scope romega_scope.
Fixpoint eq_term (t1 t2 : term) {struct t2} : bool :=
match t1, t2 with
| Tint st1, Tint st2 => beq st1 st2
| (st11 + st12), (st21 + st22) => eq_term st11 st21 && eq_term st12 st22
| (st11 * st12), (st21 * st22) => eq_term st11 st21 && eq_term st12 st22
| (st11 - st12), (st21 - st22) => eq_term st11 st21 && eq_term st12 st22
| (- st1), (- st2) => eq_term st1 st2
| [st1], [st2] => beq_nat st1 st2
| _, _ => false
end.
Close Scope romega_scope.
Theorem eq_term_true : forall t1 t2 : term, eq_term t1 t2 = true -> t1 = t2.
Proof.
induction t1; destruct t2; simpl in *; try discriminate;
(rewrite andb_true_iff; intros (H1,H2)) || intros H; f_equal;
auto using beq_true, beq_nat_true.
Qed.
Theorem eq_term_refl : forall t0 : term, eq_term t0 t0 = true.
Proof.
induction t0; simpl in *; try (apply andb_true_iff; split); trivial.
- now apply beq_iff.
- now apply beq_nat_true_iff.
Qed.
Ltac trivial_case := unfold not; intros; discriminate.
Theorem eq_term_false :
forall t1 t2 : term, eq_term t1 t2 = false -> t1 <> t2.
Proof.
intros t1 t2 H E. subst t2. now rewrite eq_term_refl in H.
Qed.
(* \subsubsection{Tactiques pour éliminer ces tests}
Si on se contente de faire un [Case (eq_typ t1 t2)] on perd
totalement dans chaque branche le fait que [t1=t2] ou [~t1=t2].
Initialement, les développements avaient été réalisés avec les
tests rendus par [Decide Equality], c'est à dire un test rendant
des termes du type [{t1=t2}+{~t1=t2}]. Faire une élimination sur un
tel test préserve bien l'information voulue mais calculatoirement de
telles fonctions sont trop lentes. *)
(* Les tactiques définies si après se comportent exactement comme si on
avait utilisé le test précédent et fait une elimination dessus. *)
Ltac elim_eq_term t1 t2 :=
pattern (eq_term t1 t2); apply bool_eq_ind; intro Aux;
[ generalize (eq_term_true t1 t2 Aux); clear Aux
| generalize (eq_term_false t1 t2 Aux); clear Aux ].
Ltac elim_beq t1 t2 :=
pattern (beq t1 t2); apply bool_eq_ind; intro Aux;
[ generalize (beq_true t1 t2 Aux); clear Aux
| generalize (beq_false t1 t2 Aux); clear Aux ].
Ltac elim_bgt t1 t2 :=
pattern (bgt t1 t2); apply bool_eq_ind; intro Aux;
[ generalize (bgt_true t1 t2 Aux); clear Aux
| generalize (bgt_false t1 t2 Aux); clear Aux ].
(* \subsection{Interprétations}
\subsubsection{Interprétation des termes dans Z} *)
Fixpoint interp_term (env : list int) (t : term) {struct t} : int :=
match t with
| Tint x => x
| (t1 + t2)%term => interp_term env t1 + interp_term env t2
| (t1 * t2)%term => interp_term env t1 * interp_term env t2
| (t1 - t2)%term => interp_term env t1 - interp_term env t2
| (- t)%term => - interp_term env t
| [n]%term => nth n env 0
end.
(* \subsubsection{Interprétation des prédicats} *)
Fixpoint interp_proposition (envp : list Prop) (env : list int)
(p : proposition) {struct p} : Prop :=
match p with
| EqTerm t1 t2 => interp_term env t1 = interp_term env t2
| LeqTerm t1 t2 => interp_term env t1 <= interp_term env t2
| TrueTerm => True
| FalseTerm => False
| Tnot p' => ~ interp_proposition envp env p'
| GeqTerm t1 t2 => interp_term env t1 >= interp_term env t2
| GtTerm t1 t2 => interp_term env t1 > interp_term env t2
| LtTerm t1 t2 => interp_term env t1 < interp_term env t2
| NeqTerm t1 t2 => (interp_term env t1)<>(interp_term env t2)
| Tor p1 p2 =>
interp_proposition envp env p1 \/ interp_proposition envp env p2
| Tand p1 p2 =>
interp_proposition envp env p1 /\ interp_proposition envp env p2
| Timp p1 p2 =>
interp_proposition envp env p1 -> interp_proposition envp env p2
| Tprop n => nth n envp True
end.
(* \subsubsection{Inteprétation des listes d'hypothèses}
\paragraph{Sous forme de conjonction}
Interprétation sous forme d'une conjonction d'hypothèses plus faciles
à manipuler individuellement *)
Fixpoint interp_hyps (envp : list Prop) (env : list int)
(l : hyps) {struct l} : Prop :=
match l with
| nil => True
| p' :: l' => interp_proposition envp env p' /\ interp_hyps envp env l'
end.
(* \paragraph{sous forme de but}
C'est cette interpétation que l'on utilise sur le but (car on utilise
[Generalize] et qu'une conjonction est forcément lourde (répétition des
types dans les conjonctions intermédiaires) *)
Fixpoint interp_goal_concl (c : proposition) (envp : list Prop)
(env : list int) (l : hyps) {struct l} : Prop :=
match l with
| nil => interp_proposition envp env c
| p' :: l' =>
interp_proposition envp env p' -> interp_goal_concl c envp env l'
end.
Notation interp_goal := (interp_goal_concl FalseTerm).
(* Les théorèmes qui suivent assurent la correspondance entre les deux
interprétations. *)
Theorem goal_to_hyps :
forall (envp : list Prop) (env : list int) (l : hyps),
(interp_hyps envp env l -> False) -> interp_goal envp env l.
Proof.
simple induction l;
[ simpl; auto
| simpl; intros a l1 H1 H2 H3; apply H1; intro H4; apply H2; auto ].
Qed.
Theorem hyps_to_goal :
forall (envp : list Prop) (env : list int) (l : hyps),
interp_goal envp env l -> interp_hyps envp env l -> False.
Proof.
simple induction l; simpl; [ auto | intros; apply H; elim H1; auto ].
Qed.
(* \subsection{Manipulations sur les hypothèses} *)
(* \subsubsection{Définitions de base de stabilité pour la réflexion} *)
(* Une opération laisse un terme stable si l'égalité est préservée *)
Definition term_stable (f : term -> term) :=
forall (e : list int) (t : term), interp_term e t = interp_term e (f t).
(* Une opération est valide sur une hypothèse, si l'hypothèse implique le
résultat de l'opération. \emph{Attention : cela ne concerne que des
opérations sur les hypothèses et non sur les buts (contravariance)}.
On définit la validité pour une opération prenant une ou deux propositions
en argument (cela suffit pour omega). *)
Definition valid1 (f : proposition -> proposition) :=
forall (ep : list Prop) (e : list int) (p1 : proposition),
interp_proposition ep e p1 -> interp_proposition ep e (f p1).
Definition valid2 (f : proposition -> proposition -> proposition) :=
forall (ep : list Prop) (e : list int) (p1 p2 : proposition),
interp_proposition ep e p1 ->
interp_proposition ep e p2 -> interp_proposition ep e (f p1 p2).
(* Dans cette notion de validité, la fonction prend directement une
liste de propositions et rend une nouvelle liste de proposition.
On reste contravariant *)
Definition valid_hyps (f : hyps -> hyps) :=
forall (ep : list Prop) (e : list int) (lp : hyps),
interp_hyps ep e lp -> interp_hyps ep e (f lp).
(* Enfin ce théorème élimine la contravariance et nous ramène à une
opération sur les buts *)
Theorem valid_goal :
forall (ep : list Prop) (env : list int) (l : hyps) (a : hyps -> hyps),
valid_hyps a -> interp_goal ep env (a l) -> interp_goal ep env l.
Proof.
intros; simpl; apply goal_to_hyps; intro H1;
apply (hyps_to_goal ep env (a l) H0); apply H; assumption.
Qed.
(* \subsubsection{Généralisation a des listes de buts (disjonctions)} *)
Fixpoint interp_list_hyps (envp : list Prop) (env : list int)
(l : lhyps) {struct l} : Prop :=
match l with
| nil => False
| h :: l' => interp_hyps envp env h \/ interp_list_hyps envp env l'
end.
Fixpoint interp_list_goal (envp : list Prop) (env : list int)
(l : lhyps) {struct l} : Prop :=
match l with
| nil => True
| h :: l' => interp_goal envp env h /\ interp_list_goal envp env l'
end.
Theorem list_goal_to_hyps :
forall (envp : list Prop) (env : list int) (l : lhyps),
(interp_list_hyps envp env l -> False) -> interp_list_goal envp env l.
Proof.
simple induction l; simpl;
[ auto
| intros h1 l1 H H1; split;
[ apply goal_to_hyps; intro H2; apply H1; auto
| apply H; intro H2; apply H1; auto ] ].
Qed.
Theorem list_hyps_to_goal :
forall (envp : list Prop) (env : list int) (l : lhyps),
interp_list_goal envp env l -> interp_list_hyps envp env l -> False.
Proof.
simple induction l; simpl;
[ auto
| intros h1 l1 H (H1, H2) H3; elim H3; intro H4;
[ apply hyps_to_goal with (1 := H1); assumption | auto ] ].
Qed.
Definition valid_list_hyps (f : hyps -> lhyps) :=
forall (ep : list Prop) (e : list int) (lp : hyps),
interp_hyps ep e lp -> interp_list_hyps ep e (f lp).
Definition valid_list_goal (f : hyps -> lhyps) :=
forall (ep : list Prop) (e : list int) (lp : hyps),
interp_list_goal ep e (f lp) -> interp_goal ep e lp.
Theorem goal_valid :
forall f : hyps -> lhyps, valid_list_hyps f -> valid_list_goal f.
Proof.
unfold valid_list_goal; intros f H ep e lp H1; apply goal_to_hyps;
intro H2; apply list_hyps_to_goal with (1 := H1);
apply (H ep e lp); assumption.
Qed.
Theorem append_valid :
forall (ep : list Prop) (e : list int) (l1 l2 : lhyps),
interp_list_hyps ep e l1 \/ interp_list_hyps ep e l2 ->
interp_list_hyps ep e (l1 ++ l2).
Proof.
intros ep e; simple induction l1;
[ simpl; intros l2 [H| H]; [ contradiction | trivial ]
| simpl; intros h1 t1 HR l2 [[H| H]| H];
[ auto
| right; apply (HR l2); left; trivial
| right; apply (HR l2); right; trivial ] ].
Qed.
(* \subsubsection{Opérateurs valides sur les hypothèses} *)
(* Extraire une hypothèse de la liste *)
Definition nth_hyps (n : nat) (l : hyps) := nth n l TrueTerm.
Unset Printing Notations.
Theorem nth_valid :
forall (ep : list Prop) (e : list int) (i : nat) (l : hyps),
interp_hyps ep e l -> interp_proposition ep e (nth_hyps i l).
Proof.
unfold nth_hyps; simple induction i;
[ simple induction l; simpl; [ auto | intros; elim H0; auto ]
| intros n H; simple induction l;
[ simpl; trivial
| intros; simpl; apply H; elim H1; auto ] ].
Qed.
(* Appliquer une opération (valide) sur deux hypothèses extraites de
la liste et ajouter le résultat à la liste. *)
Definition apply_oper_2 (i j : nat)
(f : proposition -> proposition -> proposition) (l : hyps) :=
f (nth_hyps i l) (nth_hyps j l) :: l.
Theorem apply_oper_2_valid :
forall (i j : nat) (f : proposition -> proposition -> proposition),
valid2 f -> valid_hyps (apply_oper_2 i j f).
Proof.
intros i j f Hf; unfold apply_oper_2, valid_hyps; simpl;
intros lp Hlp; split; [ apply Hf; apply nth_valid; assumption | assumption ].
Qed.
(* Modifier une hypothèse par application d'une opération valide *)
Fixpoint apply_oper_1 (i : nat) (f : proposition -> proposition)
(l : hyps) {struct i} : hyps :=
match l with
| nil => nil (A:=proposition)
| p :: l' =>
match i with
| O => f p :: l'
| S j => p :: apply_oper_1 j f l'
end
end.
Theorem apply_oper_1_valid :
forall (i : nat) (f : proposition -> proposition),
valid1 f -> valid_hyps (apply_oper_1 i f).
Proof.
unfold valid_hyps; intros i f Hf ep e; elim i;
[ intro lp; case lp;
[ simpl; trivial
| simpl; intros p l' (H1, H2); split;
[ apply Hf with (1 := H1) | assumption ] ]
| intros n Hrec lp; case lp;
[ simpl; auto
| simpl; intros p l' (H1, H2); split;
[ assumption | apply Hrec; assumption ] ] ].
Qed.
(* \subsubsection{Manipulations de termes} *)
(* Les fonctions suivantes permettent d'appliquer une fonction de
réécriture sur un sous terme du terme principal. Avec la composition,
cela permet de construire des réécritures complexes proches des
tactiques de conversion *)
Definition apply_left (f : term -> term) (t : term) :=
match t with
| (x + y)%term => (f x + y)%term
| (x * y)%term => (f x * y)%term
| (- x)%term => (- f x)%term
| x => x
end.
Definition apply_right (f : term -> term) (t : term) :=
match t with
| (x + y)%term => (x + f y)%term
| (x * y)%term => (x * f y)%term
| x => x
end.
Definition apply_both (f g : term -> term) (t : term) :=
match t with
| (x + y)%term => (f x + g y)%term
| (x * y)%term => (f x * g y)%term
| x => x
end.
(* Les théorèmes suivants montrent la stabilité (conditionnée) des
fonctions. *)
Theorem apply_left_stable :
forall f : term -> term, term_stable f -> term_stable (apply_left f).
Proof.
unfold term_stable; intros f H e t; case t; auto; simpl;
intros; elim H; trivial.
Qed.
Theorem apply_right_stable :
forall f : term -> term, term_stable f -> term_stable (apply_right f).
Proof.
unfold term_stable; intros f H e t; case t; auto; simpl;
intros t0 t1; elim H; trivial.
Qed.
Theorem apply_both_stable :
forall f g : term -> term,
term_stable f -> term_stable g -> term_stable (apply_both f g).
Proof.
unfold term_stable; intros f g H1 H2 e t; case t; auto; simpl;
intros t0 t1; elim H1; elim H2; trivial.
Qed.
Theorem compose_term_stable :
forall f g : term -> term,
term_stable f -> term_stable g -> term_stable (fun t : term => f (g t)).
Proof.
unfold term_stable; intros f g Hf Hg e t; elim Hf; apply Hg.
Qed.
(* \subsection{Les règles de réécriture} *)
(* Chacune des règles de réécriture est accompagnée par sa preuve de
stabilité. Toutes ces preuves ont la même forme : il faut analyser
suivant la forme du terme (élimination de chaque Case). On a besoin d'une
élimination uniquement dans les cas d'utilisation d'égalité décidable.
Cette tactique itère la décomposition des Case. Elle est
constituée de deux fonctions s'appelant mutuellement :
\begin{itemize}
\item une fonction d'enrobage qui lance la recherche sur le but,
\item une fonction récursive qui décompose ce but. Quand elle a trouvé un
Case, elle l'élimine.
\end{itemize}
Les motifs sur les cas sont très imparfaits et dans certains cas, il
semble que cela ne marche pas. On aimerait plutot un motif de la
forme [ Case (?1 :: T) of _ end ] permettant de s'assurer que l'on
utilise le bon type.
Chaque élimination introduit correctement exactement le nombre d'hypothèses
nécessaires et conserve dans le cas d'une égalité la connaissance du
résultat du test en faisant la réécriture. Pour un test de comparaison,
on conserve simplement le résultat.
Cette fonction déborde très largement la résolution des réécritures
simples et fait une bonne partie des preuves des pas de Omega.
*)
(* \subsubsection{La tactique pour prouver la stabilité} *)
Ltac loop t :=
match t with
(* Global *)
| (?X1 = ?X2) => loop X1 || loop X2
| (_ -> ?X1) => loop X1
(* Interpretations *)
| (interp_hyps _ _ ?X1) => loop X1
| (interp_list_hyps _ _ ?X1) => loop X1
| (interp_proposition _ _ ?X1) => loop X1
| (interp_term _ ?X1) => loop X1
(* Propositions *)
| (EqTerm ?X1 ?X2) => loop X1 || loop X2
| (LeqTerm ?X1 ?X2) => loop X1 || loop X2
(* Termes *)
| (?X1 + ?X2)%term => loop X1 || loop X2
| (?X1 - ?X2)%term => loop X1 || loop X2
| (?X1 * ?X2)%term => loop X1 || loop X2
| (- ?X1)%term => loop X1
| (Tint ?X1) => loop X1
(* Eliminations *)
| match ?X1 with
| EqTerm x x0 => _
| LeqTerm x x0 => _
| TrueTerm => _
| FalseTerm => _
| Tnot x => _
| GeqTerm x x0 => _
| GtTerm x x0 => _
| LtTerm x x0 => _
| NeqTerm x x0 => _
| Tor x x0 => _
| Tand x x0 => _
| Timp x x0 => _
| Tprop x => _
end => destruct X1; auto; Simplify
| match ?X1 with
| Tint x => _
| (x + x0)%term => _
| (x * x0)%term => _
| (x - x0)%term => _
| (- x)%term => _
| [x]%term => _
end => destruct X1; auto; Simplify
| (if beq ?X1 ?X2 then _ else _) =>
let H := fresh "H" in
elim_beq X1 X2; intro H; try (rewrite H in *; clear H);
simpl; auto; Simplify
| (if bgt ?X1 ?X2 then _ else _) =>
let H := fresh "H" in
elim_bgt X1 X2; intro H; simpl; auto; Simplify
| (if eq_term ?X1 ?X2 then _ else _) =>
let H := fresh "H" in
elim_eq_term X1 X2; intro H; try (rewrite H in *; clear H);
simpl; auto; Simplify
| (if _ && _ then _ else _) => rewrite andb_if; Simplify
| (if negb _ then _ else _) => rewrite negb_if; Simplify
| _ => fail
end
with Simplify := match goal with
| |- ?X1 => try loop X1
| _ => idtac
end.
Ltac prove_stable x th :=
match constr:x with
| ?X1 =>
unfold term_stable, X1; intros; Simplify; simpl;
apply th
end.
(* \subsubsection{Les règles elle mêmes} *)
Definition Tplus_assoc_l (t : term) :=
match t with
| (n + (m + p))%term => (n + m + p)%term
| _ => t
end.
Theorem Tplus_assoc_l_stable : term_stable Tplus_assoc_l.
Proof.
prove_stable Tplus_assoc_l (ring.(Radd_assoc)).
Qed.
Definition Tplus_assoc_r (t : term) :=
match t with
| (n + m + p)%term => (n + (m + p))%term
| _ => t
end.
Theorem Tplus_assoc_r_stable : term_stable Tplus_assoc_r.
Proof.
prove_stable Tplus_assoc_r plus_assoc_reverse.
Qed.
Definition Tmult_assoc_r (t : term) :=
match t with
| (n * m * p)%term => (n * (m * p))%term
| _ => t
end.
Theorem Tmult_assoc_r_stable : term_stable Tmult_assoc_r.
Proof.
prove_stable Tmult_assoc_r mult_assoc_reverse.
Qed.
Definition Tplus_permute (t : term) :=
match t with
| (n + (m + p))%term => (m + (n + p))%term
| _ => t
end.
Theorem Tplus_permute_stable : term_stable Tplus_permute.
Proof.
prove_stable Tplus_permute plus_permute.
Qed.
Definition Tplus_comm (t : term) :=
match t with
| (x + y)%term => (y + x)%term
| _ => t
end.
Theorem Tplus_comm_stable : term_stable Tplus_comm.
Proof.
prove_stable Tplus_comm plus_comm.
Qed.
Definition Tmult_comm (t : term) :=
match t with
| (x * y)%term => (y * x)%term
| _ => t
end.
Theorem Tmult_comm_stable : term_stable Tmult_comm.
Proof.
prove_stable Tmult_comm mult_comm.
Qed.
Definition T_OMEGA10 (t : term) :=
match t with
| ((v * Tint c1 + l1) * Tint k1 + (v' * Tint c2 + l2) * Tint k2)%term =>
if eq_term v v'
then (v * Tint (c1 * k1 + c2 * k2)%I + (l1 * Tint k1 + l2 * Tint k2))%term
else t
| _ => t
end.
Theorem T_OMEGA10_stable : term_stable T_OMEGA10.
Proof.
prove_stable T_OMEGA10 OMEGA10.
Qed.
Definition T_OMEGA11 (t : term) :=
match t with
| ((v1 * Tint c1 + l1) * Tint k1 + l2)%term =>
(v1 * Tint (c1 * k1) + (l1 * Tint k1 + l2))%term
| _ => t
end.
Theorem T_OMEGA11_stable : term_stable T_OMEGA11.
Proof.
prove_stable T_OMEGA11 OMEGA11.
Qed.
Definition T_OMEGA12 (t : term) :=
match t with
| (l1 + (v2 * Tint c2 + l2) * Tint k2)%term =>
(v2 * Tint (c2 * k2) + (l1 + l2 * Tint k2))%term
| _ => t
end.
Theorem T_OMEGA12_stable : term_stable T_OMEGA12.
Proof.
prove_stable T_OMEGA12 OMEGA12.
Qed.
Definition T_OMEGA13 (t : term) :=
match t with
| (v * Tint x + l1 + (v' * Tint x' + l2))%term =>
if eq_term v v' && beq x (-x')
then (l1+l2)%term
else t
| _ => t
end.
Theorem T_OMEGA13_stable : term_stable T_OMEGA13.
Proof.
unfold term_stable, T_OMEGA13; intros; Simplify; simpl;
apply OMEGA13.
Qed.
Definition T_OMEGA15 (t : term) :=
match t with
| (v * Tint c1 + l1 + (v' * Tint c2 + l2) * Tint k2)%term =>
if eq_term v v'
then (v * Tint (c1 + c2 * k2)%I + (l1 + l2 * Tint k2))%term
else t
| _ => t
end.
Theorem T_OMEGA15_stable : term_stable T_OMEGA15.
Proof.
prove_stable T_OMEGA15 OMEGA15.
Qed.
Definition T_OMEGA16 (t : term) :=
match t with
| ((v * Tint c + l) * Tint k)%term => (v * Tint (c * k) + l * Tint k)%term
| _ => t
end.
Theorem T_OMEGA16_stable : term_stable T_OMEGA16.
Proof.
prove_stable T_OMEGA16 OMEGA16.
Qed.
Definition Tred_factor5 (t : term) :=
match t with
| (x * Tint c + y)%term => if beq c 0 then y else t
| _ => t
end.
Theorem Tred_factor5_stable : term_stable Tred_factor5.
Proof.
prove_stable Tred_factor5 red_factor5.
Qed.
Definition Topp_plus (t : term) :=
match t with
| (- (x + y))%term => (- x + - y)%term
| _ => t
end.
Theorem Topp_plus_stable : term_stable Topp_plus.
Proof.
prove_stable Topp_plus opp_plus_distr.
Qed.
Definition Topp_opp (t : term) :=
match t with
| (- - x)%term => x
| _ => t
end.
Theorem Topp_opp_stable : term_stable Topp_opp.
Proof.
prove_stable Topp_opp opp_involutive.
Qed.
Definition Topp_mult_r (t : term) :=
match t with
| (- (x * Tint k))%term => (x * Tint (- k))%term
| _ => t
end.
Theorem Topp_mult_r_stable : term_stable Topp_mult_r.
Proof.
prove_stable Topp_mult_r opp_mult_distr_r.
Qed.
Definition Topp_one (t : term) :=
match t with
| (- x)%term => (x * Tint (-(1)))%term
| _ => t
end.
Theorem Topp_one_stable : term_stable Topp_one.
Proof.
prove_stable Topp_one opp_eq_mult_neg_1.
Qed.
Definition Tmult_plus_distr (t : term) :=
match t with
| ((n + m) * p)%term => (n * p + m * p)%term
| _ => t
end.
Theorem Tmult_plus_distr_stable : term_stable Tmult_plus_distr.
Proof.
prove_stable Tmult_plus_distr mult_plus_distr_r.
Qed.
Definition Tmult_opp_left (t : term) :=
match t with
| (- x * Tint y)%term => (x * Tint (- y))%term
| _ => t
end.
Theorem Tmult_opp_left_stable : term_stable Tmult_opp_left.
Proof.
prove_stable Tmult_opp_left mult_opp_comm.
Qed.
Definition Tmult_assoc_reduced (t : term) :=
match t with
| (n * Tint m * Tint p)%term => (n * Tint (m * p))%term
| _ => t
end.
Theorem Tmult_assoc_reduced_stable : term_stable Tmult_assoc_reduced.
Proof.
prove_stable Tmult_assoc_reduced mult_assoc_reverse.
Qed.
Definition Tred_factor0 (t : term) := (t * Tint 1)%term.
Theorem Tred_factor0_stable : term_stable Tred_factor0.
Proof.
prove_stable Tred_factor0 red_factor0.
Qed.
Definition Tred_factor1 (t : term) :=
match t with
| (x + y)%term =>
if eq_term x y
then (x * Tint 2)%term
else t
| _ => t
end.
Theorem Tred_factor1_stable : term_stable Tred_factor1.
Proof.
prove_stable Tred_factor1 red_factor1.
Qed.
Definition Tred_factor2 (t : term) :=
match t with
| (x + y * Tint k)%term =>
if eq_term x y
then (x * Tint (1 + k))%term
else t
| _ => t
end.
Theorem Tred_factor2_stable : term_stable Tred_factor2.
Proof.
prove_stable Tred_factor2 red_factor2.
Qed.
Definition Tred_factor3 (t : term) :=
match t with
| (x * Tint k + y)%term =>
if eq_term x y
then (x * Tint (1 + k))%term
else t
| _ => t
end.
Theorem Tred_factor3_stable : term_stable Tred_factor3.
Proof.
prove_stable Tred_factor3 red_factor3.
Qed.
Definition Tred_factor4 (t : term) :=
match t with
| (x * Tint k1 + y * Tint k2)%term =>
if eq_term x y
then (x * Tint (k1 + k2))%term
else t
| _ => t
end.
Theorem Tred_factor4_stable : term_stable Tred_factor4.
Proof.
prove_stable Tred_factor4 red_factor4.
Qed.
Definition Tred_factor6 (t : term) := (t + Tint 0)%term.
Theorem Tred_factor6_stable : term_stable Tred_factor6.
Proof.
prove_stable Tred_factor6 red_factor6.
Qed.
Definition Tminus_def (t : term) :=
match t with
| (x - y)%term => (x + - y)%term
| _ => t
end.
Theorem Tminus_def_stable : term_stable Tminus_def.
Proof.
prove_stable Tminus_def minus_def.
Qed.
(* \subsection{Fonctions de réécriture complexes} *)
(* \subsubsection{Fonction de réduction} *)
(* Cette fonction réduit un terme dont la forme normale est un entier. Il
suffit pour cela d'échanger le constructeur [Tint] avec les opérateurs
réifiés. La réduction est ``gratuite''. *)
Fixpoint reduce (t : term) : term :=
match t with
| (x + y)%term =>
match reduce x with
| Tint x' =>
match reduce y with
| Tint y' => Tint (x' + y')
| y' => (Tint x' + y')%term
end
| x' => (x' + reduce y)%term
end
| (x * y)%term =>
match reduce x with
| Tint x' =>
match reduce y with
| Tint y' => Tint (x' * y')
| y' => (Tint x' * y')%term
end
| x' => (x' * reduce y)%term
end
| (x - y)%term =>
match reduce x with
| Tint x' =>
match reduce y with
| Tint y' => Tint (x' - y')
| y' => (Tint x' - y')%term
end
| x' => (x' - reduce y)%term
end
| (- x)%term =>
match reduce x with
| Tint x' => Tint (- x')
| x' => (- x')%term
end
| _ => t
end.
Theorem reduce_stable : term_stable reduce.
Proof.
unfold term_stable; intros e t; elim t; auto;
try
(intros t0 H0 t1 H1; simpl; rewrite H0; rewrite H1;
(case (reduce t0);
[ intro z0; case (reduce t1); intros; auto
| intros; auto
| intros; auto
| intros; auto
| intros; auto
| intros; auto ])); intros t0 H0; simpl;
rewrite H0; case (reduce t0); intros; auto.
Qed.
(* \subsubsection{Fusions}
\paragraph{Fusion de deux équations} *)
(* On donne une somme de deux équations qui sont supposées normalisées.
Cette fonction prend une trace de fusion en argument et transforme
le terme en une équation normalisée. C'est une version très simplifiée
du moteur de réécriture [rewrite]. *)
Fixpoint fusion (trace : list t_fusion) (t : term) {struct trace} : term :=
match trace with
| nil => reduce t
| step :: trace' =>
match step with
| F_equal => apply_right (fusion trace') (T_OMEGA10 t)
| F_cancel => fusion trace' (Tred_factor5 (T_OMEGA10 t))
| F_left => apply_right (fusion trace') (T_OMEGA11 t)
| F_right => apply_right (fusion trace') (T_OMEGA12 t)
end
end.
Theorem fusion_stable : forall trace : list t_fusion, term_stable (fusion trace).
Proof.
simple induction trace; simpl;
[ exact reduce_stable
| intros stp l H; case stp;
[ apply compose_term_stable;
[ apply apply_right_stable; assumption | exact T_OMEGA10_stable ]
| unfold term_stable; intros e t1; rewrite T_OMEGA10_stable;
rewrite Tred_factor5_stable; apply H
| apply compose_term_stable;
[ apply apply_right_stable; assumption | exact T_OMEGA11_stable ]
| apply compose_term_stable;
[ apply apply_right_stable; assumption | exact T_OMEGA12_stable ] ] ].
Qed.
(* \paragraph{Fusion de deux équations dont une sans coefficient} *)
Definition fusion_right (trace : list t_fusion) (t : term) : term :=
match trace with
| nil => reduce t (* Il faut mettre un compute *)
| step :: trace' =>
match step with
| F_equal => apply_right (fusion trace') (T_OMEGA15 t)
| F_cancel => fusion trace' (Tred_factor5 (T_OMEGA15 t))
| F_left => apply_right (fusion trace') (Tplus_assoc_r t)
| F_right => apply_right (fusion trace') (T_OMEGA12 t)
end
end.
(* \paragraph{Fusion avec annihilation} *)
(* Normalement le résultat est une constante *)
Fixpoint fusion_cancel (trace : nat) (t : term) {struct trace} : term :=
match trace with
| O => reduce t
| S trace' => fusion_cancel trace' (T_OMEGA13 t)
end.
Theorem fusion_cancel_stable : forall t : nat, term_stable (fusion_cancel t).
Proof.
unfold term_stable, fusion_cancel; intros trace e; elim trace;
[ exact (reduce_stable e)
| intros n H t; elim H; exact (T_OMEGA13_stable e t) ].
Qed.
(* \subsubsection{Opérations affines sur une équation} *)
(* \paragraph{Multiplication scalaire et somme d'une constante} *)
Fixpoint scalar_norm_add (trace : nat) (t : term) {struct trace} : term :=
match trace with
| O => reduce t
| S trace' => apply_right (scalar_norm_add trace') (T_OMEGA11 t)
end.
Theorem scalar_norm_add_stable :
forall t : nat, term_stable (scalar_norm_add t).
Proof.
unfold term_stable, scalar_norm_add; intros trace; elim trace;
[ exact reduce_stable
| intros n H e t; elim apply_right_stable;
[ exact (T_OMEGA11_stable e t) | exact H ] ].
Qed.
(* \paragraph{Multiplication scalaire} *)
Fixpoint scalar_norm (trace : nat) (t : term) {struct trace} : term :=
match trace with
| O => reduce t
| S trace' => apply_right (scalar_norm trace') (T_OMEGA16 t)
end.
Theorem scalar_norm_stable : forall t : nat, term_stable (scalar_norm t).
Proof.
unfold term_stable, scalar_norm; intros trace; elim trace;
[ exact reduce_stable
| intros n H e t; elim apply_right_stable;
[ exact (T_OMEGA16_stable e t) | exact H ] ].
Qed.
(* \paragraph{Somme d'une constante} *)
Fixpoint add_norm (trace : nat) (t : term) {struct trace} : term :=
match trace with
| O => reduce t
| S trace' => apply_right (add_norm trace') (Tplus_assoc_r t)
end.
Theorem add_norm_stable : forall t : nat, term_stable (add_norm t).
Proof.
unfold term_stable, add_norm; intros trace; elim trace;
[ exact reduce_stable
| intros n H e t; elim apply_right_stable;
[ exact (Tplus_assoc_r_stable e t) | exact H ] ].
Qed.
(* \subsection{La fonction de normalisation des termes (moteur de réécriture)} *)
Fixpoint t_rewrite (s : step) : term -> term :=
match s with
| C_DO_BOTH s1 s2 => apply_both (t_rewrite s1) (t_rewrite s2)
| C_LEFT s => apply_left (t_rewrite s)
| C_RIGHT s => apply_right (t_rewrite s)
| C_SEQ s1 s2 => fun t : term => t_rewrite s2 (t_rewrite s1 t)
| C_NOP => fun t : term => t
| C_OPP_PLUS => Topp_plus
| C_OPP_OPP => Topp_opp
| C_OPP_MULT_R => Topp_mult_r
| C_OPP_ONE => Topp_one
| C_REDUCE => reduce
| C_MULT_PLUS_DISTR => Tmult_plus_distr
| C_MULT_OPP_LEFT => Tmult_opp_left
| C_MULT_ASSOC_R => Tmult_assoc_r
| C_PLUS_ASSOC_R => Tplus_assoc_r
| C_PLUS_ASSOC_L => Tplus_assoc_l
| C_PLUS_PERMUTE => Tplus_permute
| C_PLUS_COMM => Tplus_comm
| C_RED0 => Tred_factor0
| C_RED1 => Tred_factor1
| C_RED2 => Tred_factor2
| C_RED3 => Tred_factor3
| C_RED4 => Tred_factor4
| C_RED5 => Tred_factor5
| C_RED6 => Tred_factor6
| C_MULT_ASSOC_REDUCED => Tmult_assoc_reduced
| C_MINUS => Tminus_def
| C_MULT_COMM => Tmult_comm
end.
Theorem t_rewrite_stable : forall s : step, term_stable (t_rewrite s).
Proof.
simple induction s; simpl;
[ intros; apply apply_both_stable; auto
| intros; apply apply_left_stable; auto
| intros; apply apply_right_stable; auto
| unfold term_stable; intros; elim H0; apply H
| unfold term_stable; auto
| exact Topp_plus_stable
| exact Topp_opp_stable
| exact Topp_mult_r_stable
| exact Topp_one_stable
| exact reduce_stable
| exact Tmult_plus_distr_stable
| exact Tmult_opp_left_stable
| exact Tmult_assoc_r_stable
| exact Tplus_assoc_r_stable
| exact Tplus_assoc_l_stable
| exact Tplus_permute_stable
| exact Tplus_comm_stable
| exact Tred_factor0_stable
| exact Tred_factor1_stable
| exact Tred_factor2_stable
| exact Tred_factor3_stable
| exact Tred_factor4_stable
| exact Tred_factor5_stable
| exact Tred_factor6_stable
| exact Tmult_assoc_reduced_stable
| exact Tminus_def_stable
| exact Tmult_comm_stable ].
Qed.
(* \subsection{tactiques de résolution d'un but omega normalisé}
Trace de la procédure
\subsubsection{Tactiques générant une contradiction}
\paragraph{[O_CONSTANT_NOT_NUL]} *)
Definition constant_not_nul (i : nat) (h : hyps) :=
match nth_hyps i h with
| EqTerm (Tint Nul) (Tint n) =>
if beq n Nul then h else absurd
| _ => h
end.
Theorem constant_not_nul_valid :
forall i : nat, valid_hyps (constant_not_nul i).
Proof.
unfold valid_hyps, constant_not_nul; intros i ep e lp H.
generalize (nth_valid ep e i lp H); Simplify.
Qed.
(* \paragraph{[O_CONSTANT_NEG]} *)
Definition constant_neg (i : nat) (h : hyps) :=
match nth_hyps i h with
| LeqTerm (Tint Nul) (Tint Neg) =>
if bgt Nul Neg then absurd else h
| _ => h
end.
Theorem constant_neg_valid : forall i : nat, valid_hyps (constant_neg i).
Proof.
unfold valid_hyps, constant_neg; intros;
generalize (nth_valid ep e i lp); Simplify; simpl.
rewrite gt_lt_iff in H0; rewrite le_lt_iff; intuition.
Qed.
(* \paragraph{[NOT_EXACT_DIVIDE]} *)
Definition not_exact_divide (k1 k2 : int) (body : term)
(t i : nat) (l : hyps) :=
match nth_hyps i l with
| EqTerm (Tint Nul) b =>
if beq Nul 0 &&
eq_term (scalar_norm_add t (body * Tint k1 + Tint k2)%term) b &&
bgt k2 0 &&
bgt k1 k2
then absurd
else l
| _ => l
end.
Theorem not_exact_divide_valid :
forall (k1 k2 : int) (body : term) (t0 i : nat),
valid_hyps (not_exact_divide k1 k2 body t0 i).
Proof.
unfold valid_hyps, not_exact_divide; intros;
generalize (nth_valid ep e i lp); Simplify.
rewrite (scalar_norm_add_stable t0 e), <-H1.
do 2 rewrite <- scalar_norm_add_stable; simpl in *; intros.
absurd (interp_term e body * k1 + k2 = 0);
[ now apply OMEGA4 | symmetry; auto ].
Qed.
(* \paragraph{[O_CONTRADICTION]} *)
Definition contradiction (t i j : nat) (l : hyps) :=
match nth_hyps i l with
| LeqTerm (Tint Nul) b1 =>
match nth_hyps j l with
| LeqTerm (Tint Nul') b2 =>
match fusion_cancel t (b1 + b2)%term with
| Tint k => if beq Nul 0 && beq Nul' 0 && bgt 0 k
then absurd
else l
| _ => l
end
| _ => l
end
| _ => l
end.
Theorem contradiction_valid :
forall t i j : nat, valid_hyps (contradiction t i j).
Proof.
unfold valid_hyps, contradiction; intros t i j ep e l H;
generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H);
case (nth_hyps i l); auto; intros t1 t2; case t1;
auto; case (nth_hyps j l);
auto; intros t3 t4; case t3; auto;
simpl; intros z z' H1 H2;
generalize (eq_refl (interp_term e (fusion_cancel t (t2 + t4)%term)));
pattern (fusion_cancel t (t2 + t4)%term) at 2 3;
case (fusion_cancel t (t2 + t4)%term); simpl;
auto; intro k; elim (fusion_cancel_stable t); simpl.
Simplify; intro H3.
generalize (OMEGA2 _ _ H2 H1); rewrite H3.
rewrite gt_lt_iff in H0; rewrite le_lt_iff; intuition.
Qed.
(* \paragraph{[O_NEGATE_CONTRADICT]} *)
Definition negate_contradict (i1 i2 : nat) (h : hyps) :=
match nth_hyps i1 h with
| EqTerm (Tint Nul) b1 =>
match nth_hyps i2 h with
| NeqTerm (Tint Nul') b2 =>
if beq Nul 0 && beq Nul' 0 && eq_term b1 b2
then absurd
else h
| _ => h
end
| NeqTerm (Tint Nul) b1 =>
match nth_hyps i2 h with
| EqTerm (Tint Nul') b2 =>
if beq Nul 0 && beq Nul' 0 && eq_term b1 b2
then absurd
else h
| _ => h
end
| _ => h
end.
Definition negate_contradict_inv (t i1 i2 : nat) (h : hyps) :=
match nth_hyps i1 h with
| EqTerm (Tint Nul) b1 =>
match nth_hyps i2 h with
| NeqTerm (Tint Nul') b2 =>
if beq Nul 0 && beq Nul' 0 &&
eq_term b1 (scalar_norm t (b2 * Tint (-(1)))%term)
then absurd
else h
| _ => h
end
| NeqTerm (Tint Nul) b1 =>
match nth_hyps i2 h with
| EqTerm (Tint Nul') b2 =>
if beq Nul 0 && beq Nul' 0 &&
eq_term b1 (scalar_norm t (b2 * Tint (-(1)))%term)
then absurd
else h
| _ => h
end
| _ => h
end.
Theorem negate_contradict_valid :
forall i j : nat, valid_hyps (negate_contradict i j).
Proof.
unfold valid_hyps, negate_contradict; intros i j ep e l H;
generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H);
case (nth_hyps i l); auto; intros t1 t2; case t1;
auto; intros z; auto; case (nth_hyps j l);
auto; intros t3 t4; case t3; auto; intros z';
auto; simpl; intros H1 H2; Simplify.
Qed.
Theorem negate_contradict_inv_valid :
forall t i j : nat, valid_hyps (negate_contradict_inv t i j).
Proof.
unfold valid_hyps, negate_contradict_inv; intros t i j ep e l H;
generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H);
case (nth_hyps i l); auto; intros t1 t2; case t1;
auto; intros z; auto; case (nth_hyps j l);
auto; intros t3 t4; case t3; auto; intros z';
auto; simpl; intros H1 H2; Simplify;
[
rewrite <- scalar_norm_stable in H2; simpl in *;
elim (mult_integral (interp_term e t4) (-(1))); intuition;
elim minus_one_neq_zero; auto
|
elim H2; clear H2;
rewrite <- scalar_norm_stable; simpl in *;
now rewrite <- H1, mult_0_l
].
Qed.
(* \subsubsection{Tactiques générant une nouvelle équation} *)
(* \paragraph{[O_SUM]}
C'est une oper2 valide mais elle traite plusieurs cas à la fois (suivant
les opérateurs de comparaison des deux arguments) d'où une
preuve un peu compliquée. On utilise quelques lemmes qui sont des
généralisations des théorèmes utilisés par OMEGA. *)
Definition sum (k1 k2 : int) (trace : list t_fusion)
(prop1 prop2 : proposition) :=
match prop1 with
| EqTerm (Tint Null) b1 =>
match prop2 with
| EqTerm (Tint Null') b2 =>
if beq Null 0 && beq Null' 0
then EqTerm (Tint 0) (fusion trace (b1 * Tint k1 + b2 * Tint k2)%term)
else TrueTerm
| LeqTerm (Tint Null') b2 =>
if beq Null 0 && beq Null' 0 && bgt k2 0
then LeqTerm (Tint 0)
(fusion trace (b1 * Tint k1 + b2 * Tint k2)%term)
else TrueTerm
| _ => TrueTerm
end
| LeqTerm (Tint Null) b1 =>
if beq Null 0 && bgt k1 0
then match prop2 with
| EqTerm (Tint Null') b2 =>
if beq Null' 0 then
LeqTerm (Tint 0)
(fusion trace (b1 * Tint k1 + b2 * Tint k2)%term)
else TrueTerm
| LeqTerm (Tint Null') b2 =>
if beq Null' 0 && bgt k2 0
then LeqTerm (Tint 0)
(fusion trace (b1 * Tint k1 + b2 * Tint k2)%term)
else TrueTerm
| _ => TrueTerm
end
else TrueTerm
| NeqTerm (Tint Null) b1 =>
match prop2 with
| EqTerm (Tint Null') b2 =>
if beq Null 0 && beq Null' 0 && (negb (beq k1 0))
then NeqTerm (Tint 0)
(fusion trace (b1 * Tint k1 + b2 * Tint k2)%term)
else TrueTerm
| _ => TrueTerm
end
| _ => TrueTerm
end.
Theorem sum_valid :
forall (k1 k2 : int) (t : list t_fusion), valid2 (sum k1 k2 t).
Proof.
unfold valid2; intros k1 k2 t ep e p1 p2; unfold sum;
Simplify; simpl; auto; try elim (fusion_stable t);
simpl; intros;
[ apply sum1; assumption
| apply sum2; try assumption; apply sum4; assumption
| rewrite plus_comm; apply sum2; try assumption; apply sum4; assumption
| apply sum3; try assumption; apply sum4; assumption
| apply sum5; auto ].
Qed.
(* \paragraph{[O_EXACT_DIVIDE]}
c'est une oper1 valide mais on préfère une substitution a ce point la *)
Definition exact_divide (k : int) (body : term) (t : nat)
(prop : proposition) :=
match prop with
| EqTerm (Tint Null) b =>
if beq Null 0 &&
eq_term (scalar_norm t (body * Tint k)%term) b &&
negb (beq k 0)
then EqTerm (Tint 0) body
else TrueTerm
| NeqTerm (Tint Null) b =>
if beq Null 0 &&
eq_term (scalar_norm t (body * Tint k)%term) b &&
negb (beq k 0)
then NeqTerm (Tint 0) body
else TrueTerm
| _ => TrueTerm
end.
Theorem exact_divide_valid :
forall (k : int) (t : term) (n : nat), valid1 (exact_divide k t n).
Proof.
unfold valid1, exact_divide; intros k1 k2 t ep e p1;
Simplify; simpl; auto; subst;
rewrite <- scalar_norm_stable; simpl; intros;
[ destruct (mult_integral _ _ (eq_sym H0)); intuition
| contradict H0; rewrite <- H0, mult_0_l; auto
].
Qed.
(* \paragraph{[O_DIV_APPROX]}
La preuve reprend le schéma de la précédente mais on
est sur une opération de type valid1 et non sur une opération terminale. *)
Definition divide_and_approx (k1 k2 : int) (body : term)
(t : nat) (prop : proposition) :=
match prop with
| LeqTerm (Tint Null) b =>
if beq Null 0 &&
eq_term (scalar_norm_add t (body * Tint k1 + Tint k2)%term) b &&
bgt k1 0 &&
bgt k1 k2
then LeqTerm (Tint 0) body
else prop
| _ => prop
end.
Theorem divide_and_approx_valid :
forall (k1 k2 : int) (body : term) (t : nat),
valid1 (divide_and_approx k1 k2 body t).
Proof.
unfold valid1, divide_and_approx; intros k1 k2 body t ep e p1;
Simplify; simpl; auto; subst;
elim (scalar_norm_add_stable t e); simpl.
intro H2; apply mult_le_approx with (3 := H2); assumption.
Qed.
(* \paragraph{[MERGE_EQ]} *)
Definition merge_eq (t : nat) (prop1 prop2 : proposition) :=
match prop1 with
| LeqTerm (Tint Null) b1 =>
match prop2 with
| LeqTerm (Tint Null') b2 =>
if beq Null 0 && beq Null' 0 &&
eq_term b1 (scalar_norm t (b2 * Tint (-(1)))%term)
then EqTerm (Tint 0) b1
else TrueTerm
| _ => TrueTerm
end
| _ => TrueTerm
end.
Theorem merge_eq_valid : forall n : nat, valid2 (merge_eq n).
Proof.
unfold valid2, merge_eq; intros n ep e p1 p2; Simplify; simpl;
auto; elim (scalar_norm_stable n e); simpl;
intros; symmetry ; apply OMEGA8 with (2 := H0);
[ assumption | elim opp_eq_mult_neg_1; trivial ].
Qed.
(* \paragraph{[O_CONSTANT_NUL]} *)
Definition constant_nul (i : nat) (h : hyps) :=
match nth_hyps i h with
| NeqTerm (Tint Null) (Tint Null') =>
if beq Null Null' then absurd else h
| _ => h
end.
Theorem constant_nul_valid : forall i : nat, valid_hyps (constant_nul i).
Proof.
unfold valid_hyps, constant_nul; intros;
generalize (nth_valid ep e i lp); Simplify; simpl;
intro H1; absurd (0 = 0); intuition.
Qed.
(* \paragraph{[O_STATE]} *)
Definition state (m : int) (s : step) (prop1 prop2 : proposition) :=
match prop1 with
| EqTerm (Tint Null) b1 =>
match prop2 with
| EqTerm b2 b3 =>
if beq Null 0
then EqTerm (Tint 0) (t_rewrite s (b1 + (- b3 + b2) * Tint m)%term)
else TrueTerm
| _ => TrueTerm
end
| _ => TrueTerm
end.
Theorem state_valid : forall (m : int) (s : step), valid2 (state m s).
Proof.
unfold valid2; intros m s ep e p1 p2; unfold state; Simplify;
simpl; auto; elim (t_rewrite_stable s e); simpl;
intros H1 H2; elim H1.
now rewrite H2, plus_opp_l, plus_0_l, mult_0_l.
Qed.
(* \subsubsection{Tactiques générant plusieurs but}
\paragraph{[O_SPLIT_INEQ]}
La seule pour le moment (tant que la normalisation n'est pas réfléchie). *)
Definition split_ineq (i t : nat) (f1 f2 : hyps -> lhyps)
(l : hyps) :=
match nth_hyps i l with
| NeqTerm (Tint Null) b1 =>
if beq Null 0 then
f1 (LeqTerm (Tint 0) (add_norm t (b1 + Tint (-(1)))%term) :: l) ++
f2
(LeqTerm (Tint 0)
(scalar_norm_add t (b1 * Tint (-(1)) + Tint (-(1)))%term) :: l)
else l :: nil
| _ => l :: nil
end.
Theorem split_ineq_valid :
forall (i t : nat) (f1 f2 : hyps -> lhyps),
valid_list_hyps f1 ->
valid_list_hyps f2 -> valid_list_hyps (split_ineq i t f1 f2).
Proof.
unfold valid_list_hyps, split_ineq; intros i t f1 f2 H1 H2 ep e lp H;
generalize (nth_valid _ _ i _ H); case (nth_hyps i lp);
simpl; auto; intros t1 t2; case t1; simpl;
auto; intros z; simpl; auto; intro H3.
Simplify.
apply append_valid; elim (OMEGA19 (interp_term e t2));
[ intro H4; left; apply H1; simpl; elim (add_norm_stable t);
simpl; auto
| intro H4; right; apply H2; simpl; elim (scalar_norm_add_stable t);
simpl; auto
| generalize H3; unfold not; intros E1 E2; apply E1;
symmetry ; trivial ].
Qed.
(* \subsection{La fonction de rejeu de la trace} *)
Fixpoint execute_omega (t : t_omega) (l : hyps) {struct t} : lhyps :=
match t with
| O_CONSTANT_NOT_NUL n => singleton (constant_not_nul n l)
| O_CONSTANT_NEG n => singleton (constant_neg n l)
| O_DIV_APPROX k1 k2 body t cont n =>
execute_omega cont (apply_oper_1 n (divide_and_approx k1 k2 body t) l)
| O_NOT_EXACT_DIVIDE k1 k2 body t i =>
singleton (not_exact_divide k1 k2 body t i l)
| O_EXACT_DIVIDE k body t cont n =>
execute_omega cont (apply_oper_1 n (exact_divide k body t) l)
| O_SUM k1 i1 k2 i2 t cont =>
execute_omega cont (apply_oper_2 i1 i2 (sum k1 k2 t) l)
| O_CONTRADICTION t i j => singleton (contradiction t i j l)
| O_MERGE_EQ t i1 i2 cont =>
execute_omega cont (apply_oper_2 i1 i2 (merge_eq t) l)
| O_SPLIT_INEQ t i cont1 cont2 =>
split_ineq i t (execute_omega cont1) (execute_omega cont2) l
| O_CONSTANT_NUL i => singleton (constant_nul i l)
| O_NEGATE_CONTRADICT i j => singleton (negate_contradict i j l)
| O_NEGATE_CONTRADICT_INV t i j =>
singleton (negate_contradict_inv t i j l)
| O_STATE m s i1 i2 cont =>
execute_omega cont (apply_oper_2 i1 i2 (state m s) l)
end.
Theorem omega_valid : forall tr : t_omega, valid_list_hyps (execute_omega tr).
Proof.
simple induction tr; simpl;
[ unfold valid_list_hyps; simpl; intros; left;
apply (constant_not_nul_valid n ep e lp H)
| unfold valid_list_hyps; simpl; intros; left;
apply (constant_neg_valid n ep e lp H)
| unfold valid_list_hyps, valid_hyps;
intros k1 k2 body n t' Ht' m ep e lp H; apply Ht';
apply
(apply_oper_1_valid m (divide_and_approx k1 k2 body n)
(divide_and_approx_valid k1 k2 body n) ep e lp H)
| unfold valid_list_hyps; simpl; intros; left;
apply (not_exact_divide_valid _ _ _ _ _ ep e lp H)
| unfold valid_list_hyps, valid_hyps;
intros k body n t' Ht' m ep e lp H; apply Ht';
apply
(apply_oper_1_valid m (exact_divide k body n)
(exact_divide_valid k body n) ep e lp H)
| unfold valid_list_hyps, valid_hyps;
intros k1 i1 k2 i2 trace t' Ht' ep e lp H; apply Ht';
apply
(apply_oper_2_valid i1 i2 (sum k1 k2 trace) (sum_valid k1 k2 trace) ep e
lp H)
| unfold valid_list_hyps; simpl; intros; left;
apply (contradiction_valid n n0 n1 ep e lp H)
| unfold valid_list_hyps, valid_hyps;
intros trace i1 i2 t' Ht' ep e lp H; apply Ht';
apply
(apply_oper_2_valid i1 i2 (merge_eq trace) (merge_eq_valid trace) ep e
lp H)
| intros t' i k1 H1 k2 H2; unfold valid_list_hyps; simpl;
intros ep e lp H;
apply
(split_ineq_valid i t' (execute_omega k1) (execute_omega k2) H1 H2 ep e
lp H)
| unfold valid_list_hyps; simpl; intros i ep e lp H; left;
apply (constant_nul_valid i ep e lp H)
| unfold valid_list_hyps; simpl; intros i j ep e lp H; left;
apply (negate_contradict_valid i j ep e lp H)
| unfold valid_list_hyps; simpl; intros n i j ep e lp H;
left; apply (negate_contradict_inv_valid n i j ep e lp H)
| unfold valid_list_hyps, valid_hyps;
intros m s i1 i2 t' Ht' ep e lp H; apply Ht';
apply (apply_oper_2_valid i1 i2 (state m s) (state_valid m s) ep e lp H) ].
Qed.
(* \subsection{Les opérations globales sur le but}
\subsubsection{Normalisation} *)
Definition move_right (s : step) (p : proposition) :=
match p with
| EqTerm t1 t2 => EqTerm (Tint 0) (t_rewrite s (t1 + - t2)%term)
| LeqTerm t1 t2 => LeqTerm (Tint 0) (t_rewrite s (t2 + - t1)%term)
| GeqTerm t1 t2 => LeqTerm (Tint 0) (t_rewrite s (t1 + - t2)%term)
| LtTerm t1 t2 => LeqTerm (Tint 0) (t_rewrite s (t2 + Tint (-(1)) + - t1)%term)
| GtTerm t1 t2 => LeqTerm (Tint 0) (t_rewrite s (t1 + Tint (-(1)) + - t2)%term)
| NeqTerm t1 t2 => NeqTerm (Tint 0) (t_rewrite s (t1 + - t2)%term)
| p => p
end.
Theorem move_right_valid : forall s : step, valid1 (move_right s).
Proof.
unfold valid1, move_right; intros s ep e p; Simplify; simpl;
elim (t_rewrite_stable s e); simpl;
[ symmetry ; apply egal_left; assumption
| intro; apply le_left; assumption
| intro; apply le_left; rewrite <- ge_le_iff; assumption
| intro; apply lt_left; rewrite <- gt_lt_iff; assumption
| intro; apply lt_left; assumption
| intro; apply ne_left_2; assumption ].
Qed.
Definition do_normalize (i : nat) (s : step) := apply_oper_1 i (move_right s).
Theorem do_normalize_valid :
forall (i : nat) (s : step), valid_hyps (do_normalize i s).
Proof.
intros; unfold do_normalize; apply apply_oper_1_valid;
apply move_right_valid.
Qed.
Fixpoint do_normalize_list (l : list step) (i : nat)
(h : hyps) {struct l} : hyps :=
match l with
| s :: l' => do_normalize_list l' (S i) (do_normalize i s h)
| nil => h
end.
Theorem do_normalize_list_valid :
forall (l : list step) (i : nat), valid_hyps (do_normalize_list l i).
Proof.
simple induction l; simpl; unfold valid_hyps;
[ auto
| intros a l' Hl' i ep e lp H; unfold valid_hyps in Hl'; apply Hl';
apply (do_normalize_valid i a ep e lp); assumption ].
Qed.
Theorem normalize_goal :
forall (s : list step) (ep : list Prop) (env : list int) (l : hyps),
interp_goal ep env (do_normalize_list s 0 l) -> interp_goal ep env l.
Proof.
intros; apply valid_goal with (2 := H); apply do_normalize_list_valid.
Qed.
(* \subsubsection{Exécution de la trace} *)
Theorem execute_goal :
forall (tr : t_omega) (ep : list Prop) (env : list int) (l : hyps),
interp_list_goal ep env (execute_omega tr l) -> interp_goal ep env l.
Proof.
intros; apply (goal_valid (execute_omega tr) (omega_valid tr) ep env l H).
Qed.
Theorem append_goal :
forall (ep : list Prop) (e : list int) (l1 l2 : lhyps),
interp_list_goal ep e l1 /\ interp_list_goal ep e l2 ->
interp_list_goal ep e (l1 ++ l2).
Proof.
intros ep e; simple induction l1;
[ simpl; intros l2 (H1, H2); assumption
| simpl; intros h1 t1 HR l2 ((H1, H2), H3); split; auto ].
Qed.
(* A simple decidability checker : if the proposition belongs to the
simple grammar describe below then it is decidable. Proof is by
induction and uses well known theorem about arithmetic and propositional
calculus *)
Fixpoint decidability (p : proposition) : bool :=
match p with
| EqTerm _ _ => true
| LeqTerm _ _ => true
| GeqTerm _ _ => true
| GtTerm _ _ => true
| LtTerm _ _ => true
| NeqTerm _ _ => true
| FalseTerm => true
| TrueTerm => true
| Tnot t => decidability t
| Tand t1 t2 => decidability t1 && decidability t2
| Timp t1 t2 => decidability t1 && decidability t2
| Tor t1 t2 => decidability t1 && decidability t2
| Tprop _ => false
end.
Theorem decidable_correct :
forall (ep : list Prop) (e : list int) (p : proposition),
decidability p = true -> decidable (interp_proposition ep e p).
Proof.
simple induction p; simpl; intros;
[ apply dec_eq
| apply dec_le
| left; auto
| right; unfold not; auto
| apply dec_not; auto
| apply dec_ge
| apply dec_gt
| apply dec_lt
| apply dec_ne
| apply dec_or; elim andb_prop with (1 := H1); auto
| apply dec_and; elim andb_prop with (1 := H1); auto
| apply dec_imp; elim andb_prop with (1 := H1); auto
| discriminate H ].
Qed.
(* An interpretation function for a complete goal with an explicit
conclusion. We use an intermediate fixpoint. *)
Fixpoint interp_full_goal (envp : list Prop) (env : list int)
(c : proposition) (l : hyps) {struct l} : Prop :=
match l with
| nil => interp_proposition envp env c
| p' :: l' =>
interp_proposition envp env p' -> interp_full_goal envp env c l'
end.
Definition interp_full (ep : list Prop) (e : list int)
(lc : hyps * proposition) : Prop :=
match lc with
| (l, c) => interp_full_goal ep e c l
end.
(* Relates the interpretation of a complete goal with the interpretation
of its hypothesis and conclusion *)
Theorem interp_full_false :
forall (ep : list Prop) (e : list int) (l : hyps) (c : proposition),
(interp_hyps ep e l -> interp_proposition ep e c) -> interp_full ep e (l, c).
Proof.
simple induction l; unfold interp_full; simpl;
[ auto | intros a l1 H1 c H2 H3; apply H1; auto ].
Qed.
(* Push the conclusion in the list of hypothesis using a double negation
If the decidability cannot be "proven", then just forget about the
conclusion (equivalent of replacing it with false) *)
Definition to_contradict (lc : hyps * proposition) :=
match lc with
| (l, c) => if decidability c then Tnot c :: l else l
end.
(* The previous operation is valid in the sense that the new list of
hypothesis implies the original goal *)
Theorem to_contradict_valid :
forall (ep : list Prop) (e : list int) (lc : hyps * proposition),
interp_goal ep e (to_contradict lc) -> interp_full ep e lc.
Proof.
intros ep e lc; case lc; intros l c; simpl;
pattern (decidability c); apply bool_eq_ind;
[ simpl; intros H H1; apply interp_full_false; intros H2;
apply not_not;
[ apply decidable_correct; assumption
| unfold not at 1; intro H3; apply hyps_to_goal with (2 := H2);
auto ]
| intros H1 H2; apply interp_full_false; intro H3;
elim hyps_to_goal with (1 := H2); assumption ].
Qed.
(* [map_cons x l] adds [x] at the head of each list in [l] (which is a list
of lists *)
Fixpoint map_cons (A : Set) (x : A) (l : list (list A)) {struct l} :
list (list A) :=
match l with
| nil => nil
| l :: ll => (x :: l) :: map_cons A x ll
end.
(* This function breaks up a list of hypothesis in a list of simpler
list of hypothesis that together implie the original one. The goal
of all this is to transform the goal in a list of solvable problems.
Note that :
- we need a way to drive the analysis as some hypotheis may not
require a split.
- this procedure must be perfectly mimicked by the ML part otherwise
hypothesis will get desynchronised and this will be a mess.
*)
Fixpoint destructure_hyps (nn : nat) (ll : hyps) {struct nn} : lhyps :=
match nn with
| O => ll :: nil
| S n =>
match ll with
| nil => nil :: nil
| Tor p1 p2 :: l =>
destructure_hyps n (p1 :: l) ++ destructure_hyps n (p2 :: l)
| Tand p1 p2 :: l => destructure_hyps n (p1 :: p2 :: l)
| Timp p1 p2 :: l =>
if decidability p1
then
destructure_hyps n (Tnot p1 :: l) ++ destructure_hyps n (p2 :: l)
else map_cons _ (Timp p1 p2) (destructure_hyps n l)
| Tnot p :: l =>
match p with
| Tnot p1 =>
if decidability p1
then destructure_hyps n (p1 :: l)
else map_cons _ (Tnot (Tnot p1)) (destructure_hyps n l)
| Tor p1 p2 => destructure_hyps n (Tnot p1 :: Tnot p2 :: l)
| Tand p1 p2 =>
if decidability p1
then
destructure_hyps n (Tnot p1 :: l) ++
destructure_hyps n (Tnot p2 :: l)
else map_cons _ (Tnot p) (destructure_hyps n l)
| _ => map_cons _ (Tnot p) (destructure_hyps n l)
end
| x :: l => map_cons _ x (destructure_hyps n l)
end
end.
Theorem map_cons_val :
forall (ep : list Prop) (e : list int) (p : proposition) (l : lhyps),
interp_proposition ep e p ->
interp_list_hyps ep e l -> interp_list_hyps ep e (map_cons _ p l).
Proof.
simple induction l; simpl; [ auto | intros; elim H1; intro H2; auto ].
Qed.
Hint Resolve map_cons_val append_valid decidable_correct.
Theorem destructure_hyps_valid :
forall n : nat, valid_list_hyps (destructure_hyps n).
Proof.
simple induction n;
[ unfold valid_list_hyps; simpl; auto
| unfold valid_list_hyps at 2; intros n1 H ep e lp; case lp;
[ simpl; auto
| intros p l; case p;
try
(simpl; intros; apply map_cons_val; simpl; elim H0;
auto);
[ intro p'; case p';
try
(simpl; intros; apply map_cons_val; simpl; elim H0;
auto);
[ simpl; intros p1 (H1, H2);
pattern (decidability p1); apply bool_eq_ind;
intro H3;
[ apply H; simpl; split;
[ apply not_not; auto | assumption ]
| auto ]
| simpl; intros p1 p2 (H1, H2); apply H; simpl;
elim not_or with (1 := H1); auto
| simpl; intros p1 p2 (H1, H2);
pattern (decidability p1); apply bool_eq_ind;
intro H3;
[ apply append_valid; elim not_and with (2 := H1);
[ intro; left; apply H; simpl; auto
| intro; right; apply H; simpl; auto
| auto ]
| auto ] ]
| simpl; intros p1 p2 (H1, H2); apply append_valid;
(elim H1; intro H3; simpl; [ left | right ]);
apply H; simpl; auto
| simpl; intros; apply H; simpl; tauto
| simpl; intros p1 p2 (H1, H2);
pattern (decidability p1); apply bool_eq_ind;
intro H3;
[ apply append_valid; elim imp_simp with (2 := H1);
[ intro H4; left; simpl; apply H; simpl; auto
| intro H4; right; simpl; apply H; simpl; auto
| auto ]
| auto ] ] ] ].
Qed.
Definition prop_stable (f : proposition -> proposition) :=
forall (ep : list Prop) (e : list int) (p : proposition),
interp_proposition ep e p <-> interp_proposition ep e (f p).
Definition p_apply_left (f : proposition -> proposition)
(p : proposition) :=
match p with
| Timp x y => Timp (f x) y
| Tor x y => Tor (f x) y
| Tand x y => Tand (f x) y
| Tnot x => Tnot (f x)
| x => x
end.
Theorem p_apply_left_stable :
forall f : proposition -> proposition,
prop_stable f -> prop_stable (p_apply_left f).
Proof.
unfold prop_stable; intros f H ep e p; split;
(case p; simpl; auto; intros p1; elim (H ep e p1); tauto).
Qed.
Definition p_apply_right (f : proposition -> proposition)
(p : proposition) :=
match p with
| Timp x y => Timp x (f y)
| Tor x y => Tor x (f y)
| Tand x y => Tand x (f y)
| Tnot x => Tnot (f x)
| x => x
end.
Theorem p_apply_right_stable :
forall f : proposition -> proposition,
prop_stable f -> prop_stable (p_apply_right f).
Proof.
unfold prop_stable; intros f H ep e p; split;
(case p; simpl; auto;
[ intros p1; elim (H ep e p1); tauto
| intros p1 p2; elim (H ep e p2); tauto
| intros p1 p2; elim (H ep e p2); tauto
| intros p1 p2; elim (H ep e p2); tauto ]).
Qed.
Definition p_invert (f : proposition -> proposition)
(p : proposition) :=
match p with
| EqTerm x y => Tnot (f (NeqTerm x y))
| LeqTerm x y => Tnot (f (GtTerm x y))
| GeqTerm x y => Tnot (f (LtTerm x y))
| GtTerm x y => Tnot (f (LeqTerm x y))
| LtTerm x y => Tnot (f (GeqTerm x y))
| NeqTerm x y => Tnot (f (EqTerm x y))
| x => x
end.
Theorem p_invert_stable :
forall f : proposition -> proposition,
prop_stable f -> prop_stable (p_invert f).
Proof.
unfold prop_stable; intros f H ep e p; split;
(case p; simpl; auto;
[ intros t1 t2; elim (H ep e (NeqTerm t1 t2)); simpl;
generalize (dec_eq (interp_term e t1) (interp_term e t2));
unfold decidable; tauto
| intros t1 t2; elim (H ep e (GtTerm t1 t2)); simpl;
generalize (dec_gt (interp_term e t1) (interp_term e t2));
unfold decidable; rewrite le_lt_iff, <- gt_lt_iff; tauto
| intros t1 t2; elim (H ep e (LtTerm t1 t2)); simpl;
generalize (dec_lt (interp_term e t1) (interp_term e t2));
unfold decidable; rewrite ge_le_iff, le_lt_iff; tauto
| intros t1 t2; elim (H ep e (LeqTerm t1 t2)); simpl;
generalize (dec_gt (interp_term e t1) (interp_term e t2));
unfold decidable; repeat rewrite le_lt_iff;
repeat rewrite gt_lt_iff; tauto
| intros t1 t2; elim (H ep e (GeqTerm t1 t2)); simpl;
generalize (dec_lt (interp_term e t1) (interp_term e t2));
unfold decidable; repeat rewrite ge_le_iff;
repeat rewrite le_lt_iff; tauto
| intros t1 t2; elim (H ep e (EqTerm t1 t2)); simpl;
generalize (dec_eq (interp_term e t1) (interp_term e t2));
unfold decidable; tauto ]).
Qed.
Theorem move_right_stable : forall s : step, prop_stable (move_right s).
Proof.
unfold move_right, prop_stable; intros s ep e p; split;
[ Simplify; simpl; elim (t_rewrite_stable s e); simpl;
[ symmetry ; apply egal_left; assumption
| intro; apply le_left; assumption
| intro; apply le_left; rewrite <- ge_le_iff; assumption
| intro; apply lt_left; rewrite <- gt_lt_iff; assumption
| intro; apply lt_left; assumption
| intro; apply ne_left_2; assumption ]
| case p; simpl; intros; auto; generalize H; elim (t_rewrite_stable s);
simpl; intro H1;
[ rewrite (plus_0_r_reverse (interp_term e t1)); rewrite H1;
rewrite plus_permute; rewrite plus_opp_r;
rewrite plus_0_r; trivial
| apply (fun a b => plus_le_reg_r a b (- interp_term e t0));
rewrite plus_opp_r; assumption
| rewrite ge_le_iff;
apply (fun a b => plus_le_reg_r a b (- interp_term e t1));
rewrite plus_opp_r; assumption
| rewrite gt_lt_iff; apply lt_left_inv; assumption
| apply lt_left_inv; assumption
| unfold not; intro H2; apply H1;
rewrite H2; rewrite plus_opp_r; trivial ] ].
Qed.
Fixpoint p_rewrite (s : p_step) : proposition -> proposition :=
match s with
| P_LEFT s => p_apply_left (p_rewrite s)
| P_RIGHT s => p_apply_right (p_rewrite s)
| P_STEP s => move_right s
| P_INVERT s => p_invert (move_right s)
| P_NOP => fun p : proposition => p
end.
Theorem p_rewrite_stable : forall s : p_step, prop_stable (p_rewrite s).
Proof.
simple induction s; simpl;
[ intros; apply p_apply_left_stable; trivial
| intros; apply p_apply_right_stable; trivial
| intros; apply p_invert_stable; apply move_right_stable
| apply move_right_stable
| unfold prop_stable; simpl; intros; split; auto ].
Qed.
Fixpoint normalize_hyps (l : list h_step) (lh : hyps) {struct l} : hyps :=
match l with
| nil => lh
| pair_step i s :: r => normalize_hyps r (apply_oper_1 i (p_rewrite s) lh)
end.
Theorem normalize_hyps_valid :
forall l : list h_step, valid_hyps (normalize_hyps l).
Proof.
simple induction l; unfold valid_hyps; simpl;
[ auto
| intros n_s r; case n_s; intros n s H ep e lp H1; apply H;
apply apply_oper_1_valid;
[ unfold valid1; intros ep1 e1 p1 H2;
elim (p_rewrite_stable s ep1 e1 p1); auto
| assumption ] ].
Qed.
Theorem normalize_hyps_goal :
forall (s : list h_step) (ep : list Prop) (env : list int) (l : hyps),
interp_goal ep env (normalize_hyps s l) -> interp_goal ep env l.
Proof.
intros; apply valid_goal with (2 := H); apply normalize_hyps_valid.
Qed.
Fixpoint extract_hyp_pos (s : list direction) (p : proposition) {struct s} :
proposition :=
match s with
| D_left :: l =>
match p with
| Tand x y => extract_hyp_pos l x
| _ => p
end
| D_right :: l =>
match p with
| Tand x y => extract_hyp_pos l y
| _ => p
end
| D_mono :: l => match p with
| Tnot x => extract_hyp_neg l x
| _ => p
end
| _ => p
end
with extract_hyp_neg (s : list direction) (p : proposition) {struct s} :
proposition :=
match s with
| D_left :: l =>
match p with
| Tor x y => extract_hyp_neg l x
| Timp x y => if decidability x then extract_hyp_pos l x else Tnot p
| _ => Tnot p
end
| D_right :: l =>
match p with
| Tor x y => extract_hyp_neg l y
| Timp x y => extract_hyp_neg l y
| _ => Tnot p
end
| D_mono :: l =>
match p with
| Tnot x => if decidability x then extract_hyp_pos l x else Tnot p
| _ => Tnot p
end
| _ =>
match p with
| Tnot x => if decidability x then x else Tnot p
| _ => Tnot p
end
end.
Definition co_valid1 (f : proposition -> proposition) :=
forall (ep : list Prop) (e : list int) (p1 : proposition),
interp_proposition ep e (Tnot p1) -> interp_proposition ep e (f p1).
Theorem extract_valid :
forall s : list direction,
valid1 (extract_hyp_pos s) /\ co_valid1 (extract_hyp_neg s).
Proof.
unfold valid1, co_valid1; simple induction s;
[ split;
[ simpl; auto
| intros ep e p1; case p1; simpl; auto; intro p;
pattern (decidability p); apply bool_eq_ind;
[ intro H; generalize (decidable_correct ep e p H);
unfold decidable; tauto
| simpl; auto ] ]
| intros a s' (H1, H2); simpl in H2; split; intros ep e p; case a; auto;
case p; auto; simpl; intros;
(apply H1; tauto) ||
(apply H2; tauto) ||
(pattern (decidability p0); apply bool_eq_ind;
[ intro H3; generalize (decidable_correct ep e p0 H3);
unfold decidable; intro H4; apply H1;
tauto
| intro; tauto ]) ].
Qed.
Fixpoint decompose_solve (s : e_step) (h : hyps) {struct s} : lhyps :=
match s with
| E_SPLIT i dl s1 s2 =>
match extract_hyp_pos dl (nth_hyps i h) with
| Tor x y => decompose_solve s1 (x :: h) ++ decompose_solve s2 (y :: h)
| Tnot (Tand x y) =>
if decidability x
then
decompose_solve s1 (Tnot x :: h) ++
decompose_solve s2 (Tnot y :: h)
else h :: nil
| Timp x y =>
if decidability x then
decompose_solve s1 (Tnot x :: h) ++ decompose_solve s2 (y :: h)
else h::nil
| _ => h :: nil
end
| E_EXTRACT i dl s1 =>
decompose_solve s1 (extract_hyp_pos dl (nth_hyps i h) :: h)
| E_SOLVE t => execute_omega t h
end.
Theorem decompose_solve_valid :
forall s : e_step, valid_list_goal (decompose_solve s).
Proof.
intro s; apply goal_valid; unfold valid_list_hyps; elim s;
simpl; intros;
[ cut (interp_proposition ep e1 (extract_hyp_pos l (nth_hyps n lp)));
[ case (extract_hyp_pos l (nth_hyps n lp)); simpl; auto;
[ intro p; case p; simpl; auto; intros p1 p2 H2;
pattern (decidability p1); apply bool_eq_ind;
[ intro H3; generalize (decidable_correct ep e1 p1 H3); intro H4;
apply append_valid; elim H4; intro H5;
[ right; apply H0; simpl; tauto
| left; apply H; simpl; tauto ]
| simpl; auto ]
| intros p1 p2 H2; apply append_valid; simpl; elim H2;
[ intros H3; left; apply H; simpl; auto
| intros H3; right; apply H0; simpl; auto ]
| intros p1 p2 H2;
pattern (decidability p1); apply bool_eq_ind;
[ intro H3; generalize (decidable_correct ep e1 p1 H3); intro H4;
apply append_valid; elim H4; intro H5;
[ right; apply H0; simpl; tauto
| left; apply H; simpl; tauto ]
| simpl; auto ] ]
| elim (extract_valid l); intros H2 H3; apply H2; apply nth_valid; auto ]
| intros; apply H; simpl; split;
[ elim (extract_valid l); intros H2 H3; apply H2; apply nth_valid; auto
| auto ]
| apply omega_valid with (1 := H) ].
Qed.
(* \subsection{La dernière étape qui élimine tous les séquents inutiles} *)
Definition valid_lhyps (f : lhyps -> lhyps) :=
forall (ep : list Prop) (e : list int) (lp : lhyps),
interp_list_hyps ep e lp -> interp_list_hyps ep e (f lp).
Fixpoint reduce_lhyps (lp : lhyps) : lhyps :=
match lp with
| (FalseTerm :: nil) :: lp' => reduce_lhyps lp'
| x :: lp' => x :: reduce_lhyps lp'
| nil => nil (A:=hyps)
end.
Theorem reduce_lhyps_valid : valid_lhyps reduce_lhyps.
Proof.
unfold valid_lhyps; intros ep e lp; elim lp;
[ simpl; auto
| intros a l HR; elim a;
[ simpl; tauto
| intros a1 l1; case l1; case a1; simpl; try tauto ] ].
Qed.
Theorem do_reduce_lhyps :
forall (envp : list Prop) (env : list int) (l : lhyps),
interp_list_goal envp env (reduce_lhyps l) -> interp_list_goal envp env l.
Proof.
intros envp env l H; apply list_goal_to_hyps; intro H1;
apply list_hyps_to_goal with (1 := H); apply reduce_lhyps_valid;
assumption.
Qed.
Definition concl_to_hyp (p : proposition) :=
if decidability p then Tnot p else TrueTerm.
Definition do_concl_to_hyp :
forall (envp : list Prop) (env : list int) (c : proposition) (l : hyps),
interp_goal envp env (concl_to_hyp c :: l) ->
interp_goal_concl c envp env l.
Proof.
simpl; intros envp env c l; induction l as [| a l Hrecl];
[ simpl; unfold concl_to_hyp;
pattern (decidability c); apply bool_eq_ind;
[ intro H; generalize (decidable_correct envp env c H);
unfold decidable; simpl; tauto
| simpl; intros H1 H2; elim H2; trivial ]
| simpl; tauto ].
Qed.
Definition omega_tactic (t1 : e_step) (t2 : list h_step)
(c : proposition) (l : hyps) :=
reduce_lhyps (decompose_solve t1 (normalize_hyps t2 (concl_to_hyp c :: l))).
Theorem do_omega :
forall (t1 : e_step) (t2 : list h_step) (envp : list Prop)
(env : list int) (c : proposition) (l : hyps),
interp_list_goal envp env (omega_tactic t1 t2 c l) ->
interp_goal_concl c envp env l.
Proof.
unfold omega_tactic; intros; apply do_concl_to_hyp;
apply (normalize_hyps_goal t2); apply (decompose_solve_valid t1);
apply do_reduce_lhyps; assumption.
Qed.
End IntOmega.
(* For now, the above modular construction is instanciated on Z,
in order to retrieve the initial ROmega. *)
Module ZOmega := IntOmega(Z_as_Int).
|