1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
|
(* -*- coding: utf-8 -*- *)
(*************************************************************************
PROJET RNRT Calife - 2001
Author: Pierre Crégut - France Télécom R&D
Licence du projet : LGPL version 2.1
*************************************************************************)
Require Import List Bool Sumbool EqNat Setoid Ring_theory Decidable ZArith_base.
Delimit Scope Int_scope with I.
(** * Abstract Integers. *)
Module Type Int.
Parameter t : Set.
Bind Scope Int_scope with t.
Parameter Inline zero : t.
Parameter Inline one : t.
Parameter Inline plus : t -> t -> t.
Parameter Inline opp : t -> t.
Parameter Inline minus : t -> t -> t.
Parameter Inline mult : t -> t -> t.
Notation "0" := zero : Int_scope.
Notation "1" := one : Int_scope.
Infix "+" := plus : Int_scope.
Infix "-" := minus : Int_scope.
Infix "*" := mult : Int_scope.
Notation "- x" := (opp x) : Int_scope.
Open Scope Int_scope.
(** First, Int is a ring: *)
Axiom ring : @ring_theory t 0 1 plus mult minus opp (@eq t).
(** Int should also be ordered: *)
Parameter Inline le : t -> t -> Prop.
Parameter Inline lt : t -> t -> Prop.
Parameter Inline ge : t -> t -> Prop.
Parameter Inline gt : t -> t -> Prop.
Notation "x <= y" := (le x y): Int_scope.
Notation "x < y" := (lt x y) : Int_scope.
Notation "x >= y" := (ge x y) : Int_scope.
Notation "x > y" := (gt x y): Int_scope.
Axiom le_lt_iff : forall i j, (i<=j) <-> ~(j<i).
Axiom ge_le_iff : forall i j, (i>=j) <-> (j<=i).
Axiom gt_lt_iff : forall i j, (i>j) <-> (j<i).
(** Basic properties of this order *)
Axiom lt_trans : forall i j k, i<j -> j<k -> i<k.
Axiom lt_not_eq : forall i j, i<j -> i<>j.
(** Compatibilities *)
Axiom lt_0_1 : 0<1.
Axiom plus_le_compat : forall i j k l, i<=j -> k<=l -> i+k<=j+l.
Axiom opp_le_compat : forall i j, i<=j -> (-j)<=(-i).
Axiom mult_lt_compat_l :
forall i j k, 0 < k -> i < j -> k*i<k*j.
(** We should have a way to decide the equality and the order*)
Parameter compare : t -> t -> comparison.
Infix "?=" := compare (at level 70, no associativity) : Int_scope.
Axiom compare_Eq : forall i j, compare i j = Eq <-> i=j.
Axiom compare_Lt : forall i j, compare i j = Lt <-> i<j.
Axiom compare_Gt : forall i j, compare i j = Gt <-> i>j.
(** Up to here, these requirements could be fulfilled
by any totally ordered ring. Let's now be int-specific: *)
Axiom le_lt_int : forall x y, x<y <-> x<=y+-(1).
(** Btw, lt_0_1 could be deduced from this last axiom *)
(** Now we also require a division function.
It is deliberately underspecified, since that's enough
for the proofs below. But the most appropriate variant
(and the one needed to stay in sync with the omega engine)
is "Floor" (the historical version of Coq's [Z.div]). *)
Parameter diveucl : t -> t -> t * t.
Notation "i / j" := (fst (diveucl i j)).
Notation "i 'mod' j" := (snd (diveucl i j)).
Axiom diveucl_spec :
forall i j, j<>0 -> i = j * (i/j) + (i mod j).
End Int.
(** Of course, Z is a model for our abstract int *)
Module Z_as_Int <: Int.
Open Scope Z_scope.
Definition t := Z.
Definition zero := 0.
Definition one := 1.
Definition plus := Z.add.
Definition opp := Z.opp.
Definition minus := Z.sub.
Definition mult := Z.mul.
Lemma ring : @ring_theory t zero one plus mult minus opp (@eq t).
Proof.
constructor.
exact Z.add_0_l.
exact Z.add_comm.
exact Z.add_assoc.
exact Z.mul_1_l.
exact Z.mul_comm.
exact Z.mul_assoc.
exact Z.mul_add_distr_r.
unfold minus, Z.sub; auto.
exact Z.add_opp_diag_r.
Qed.
Definition le := Z.le.
Definition lt := Z.lt.
Definition ge := Z.ge.
Definition gt := Z.gt.
Definition le_lt_iff := Z.le_ngt.
Definition ge_le_iff := Z.ge_le_iff.
Definition gt_lt_iff := Z.gt_lt_iff.
Definition lt_trans := Z.lt_trans.
Definition lt_not_eq := Z.lt_neq.
Definition lt_0_1 := Z.lt_0_1.
Definition plus_le_compat := Z.add_le_mono.
Definition mult_lt_compat_l := Zmult_lt_compat_l.
Lemma opp_le_compat i j : i<=j -> (-j)<=(-i).
Proof. apply -> Z.opp_le_mono. Qed.
Definition compare := Z.compare.
Definition compare_Eq := Z.compare_eq_iff.
Lemma compare_Lt i j : compare i j = Lt <-> i<j.
Proof. reflexivity. Qed.
Lemma compare_Gt i j : compare i j = Gt <-> i>j.
Proof. reflexivity. Qed.
Definition le_lt_int := Z.lt_le_pred.
Definition diveucl := Z.div_eucl.
Definition diveucl_spec := Z.div_mod.
End Z_as_Int.
(** * Properties of abstract integers *)
Module IntProperties (I:Int).
Import I.
Local Notation int := I.t.
(** Primo, some consequences of being a ring theory... *)
Definition two := 1+1.
Notation "2" := two : Int_scope.
(** Aliases for properties packed in the ring record. *)
Definition plus_assoc := ring.(Radd_assoc).
Definition plus_comm := ring.(Radd_comm).
Definition plus_0_l := ring.(Radd_0_l).
Definition mult_assoc := ring.(Rmul_assoc).
Definition mult_comm := ring.(Rmul_comm).
Definition mult_1_l := ring.(Rmul_1_l).
Definition mult_plus_distr_r := ring.(Rdistr_l).
Definition opp_def := ring.(Ropp_def).
Definition minus_def := ring.(Rsub_def).
Opaque plus_assoc plus_comm plus_0_l mult_assoc mult_comm mult_1_l
mult_plus_distr_r opp_def minus_def.
(** More facts about [plus] *)
Lemma plus_0_r : forall x, x+0 = x.
Proof. intros; rewrite plus_comm; apply plus_0_l. Qed.
Lemma plus_permute : forall x y z, x+(y+z) = y+(x+z).
Proof. intros; do 2 rewrite plus_assoc; f_equal; apply plus_comm. Qed.
Lemma plus_reg_l : forall x y z, x+y = x+z -> y = z.
Proof.
intros.
rewrite <- (plus_0_r y), <- (plus_0_r z), <-(opp_def x).
now rewrite plus_permute, plus_assoc, H, <- plus_assoc, plus_permute.
Qed.
(** More facts about [mult] *)
Lemma mult_plus_distr_l : forall x y z, x*(y+z)=x*y+x*z.
Proof.
intros.
rewrite (mult_comm x (y+z)), (mult_comm x y), (mult_comm x z).
apply mult_plus_distr_r.
Qed.
Lemma mult_0_l x : 0*x = 0.
Proof.
assert (H := mult_plus_distr_r 0 1 x).
rewrite plus_0_l, mult_1_l, plus_comm in H.
apply plus_reg_l with x.
now rewrite <- H, plus_0_r.
Qed.
Lemma mult_0_r x : x*0 = 0.
Proof.
rewrite mult_comm. apply mult_0_l.
Qed.
Lemma mult_1_r x : x*1 = x.
Proof.
rewrite mult_comm. apply mult_1_l.
Qed.
(** More facts about [opp] *)
Definition plus_opp_r := opp_def.
Lemma plus_opp_l : forall x, -x + x = 0.
Proof. intros; now rewrite plus_comm, opp_def. Qed.
Lemma mult_opp_comm : forall x y, - x * y = x * - y.
Proof.
intros.
apply plus_reg_l with (x*y).
rewrite <- mult_plus_distr_l, <- mult_plus_distr_r.
now rewrite opp_def, opp_def, mult_0_l, mult_comm, mult_0_l.
Qed.
Lemma opp_eq_mult_neg_1 : forall x, -x = x * -(1).
Proof.
intros; now rewrite mult_comm, mult_opp_comm, mult_1_l.
Qed.
Lemma opp_involutive : forall x, -(-x) = x.
Proof.
intros.
apply plus_reg_l with (-x).
now rewrite opp_def, plus_comm, opp_def.
Qed.
Lemma opp_plus_distr : forall x y, -(x+y) = -x + -y.
Proof.
intros.
apply plus_reg_l with (x+y).
rewrite opp_def.
rewrite plus_permute.
do 2 rewrite plus_assoc.
now rewrite (plus_comm (-x)), opp_def, plus_0_l, opp_def.
Qed.
Lemma opp_mult_distr_r : forall x y, -(x*y) = x * -y.
Proof.
intros.
rewrite <- mult_opp_comm.
apply plus_reg_l with (x*y).
now rewrite opp_def, <-mult_plus_distr_r, opp_def, mult_0_l.
Qed.
Lemma egal_left n m : 0 = n+-m <-> n = m.
Proof.
split; intros.
- apply plus_reg_l with (-m).
rewrite plus_comm, <- H. symmetry. apply plus_opp_l.
- symmetry. subst; apply opp_def.
Qed.
(** Specialized distributivities *)
Hint Rewrite mult_plus_distr_l mult_plus_distr_r mult_assoc : int.
Hint Rewrite <- plus_assoc : int.
Hint Rewrite plus_0_l plus_0_r mult_0_l mult_0_r mult_1_l mult_1_r : int.
Lemma OMEGA10 v c1 c2 l1 l2 k1 k2 :
v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2) =
(v * c1 + l1) * k1 + (v * c2 + l2) * k2.
Proof.
autorewrite with int; f_equal; now rewrite plus_permute.
Qed.
Lemma OMEGA11 v1 c1 l1 l2 k1 :
v1 * (c1 * k1) + (l1 * k1 + l2) = (v1 * c1 + l1) * k1 + l2.
Proof.
now autorewrite with int.
Qed.
Lemma OMEGA12 v2 c2 l1 l2 k2 :
v2 * (c2 * k2) + (l1 + l2 * k2) = l1 + (v2 * c2 + l2) * k2.
Proof.
autorewrite with int; now rewrite plus_permute.
Qed.
Lemma sum1 a b c d : 0 = a -> 0 = b -> 0 = a * c + b * d.
Proof.
intros; subst. now autorewrite with int.
Qed.
(** Secondo, some results about order (and equality) *)
Lemma lt_irrefl : forall n, ~ n<n.
Proof.
intros n H.
elim (lt_not_eq _ _ H); auto.
Qed.
Lemma lt_antisym : forall n m, n<m -> m<n -> False.
Proof.
intros; elim (lt_irrefl _ (lt_trans _ _ _ H H0)); auto.
Qed.
Lemma lt_le_weak : forall n m, n<m -> n<=m.
Proof.
intros; rewrite le_lt_iff; intro H'; eapply lt_antisym; eauto.
Qed.
Lemma le_refl : forall n, n<=n.
Proof.
intros; rewrite le_lt_iff; apply lt_irrefl; auto.
Qed.
Lemma le_antisym : forall n m, n<=m -> m<=n -> n=m.
Proof.
intros n m; do 2 rewrite le_lt_iff; intros.
rewrite <- compare_Lt in H0.
rewrite <- gt_lt_iff, <- compare_Gt in H.
rewrite <- compare_Eq.
destruct compare; intuition.
Qed.
Lemma lt_eq_lt_dec : forall n m, { n<m }+{ n=m }+{ m<n }.
Proof.
intros.
generalize (compare_Lt n m)(compare_Eq n m)(compare_Gt n m).
destruct compare; [ left; right | left; left | right ]; intuition.
rewrite gt_lt_iff in H1; intuition.
Qed.
Lemma lt_dec : forall n m: int, { n<m } + { ~n<m }.
Proof.
intros.
generalize (compare_Lt n m)(compare_Eq n m)(compare_Gt n m).
destruct compare; [ right | left | right ]; intuition discriminate.
Qed.
Lemma lt_le_iff : forall n m, (n<m) <-> ~(m<=n).
Proof.
intros.
rewrite le_lt_iff.
destruct (lt_dec n m); intuition.
Qed.
Lemma le_dec : forall n m: int, { n<=m } + { ~n<=m }.
Proof.
intros; destruct (lt_dec m n); [right|left]; rewrite le_lt_iff; intuition.
Qed.
Lemma le_lt_dec : forall n m, { n<=m } + { m<n }.
Proof.
intros; destruct (le_dec n m); [left|right]; auto; now rewrite lt_le_iff.
Qed.
Definition beq i j := match compare i j with Eq => true | _ => false end.
Infix "=?" := beq : Int_scope.
Lemma beq_iff i j : (i =? j) = true <-> i=j.
Proof.
unfold beq. rewrite <- (compare_Eq i j). now destruct compare.
Qed.
Lemma beq_reflect i j : reflect (i=j) (i =? j).
Proof.
apply iff_reflect. symmetry. apply beq_iff.
Qed.
Lemma eq_dec : forall n m:int, { n=m } + { n<>m }.
Proof.
intros n m; generalize (beq_iff n m); destruct beq; [left|right]; intuition.
Qed.
Definition blt i j := match compare i j with Lt => true | _ => false end.
Infix "<?" := blt : Int_scope.
Lemma blt_iff i j : (i <? j) = true <-> i<j.
Proof.
unfold blt. rewrite <- (compare_Lt i j). now destruct compare.
Qed.
Lemma blt_reflect i j : reflect (i<j) (i <? j).
Proof.
apply iff_reflect. symmetry. apply blt_iff.
Qed.
Lemma le_is_lt_or_eq : forall n m, n<=m -> { n<m } + { n=m }.
Proof.
intros n m Hnm.
destruct (eq_dec n m) as [H'|H'].
- right; intuition.
- left; rewrite lt_le_iff.
contradict H'.
now apply le_antisym.
Qed.
Lemma le_neq_lt : forall n m, n<=m -> n<>m -> n<m.
Proof.
intros n m H. now destruct (le_is_lt_or_eq _ _ H).
Qed.
Lemma le_trans : forall n m p, n<=m -> m<=p -> n<=p.
Proof.
intros n m p; rewrite 3 le_lt_iff; intros A B C.
destruct (lt_eq_lt_dec p m) as [[H|H]|H]; subst; auto.
generalize (lt_trans _ _ _ H C); intuition.
Qed.
Lemma not_eq (a b:int) : ~ a <> b <-> a = b.
Proof.
destruct (eq_dec a b); intuition.
Qed.
(** Order and operations *)
Lemma le_0_neg n : n <= 0 <-> 0 <= -n.
Proof.
rewrite <- (mult_0_l (-(1))) at 2.
rewrite <- opp_eq_mult_neg_1.
split; intros.
- now apply opp_le_compat.
- rewrite <-(opp_involutive 0), <-(opp_involutive n).
now apply opp_le_compat.
Qed.
Lemma plus_le_reg_r : forall n m p, n + p <= m + p -> n <= m.
Proof.
intros.
replace n with ((n+p)+-p).
replace m with ((m+p)+-p).
apply plus_le_compat; auto.
apply le_refl.
now rewrite <- plus_assoc, opp_def, plus_0_r.
now rewrite <- plus_assoc, opp_def, plus_0_r.
Qed.
Lemma plus_le_lt_compat : forall n m p q, n<=m -> p<q -> n+p<m+q.
Proof.
intros.
apply le_neq_lt.
apply plus_le_compat; auto.
apply lt_le_weak; auto.
rewrite lt_le_iff in H0.
contradict H0.
apply plus_le_reg_r with m.
rewrite (plus_comm q m), <-H0, (plus_comm p m).
apply plus_le_compat; auto.
apply le_refl; auto.
Qed.
Lemma plus_lt_compat : forall n m p q, n<m -> p<q -> n+p<m+q.
Proof.
intros.
apply plus_le_lt_compat; auto.
apply lt_le_weak; auto.
Qed.
Lemma opp_lt_compat : forall n m, n<m -> -m < -n.
Proof.
intros n m; do 2 rewrite lt_le_iff; intros H; contradict H.
rewrite <-(opp_involutive m), <-(opp_involutive n).
apply opp_le_compat; auto.
Qed.
Lemma lt_0_neg n : n < 0 <-> 0 < -n.
Proof.
rewrite <- (mult_0_l (-(1))) at 2.
rewrite <- opp_eq_mult_neg_1.
split; intros.
- now apply opp_lt_compat.
- rewrite <-(opp_involutive 0), <-(opp_involutive n).
now apply opp_lt_compat.
Qed.
Lemma mult_lt_0_compat : forall n m, 0 < n -> 0 < m -> 0 < n*m.
Proof.
intros.
rewrite <- (mult_0_l n), mult_comm.
apply mult_lt_compat_l; auto.
Qed.
Lemma mult_integral_r n m : 0 < n -> n * m = 0 -> m = 0.
Proof.
intros Hn H.
destruct (lt_eq_lt_dec 0 m) as [[Hm| <- ]|Hm]; auto; exfalso.
- generalize (mult_lt_0_compat _ _ Hn Hm).
rewrite H.
exact (lt_irrefl 0).
- rewrite lt_0_neg in Hm.
generalize (mult_lt_0_compat _ _ Hn Hm).
rewrite <- opp_mult_distr_r, opp_eq_mult_neg_1, H, mult_0_l.
exact (lt_irrefl 0).
Qed.
Lemma mult_integral n m : n * m = 0 -> n = 0 \/ m = 0.
Proof.
intros H.
destruct (lt_eq_lt_dec 0 n) as [[Hn|Hn]|Hn].
- right; apply (mult_integral_r n m); trivial.
- now left.
- right; apply (mult_integral_r (-n) m).
+ now apply lt_0_neg.
+ rewrite mult_comm, <- opp_mult_distr_r, mult_comm, H.
now rewrite opp_eq_mult_neg_1, mult_0_l.
Qed.
Lemma mult_le_compat_l i j k :
0<=k -> i<=j -> k*i <= k*j.
Proof.
intros Hk Hij.
apply le_is_lt_or_eq in Hk. apply le_is_lt_or_eq in Hij.
destruct Hk as [Hk | <-], Hij as [Hij | <-];
rewrite ? mult_0_l; try apply le_refl.
now apply lt_le_weak, mult_lt_compat_l.
Qed.
Lemma mult_le_compat i j k l :
i<=j -> k<=l -> 0<=i -> 0<=k -> i*k<=j*l.
Proof.
intros Hij Hkl Hi Hk.
apply le_trans with (i*l).
- now apply mult_le_compat_l.
- rewrite (mult_comm i), (mult_comm j).
apply mult_le_compat_l; trivial.
now apply le_trans with k.
Qed.
Lemma sum5 a b c d : 0 <> c -> 0 <> a -> 0 = b -> 0 <> a * c + b * d.
Proof.
intros Hc Ha <-. autorewrite with int. contradict Hc.
symmetry in Hc. destruct (mult_integral _ _ Hc); congruence.
Qed.
Lemma le_left n m : n <= m <-> 0 <= m + - n.
Proof.
split; intros.
- rewrite <- (opp_def m).
apply plus_le_compat.
apply le_refl.
apply opp_le_compat; auto.
- apply plus_le_reg_r with (-n).
now rewrite plus_opp_r.
Qed.
Lemma OMEGA8 x y : 0 <= x -> 0 <= y -> x = - y -> x = 0.
Proof.
intros.
assert (y=-x).
subst x; symmetry; apply opp_involutive.
clear H1; subst y.
destruct (eq_dec 0 x) as [H'|H']; auto.
assert (H'':=le_neq_lt _ _ H H').
generalize (plus_le_lt_compat _ _ _ _ H0 H'').
rewrite plus_opp_l, plus_0_l.
intros.
elim (lt_not_eq _ _ H1); auto.
Qed.
Lemma sum2 a b c d :
0 <= d -> 0 = a -> 0 <= b -> 0 <= a * c + b * d.
Proof.
intros Hd <- Hb. autorewrite with int.
rewrite <- (mult_0_l 0).
apply mult_le_compat; auto; apply le_refl.
Qed.
Lemma sum3 a b c d :
0 <= c -> 0 <= d -> 0 <= a -> 0 <= b -> 0 <= a * c + b * d.
Proof.
intros.
rewrite <- (plus_0_l 0).
apply plus_le_compat; auto.
rewrite <- (mult_0_l 0).
apply mult_le_compat; auto; apply le_refl.
rewrite <- (mult_0_l 0).
apply mult_le_compat; auto; apply le_refl.
Qed.
(** Lemmas specific to integers (they use [le_lt_int]) *)
Lemma lt_left n m : n < m <-> 0 <= m + -n + -(1).
Proof.
rewrite <- plus_assoc, (plus_comm (-n)), plus_assoc.
rewrite <- le_left.
apply le_lt_int.
Qed.
Lemma OMEGA4 x y z : 0 < x -> x < y -> z * y + x <> 0.
Proof.
intros H H0 H'.
assert (0 < y) by now apply lt_trans with x.
destruct (lt_eq_lt_dec z 0) as [[G|G]|G].
- generalize (plus_le_lt_compat _ _ _ _ (le_refl (z*y)) H0).
rewrite H'.
rewrite <-(mult_1_l y) at 2. rewrite <-mult_plus_distr_r.
apply le_lt_iff.
rewrite mult_comm. rewrite <- (mult_0_r y).
apply mult_le_compat_l; auto using lt_le_weak.
apply le_0_neg. rewrite opp_plus_distr.
apply le_lt_int. now apply lt_0_neg.
- apply (lt_not_eq 0 (z*y+x)); auto.
subst. now autorewrite with int.
- apply (lt_not_eq 0 (z*y+x)); auto.
rewrite <- (plus_0_l 0).
auto using plus_lt_compat, mult_lt_0_compat.
Qed.
Lemma OMEGA19 x : x<>0 -> 0 <= x + -(1) \/ 0 <= x * -(1) + -(1).
Proof.
intros.
do 2 rewrite <- le_lt_int.
rewrite <- opp_eq_mult_neg_1.
destruct (lt_eq_lt_dec 0 x) as [[H'|H']|H'].
auto.
congruence.
right.
rewrite <-(mult_0_l (-(1))), <-(opp_eq_mult_neg_1 0).
apply opp_lt_compat; auto.
Qed.
Lemma mult_le_approx n m p :
0 < n -> p < n -> 0 <= m * n + p -> 0 <= m.
Proof.
do 2 rewrite le_lt_iff; intros Hn Hpn H Hm. destruct H.
apply lt_0_neg, le_lt_int, le_left in Hm.
rewrite lt_0_neg.
rewrite opp_plus_distr, mult_comm, opp_mult_distr_r.
rewrite le_lt_int. apply lt_left.
rewrite le_lt_int.
apply le_trans with (n+-(1)); [ now apply le_lt_int | ].
apply plus_le_compat; [ | apply le_refl ].
rewrite <- (mult_1_r n) at 1.
apply mult_le_compat_l; auto using lt_le_weak.
Qed.
(** Some decidabilities *)
Lemma dec_eq : forall i j:int, decidable (i=j).
Proof.
red; intros; destruct (eq_dec i j); auto.
Qed.
Lemma dec_ne : forall i j:int, decidable (i<>j).
Proof.
red; intros; destruct (eq_dec i j); auto.
Qed.
Lemma dec_le : forall i j:int, decidable (i<=j).
Proof.
red; intros; destruct (le_dec i j); auto.
Qed.
Lemma dec_lt : forall i j:int, decidable (i<j).
Proof.
red; intros; destruct (lt_dec i j); auto.
Qed.
Lemma dec_ge : forall i j:int, decidable (i>=j).
Proof.
red; intros; rewrite ge_le_iff; destruct (le_dec j i); auto.
Qed.
Lemma dec_gt : forall i j:int, decidable (i>j).
Proof.
red; intros; rewrite gt_lt_iff; destruct (lt_dec j i); auto.
Qed.
End IntProperties.
(** * The Coq side of the romega tactic *)
Module IntOmega (I:Int).
Import I.
Module IP:=IntProperties(I).
Import IP.
Local Notation int := I.t.
(* ** Definition of reified integer expressions
Terms are either:
- integers [Tint]
- variables [Tvar]
- operation over integers (addition, product, opposite, subtraction)
Opposite and subtraction are translated in additions and products.
Note that we'll only deal with products for which at least one side
is [Tint]. *)
Inductive term : Set :=
| Tint : int -> term
| Tplus : term -> term -> term
| Tmult : term -> term -> term
| Tminus : term -> term -> term
| Topp : term -> term
| Tvar : N -> term.
Bind Scope romega_scope with term.
Delimit Scope romega_scope with term.
Arguments Tint _%I.
Arguments Tplus (_ _)%term.
Arguments Tmult (_ _)%term.
Arguments Tminus (_ _)%term.
Arguments Topp _%term.
Infix "+" := Tplus : romega_scope.
Infix "*" := Tmult : romega_scope.
Infix "-" := Tminus : romega_scope.
Notation "- x" := (Topp x) : romega_scope.
Notation "[ x ]" := (Tvar x) (at level 0) : romega_scope.
(* ** Definition of reified goals
Very restricted definition of handled predicates that should be extended
to cover a wider set of operations.
Taking care of negations and disequations require solving more than a
goal in parallel. This is a major improvement over previous versions. *)
Inductive proposition : Set :=
(** First, basic equations, disequations, inequations *)
| EqTerm : term -> term -> proposition
| NeqTerm : term -> term -> proposition
| LeqTerm : term -> term -> proposition
| GeqTerm : term -> term -> proposition
| GtTerm : term -> term -> proposition
| LtTerm : term -> term -> proposition
(** Then, the supported logical connectors *)
| TrueTerm : proposition
| FalseTerm : proposition
| Tnot : proposition -> proposition
| Tor : proposition -> proposition -> proposition
| Tand : proposition -> proposition -> proposition
| Timp : proposition -> proposition -> proposition
(** Everything else is left as a propositional atom (and ignored). *)
| Tprop : nat -> proposition.
(** Definition of goals as a list of hypothesis *)
Notation hyps := (list proposition).
(** Definition of lists of subgoals (set of open goals) *)
Notation lhyps := (list hyps).
(** A single goal packed in a subgoal list *)
Notation singleton := (fun a : hyps => a :: nil).
(** An absurd goal *)
Definition absurd := FalseTerm :: nil.
(** ** Decidable equality on terms *)
Fixpoint eq_term (t1 t2 : term) {struct t2} : bool :=
match t1, t2 with
| Tint i1, Tint i2 => i1 =? i2
| (t11 + t12), (t21 + t22) => eq_term t11 t21 && eq_term t12 t22
| (t11 * t12), (t21 * t22) => eq_term t11 t21 && eq_term t12 t22
| (t11 - t12), (t21 - t22) => eq_term t11 t21 && eq_term t12 t22
| (- t1), (- t2) => eq_term t1 t2
| [v1], [v2] => N.eqb v1 v2
| _, _ => false
end%term.
Infix "=?" := eq_term : romega_scope.
Theorem eq_term_iff (t t' : term) :
(t =? t')%term = true <-> t = t'.
Proof.
revert t'. induction t; destruct t'; simpl in *;
rewrite ?andb_true_iff, ?beq_iff, ?N.eqb_eq, ?IHt, ?IHt1, ?IHt2;
intuition congruence.
Qed.
Theorem eq_term_reflect (t t' : term) : reflect (t=t') (t =? t')%term.
Proof.
apply iff_reflect. symmetry. apply eq_term_iff.
Qed.
(** ** Interpretations of terms (as integers). *)
Fixpoint Nnth {A} (n:N)(l:list A)(default:A) :=
match n, l with
| _, nil => default
| 0%N, x::_ => x
| _, _::l => Nnth (N.pred n) l default
end.
Fixpoint interp_term (env : list int) (t : term) : int :=
match t with
| Tint x => x
| (t1 + t2)%term => interp_term env t1 + interp_term env t2
| (t1 * t2)%term => interp_term env t1 * interp_term env t2
| (t1 - t2)%term => interp_term env t1 - interp_term env t2
| (- t)%term => - interp_term env t
| [n]%term => Nnth n env 0
end.
(** ** Interpretation of predicats (as Coq propositions) *)
Fixpoint interp_prop (envp : list Prop) (env : list int)
(p : proposition) : Prop :=
match p with
| EqTerm t1 t2 => interp_term env t1 = interp_term env t2
| NeqTerm t1 t2 => (interp_term env t1) <> (interp_term env t2)
| LeqTerm t1 t2 => interp_term env t1 <= interp_term env t2
| GeqTerm t1 t2 => interp_term env t1 >= interp_term env t2
| GtTerm t1 t2 => interp_term env t1 > interp_term env t2
| LtTerm t1 t2 => interp_term env t1 < interp_term env t2
| TrueTerm => True
| FalseTerm => False
| Tnot p' => ~ interp_prop envp env p'
| Tor p1 p2 => interp_prop envp env p1 \/ interp_prop envp env p2
| Tand p1 p2 => interp_prop envp env p1 /\ interp_prop envp env p2
| Timp p1 p2 => interp_prop envp env p1 -> interp_prop envp env p2
| Tprop n => nth n envp True
end.
(** ** Intepretation of hypothesis lists (as Coq conjunctions) *)
Fixpoint interp_hyps (envp : list Prop) (env : list int) (l : hyps)
: Prop :=
match l with
| nil => True
| p' :: l' => interp_prop envp env p' /\ interp_hyps envp env l'
end.
(** ** Interpretation of conclusion + hypotheses
Here we use Coq implications : it's less easy to manipulate,
but handy to relate to the Coq original goal (cf. the use of
[generalize], and lighter (no repetition of types in intermediate
conjunctions). *)
Fixpoint interp_goal_concl (c : proposition) (envp : list Prop)
(env : list int) (l : hyps) : Prop :=
match l with
| nil => interp_prop envp env c
| p' :: l' =>
interp_prop envp env p' -> interp_goal_concl c envp env l'
end.
Notation interp_goal := (interp_goal_concl FalseTerm).
(** Equivalence between these two interpretations. *)
Theorem goal_to_hyps :
forall (envp : list Prop) (env : list int) (l : hyps),
(interp_hyps envp env l -> False) -> interp_goal envp env l.
Proof.
induction l; simpl; auto.
Qed.
Theorem hyps_to_goal :
forall (envp : list Prop) (env : list int) (l : hyps),
interp_goal envp env l -> interp_hyps envp env l -> False.
Proof.
induction l; simpl; auto.
intros H (H1,H2). auto.
Qed.
(** ** Interpretations of list of goals
Here again, two flavours... *)
Fixpoint interp_list_hyps (envp : list Prop) (env : list int)
(l : lhyps) : Prop :=
match l with
| nil => False
| h :: l' => interp_hyps envp env h \/ interp_list_hyps envp env l'
end.
Fixpoint interp_list_goal (envp : list Prop) (env : list int)
(l : lhyps) : Prop :=
match l with
| nil => True
| h :: l' => interp_goal envp env h /\ interp_list_goal envp env l'
end.
(** Equivalence between the two flavours. *)
Theorem list_goal_to_hyps :
forall (envp : list Prop) (env : list int) (l : lhyps),
(interp_list_hyps envp env l -> False) -> interp_list_goal envp env l.
Proof.
induction l; simpl; intuition. now apply goal_to_hyps.
Qed.
Theorem list_hyps_to_goal :
forall (envp : list Prop) (env : list int) (l : lhyps),
interp_list_goal envp env l -> interp_list_hyps envp env l -> False.
Proof.
induction l; simpl; intuition. eapply hyps_to_goal; eauto.
Qed.
(** ** Stabiliy and validity of operations *)
(** An operation on terms is stable if the interpretation is unchanged. *)
Definition term_stable (f : term -> term) :=
forall (e : list int) (t : term), interp_term e t = interp_term e (f t).
(** An operation on one hypothesis is valid if this hypothesis implies
the result of this operation. *)
Definition valid1 (f : proposition -> proposition) :=
forall (ep : list Prop) (e : list int) (p1 : proposition),
interp_prop ep e p1 -> interp_prop ep e (f p1).
Definition valid2 (f : proposition -> proposition -> proposition) :=
forall (ep : list Prop) (e : list int) (p1 p2 : proposition),
interp_prop ep e p1 ->
interp_prop ep e p2 -> interp_prop ep e (f p1 p2).
(** Same for lists of hypotheses, and for list of goals *)
Definition valid_hyps (f : hyps -> hyps) :=
forall (ep : list Prop) (e : list int) (lp : hyps),
interp_hyps ep e lp -> interp_hyps ep e (f lp).
Definition valid_list_hyps (f : hyps -> lhyps) :=
forall (ep : list Prop) (e : list int) (lp : hyps),
interp_hyps ep e lp -> interp_list_hyps ep e (f lp).
Definition valid_list_goal (f : hyps -> lhyps) :=
forall (ep : list Prop) (e : list int) (lp : hyps),
interp_list_goal ep e (f lp) -> interp_goal ep e lp.
(** Some results about these validities. *)
Theorem valid_goal :
forall (ep : list Prop) (env : list int) (l : hyps) (a : hyps -> hyps),
valid_hyps a -> interp_goal ep env (a l) -> interp_goal ep env l.
Proof.
intros; simpl; apply goal_to_hyps; intro H1;
apply (hyps_to_goal ep env (a l) H0); apply H; assumption.
Qed.
Theorem goal_valid :
forall f : hyps -> lhyps, valid_list_hyps f -> valid_list_goal f.
Proof.
unfold valid_list_goal; intros f H ep e lp H1; apply goal_to_hyps;
intro H2; apply list_hyps_to_goal with (1 := H1);
apply (H ep e lp); assumption.
Qed.
Theorem append_valid :
forall (ep : list Prop) (e : list int) (l1 l2 : lhyps),
interp_list_hyps ep e l1 \/ interp_list_hyps ep e l2 ->
interp_list_hyps ep e (l1 ++ l2).
Proof.
induction l1; simpl in *.
- now intros l2 [H| H].
- intros l2 [[H| H]| H].
+ auto.
+ right; apply IHl1; now left.
+ right; apply IHl1; now right.
Qed.
(** ** Valid operations on hypotheses *)
(** Extract an hypothesis from the list *)
Definition nth_hyps (n : nat) (l : hyps) := nth n l TrueTerm.
Theorem nth_valid :
forall (ep : list Prop) (e : list int) (i : nat) (l : hyps),
interp_hyps ep e l -> interp_prop ep e (nth_hyps i l).
Proof.
unfold nth_hyps. induction i; destruct l; simpl in *; try easy.
intros (H1,H2). now apply IHi.
Qed.
(** Apply a valid operation on two hypotheses from the list, and
store the result in the list. *)
Definition apply_oper_2 (i j : nat)
(f : proposition -> proposition -> proposition) (l : hyps) :=
f (nth_hyps i l) (nth_hyps j l) :: l.
Theorem apply_oper_2_valid :
forall (i j : nat) (f : proposition -> proposition -> proposition),
valid2 f -> valid_hyps (apply_oper_2 i j f).
Proof.
intros i j f Hf; unfold apply_oper_2, valid_hyps; simpl;
intros lp Hlp; split.
- apply Hf; apply nth_valid; assumption.
- assumption.
Qed.
(** In-place modification of an hypothesis by application of
a valid operation. *)
Fixpoint apply_oper_1 (i : nat) (f : proposition -> proposition)
(l : hyps) {struct i} : hyps :=
match l with
| nil => nil
| p :: l' =>
match i with
| O => f p :: l'
| S j => p :: apply_oper_1 j f l'
end
end.
Theorem apply_oper_1_valid :
forall (i : nat) (f : proposition -> proposition),
valid1 f -> valid_hyps (apply_oper_1 i f).
Proof.
unfold valid_hyps.
induction i; intros f Hf ep e [ | p lp]; simpl; intuition.
Qed.
(** ** A tactic for proving stability *)
Ltac loop t :=
match t with
(* Global *)
| (?X1 = ?X2) => loop X1 || loop X2
| (_ -> ?X1) => loop X1
(* Interpretations *)
| (interp_hyps _ _ ?X1) => loop X1
| (interp_list_hyps _ _ ?X1) => loop X1
| (interp_prop _ _ ?X1) => loop X1
| (interp_term _ ?X1) => loop X1
(* Propositions *)
| (EqTerm ?X1 ?X2) => loop X1 || loop X2
| (LeqTerm ?X1 ?X2) => loop X1 || loop X2
(* Terms *)
| (?X1 + ?X2)%term => loop X1 || loop X2
| (?X1 - ?X2)%term => loop X1 || loop X2
| (?X1 * ?X2)%term => loop X1 || loop X2
| (- ?X1)%term => loop X1
| (Tint ?X1) => loop X1
(* Eliminations *)
| (if ?X1 =? ?X2 then _ else _) =>
let H := fresh "H" in
case (beq_reflect X1 X2); intro H;
try (rewrite H in *; clear H); simpl; auto; Simplify
| (if ?X1 <? ?X2 then _ else _) =>
case (blt_reflect X1 X2); intro; simpl; auto; Simplify
| (if (?X1 =? ?X2)%term then _ else _) =>
let H := fresh "H" in
case (eq_term_reflect X1 X2); intro H;
try (rewrite H in *; clear H); simpl; auto; Simplify
| (if _ && _ then _ else _) => rewrite andb_if; Simplify
| (if negb _ then _ else _) => rewrite negb_if; Simplify
| match N.compare ?X1 ?X2 with _ => _ end =>
destruct (N.compare_spec X1 X2); Simplify
| match ?X1 with _ => _ end => destruct X1; auto; Simplify
| _ => fail
end
with Simplify := match goal with
| |- ?X1 => try loop X1
| _ => idtac
end.
(** ** Operations on equation bodies *)
(** The operations below handle in priority _normalized_ terms, i.e.
terms of the form:
[([v1]*Tint k1 + ([v2]*Tint k2 + (... + Tint cst)))]
with [v1>v2>...] and all [ki<>0].
See [normalize] below for a way to put terms in this form.
These operations also produce a correct (but suboptimal)
result in case of non-normalized input terms, but this situation
should normally not happen when running [romega].
/!\ Do not modify this section (especially [fusion] and [normalize])
without tweaking the corresponding functions in [refl_omega.ml].
*)
(** Multiplication and sum by two constants. Invariant: [k1<>0]. *)
Fixpoint scalar_mult_add (t : term) (k1 k2 : int) : term :=
match t with
| v1 * Tint x1 + l1 =>
v1 * Tint (x1 * k1) + scalar_mult_add l1 k1 k2
| Tint x => Tint (k1 * x + k2)
| _ => t * Tint k1 + Tint k2 (* shouldn't happen *)
end%term.
Theorem scalar_mult_add_stable e t k1 k2 :
interp_term e (scalar_mult_add t k1 k2) =
interp_term e (t * Tint k1 + Tint k2).
Proof.
induction t; simpl; Simplify; simpl; auto. f_equal. apply mult_comm.
rewrite IHt2. simpl. apply OMEGA11.
Qed.
(** Multiplication by a (non-nul) constant. *)
Definition scalar_mult (t : term) (k : int) := scalar_mult_add t k 0.
Theorem scalar_mult_stable e t k :
interp_term e (scalar_mult t k) =
interp_term e (t * Tint k).
Proof.
unfold scalar_mult. rewrite scalar_mult_add_stable. simpl.
apply plus_0_r.
Qed.
(** Adding a constant
Instead of using [scalar_norm_add t 1 k], the following
definition spares some computations.
*)
Fixpoint scalar_add (t : term) (k : int) : term :=
match t with
| m + l => m + scalar_add l k
| Tint x => Tint (x + k)
| _ => t + Tint k
end%term.
Theorem scalar_add_stable e t k :
interp_term e (scalar_add t k) = interp_term e (t + Tint k).
Proof.
induction t; simpl; Simplify; simpl; auto.
rewrite IHt2. simpl. apply plus_assoc.
Qed.
(** Division by a constant
All the non-constant coefficients should be exactly dividable *)
Fixpoint scalar_div (t : term) (k : int) : option (term * int) :=
match t with
| v * Tint x + l =>
let (q,r) := diveucl x k in
if (r =? 0)%I then
match scalar_div l k with
| None => None
| Some (u,c) => Some (v * Tint q + u, c)
end
else None
| Tint x =>
let (q,r) := diveucl x k in
Some (Tint q, r)
| _ => None
end%term.
Lemma scalar_div_stable e t k u c : k<>0 ->
scalar_div t k = Some (u,c) ->
interp_term e (u * Tint k + Tint c) = interp_term e t.
Proof.
revert u c.
induction t; simpl; Simplify; try easy.
- intros u c Hk. assert (H := diveucl_spec t0 k Hk).
simpl in H.
destruct diveucl as (q,r). simpl in H. rewrite H.
injection 1 as <- <-. simpl. f_equal. apply mult_comm.
- intros u c Hk.
destruct t1; simpl; Simplify; try easy.
destruct t1_2; simpl; Simplify; try easy.
assert (H := diveucl_spec t0 k Hk).
simpl in H.
destruct diveucl as (q,r). simpl in H. rewrite H.
case beq_reflect; [intros -> | easy].
destruct (scalar_div t2 k) as [(u',c')|] eqn:E; [|easy].
injection 1 as <- ->. simpl.
rewrite <- (IHt2 u' c Hk); simpl; auto.
rewrite plus_0_r , (mult_comm k q). symmetry. apply OMEGA11.
Qed.
(** Fusion of two equations.
From two normalized equations, this fusion will produce
a normalized output corresponding to the coefficiented sum.
Invariant: [k1<>0] and [k2<>0].
*)
Fixpoint fusion (t1 t2 : term) (k1 k2 : int) : term :=
match t1 with
| [v1] * Tint x1 + l1 =>
(fix fusion_t1 t2 : term :=
match t2 with
| [v2] * Tint x2 + l2 =>
match N.compare v1 v2 with
| Eq =>
let k := (k1 * x1 + k2 * x2)%I in
if (k =? 0)%I then fusion l1 l2 k1 k2
else [v1] * Tint k + fusion l1 l2 k1 k2
| Lt => [v2] * Tint (k2 * x2) + fusion_t1 l2
| Gt => [v1] * Tint (k1 * x1) + fusion l1 t2 k1 k2
end
| Tint x2 => [v1] * Tint (k1 * x1) + fusion l1 t2 k1 k2
| _ => t1 * Tint k1 + t2 * Tint k2 (* shouldn't happen *)
end) t2
| Tint x1 => scalar_mult_add t2 k2 (k1 * x1)
| _ => t1 * Tint k1 + t2 * Tint k2 (* shouldn't happen *)
end%term.
Theorem fusion_stable e t1 t2 k1 k2 :
interp_term e (fusion t1 t2 k1 k2) =
interp_term e (t1 * Tint k1 + t2 * Tint k2).
Proof.
revert t2; induction t1; simpl; Simplify; simpl; auto.
- intros; rewrite scalar_mult_add_stable. simpl.
rewrite plus_comm. f_equal. apply mult_comm.
- intros. Simplify. induction t2; simpl; Simplify; simpl; auto.
+ rewrite IHt1_2. simpl. rewrite (mult_comm k1); apply OMEGA11.
+ rewrite IHt1_2. simpl. subst n0.
rewrite (mult_comm k1), (mult_comm k2) in H0.
rewrite <- OMEGA10, H0. now autorewrite with int.
+ rewrite IHt1_2. simpl. subst n0.
rewrite (mult_comm k1), (mult_comm k2); apply OMEGA10.
+ rewrite IHt2_2. simpl. rewrite (mult_comm k2); apply OMEGA12.
+ rewrite IHt1_2. simpl. rewrite (mult_comm k1); apply OMEGA11.
Qed.
(** Term normalization.
Precondition: all [Tmult] should be on at least one [Tint].
Postcondition: a normalized equivalent term (see below).
*)
Fixpoint normalize t :=
match t with
| Tint n => Tint n
| [n]%term => ([n] * Tint 1 + Tint 0)%term
| (t + t')%term => fusion (normalize t) (normalize t') 1 1
| (- t)%term => scalar_mult (normalize t) (-(1))
| (t - t')%term => fusion (normalize t) (normalize t') 1 (-(1))
| (Tint k * t)%term | (t * Tint k)%term =>
if k =? 0 then Tint 0 else scalar_mult (normalize t) k
| (t1 * t2)%term => (t1 * t2)%term (* shouldn't happen *)
end.
Theorem normalize_stable : term_stable normalize.
Proof.
intros e t.
induction t; simpl; Simplify; simpl;
rewrite ?scalar_mult_stable; simpl in *; rewrite <- ?IHt1;
rewrite ?fusion_stable; simpl; autorewrite with int; auto.
- now f_equal.
- rewrite mult_comm. now f_equal.
- rewrite <- opp_eq_mult_neg_1, <-minus_def. now f_equal.
- rewrite <- opp_eq_mult_neg_1. now f_equal.
Qed.
(** ** Normalization of a proposition.
The only basic facts left after normalization are
[0 = ...] or [0 <> ...] or [0 <= ...].
When a fact is in negative position, we factorize a [Tnot]
out of it, and normalize the reversed fact inside.
/!\ Here again, do not change this code without corresponding
modifications in [refl_omega.ml].
*)
Fixpoint normalize_prop (negated:bool)(p:proposition) :=
match p with
| EqTerm t1 t2 =>
if negated then Tnot (NeqTerm (Tint 0) (normalize (t1-t2)))
else EqTerm (Tint 0) (normalize (t1-t2))
| NeqTerm t1 t2 =>
if negated then Tnot (EqTerm (Tint 0) (normalize (t1-t2)))
else NeqTerm (Tint 0) (normalize (t1-t2))
| LeqTerm t1 t2 =>
if negated then Tnot (LeqTerm (Tint 0) (normalize (t1-t2+Tint (-(1)))))
else LeqTerm (Tint 0) (normalize (t2-t1))
| GeqTerm t1 t2 =>
if negated then Tnot (LeqTerm (Tint 0) (normalize (t2-t1+Tint (-(1)))))
else LeqTerm (Tint 0) (normalize (t1-t2))
| LtTerm t1 t2 =>
if negated then Tnot (LeqTerm (Tint 0) (normalize (t1-t2)))
else LeqTerm (Tint 0) (normalize (t2-t1+Tint (-(1))))
| GtTerm t1 t2 =>
if negated then Tnot (LeqTerm (Tint 0) (normalize (t2-t1)))
else LeqTerm (Tint 0) (normalize (t1-t2+Tint (-(1))))
| Tnot p => Tnot (normalize_prop (negb negated) p)
| Tor p p' => Tor (normalize_prop negated p) (normalize_prop negated p')
| Tand p p' => Tand (normalize_prop negated p) (normalize_prop negated p')
| Timp p p' => Timp (normalize_prop (negb negated) p)
(normalize_prop negated p')
| Tprop _ | TrueTerm | FalseTerm => p
end.
Definition normalize_hyps := List.map (normalize_prop false).
Local Ltac simp := cbn -[normalize].
Theorem normalize_prop_valid b e ep p :
interp_prop e ep (normalize_prop b p) <-> interp_prop e ep p.
Proof.
revert b.
induction p; intros; simp; try tauto.
- destruct b; simp;
rewrite <- ?normalize_stable; simpl; rewrite ?minus_def.
+ rewrite not_eq. apply egal_left.
+ apply egal_left.
- destruct b; simp;
rewrite <- ?normalize_stable; simpl; rewrite ?minus_def;
apply not_iff_compat, egal_left.
- destruct b; simp;
rewrite <- ? normalize_stable; simpl; rewrite ?minus_def.
+ symmetry. rewrite le_lt_iff. apply not_iff_compat, lt_left.
+ now rewrite <- le_left.
- destruct b; simp;
rewrite <- ? normalize_stable; simpl; rewrite ?minus_def.
+ symmetry. rewrite ge_le_iff, le_lt_iff.
apply not_iff_compat, lt_left.
+ rewrite ge_le_iff. now rewrite <- le_left.
- destruct b; simp;
rewrite <- ? normalize_stable; simpl; rewrite ?minus_def.
+ rewrite gt_lt_iff, lt_le_iff. apply not_iff_compat.
now rewrite <- le_left.
+ symmetry. rewrite gt_lt_iff. apply lt_left.
- destruct b; simp;
rewrite <- ? normalize_stable; simpl; rewrite ?minus_def.
+ rewrite lt_le_iff. apply not_iff_compat.
now rewrite <- le_left.
+ symmetry. apply lt_left.
- now rewrite IHp.
- now rewrite IHp1, IHp2.
- now rewrite IHp1, IHp2.
- now rewrite IHp1, IHp2.
Qed.
Theorem normalize_hyps_valid : valid_hyps normalize_hyps.
Proof.
intros e ep l. induction l; simpl; intuition.
now rewrite normalize_prop_valid.
Qed.
Theorem normalize_hyps_goal (ep : list Prop) (env : list int) (l : hyps) :
interp_goal ep env (normalize_hyps l) -> interp_goal ep env l.
Proof.
intros; apply valid_goal with (2 := H); apply normalize_hyps_valid.
Qed.
(** ** A simple decidability checker
For us, everything is considered decidable except
propositional atoms [Tprop _]. *)
Fixpoint decidability (p : proposition) : bool :=
match p with
| Tnot t => decidability t
| Tand t1 t2 => decidability t1 && decidability t2
| Timp t1 t2 => decidability t1 && decidability t2
| Tor t1 t2 => decidability t1 && decidability t2
| Tprop _ => false
| _ => true
end.
Theorem decidable_correct :
forall (ep : list Prop) (e : list int) (p : proposition),
decidability p = true -> decidable (interp_prop ep e p).
Proof.
induction p; simpl; intros Hp; try destruct (andb_prop _ _ Hp).
- apply dec_eq.
- apply dec_ne.
- apply dec_le.
- apply dec_ge.
- apply dec_gt.
- apply dec_lt.
- left; auto.
- right; unfold not; auto.
- apply dec_not; auto.
- apply dec_or; auto.
- apply dec_and; auto.
- apply dec_imp; auto.
- discriminate.
Qed.
(** ** Omega steps
The following inductive type describes steps as they can be
found in the trace coming from the decision procedure Omega.
We consider here only normalized equations [0=...], disequations
[0<>...] or inequations [0<=...].
First, the final steps leading to a contradiction:
- [O_BAD_CONSTANT i] : hypothesis i has a constant body
and this constant is not compatible with the kind of i.
- [O_NOT_EXACT_DIVIDE i k] :
equation i can be factorized as some [k*t+c] with [0<c<k].
Now, the intermediate steps leading to a new hypothesis:
- [O_DIVIDE i k cont] :
the body of hypothesis i could be factorized as [k*t+c]
with either [k<>0] and [c=0] for a (dis)equation, or
[0<k] and [c<k] for an inequation. We change in-place the
body of i for [t].
- [O_SUM k1 i1 k2 i2 cont] : creates a new hypothesis whose
kind depends on the kind of hypotheses [i1] and [i2], and
whose body is [k1*body(i1) + k2*body(i2)]. Depending of the
situation, [k1] or [k2] might have to be positive or non-nul.
- [O_MERGE_EQ i j cont] :
inequations i and j have opposite bodies, we add an equation
with one these bodies.
- [O_SPLIT_INEQ i cont1 cont2] :
disequation i is split into a disjonction of inequations.
*)
Definition idx := nat. (** Index of an hypothesis in the list *)
Inductive t_omega : Set :=
| O_BAD_CONSTANT : idx -> t_omega
| O_NOT_EXACT_DIVIDE : idx -> int -> t_omega
| O_DIVIDE : idx -> int -> t_omega -> t_omega
| O_SUM : int -> idx -> int -> idx -> t_omega -> t_omega
| O_MERGE_EQ : idx -> idx -> t_omega -> t_omega
| O_SPLIT_INEQ : idx -> t_omega -> t_omega -> t_omega.
(** ** Actual resolution steps of an omega normalized goal *)
(** First, the final steps, leading to a contradiction *)
(** [O_BAD_CONSTANT] *)
Definition bad_constant (i : nat) (h : hyps) :=
match nth_hyps i h with
| EqTerm (Tint Nul) (Tint n) => if n =? Nul then h else absurd
| NeqTerm (Tint Nul) (Tint n) => if n =? Nul then absurd else h
| LeqTerm (Tint Nul) (Tint n) => if n <? Nul then absurd else h
| _ => h
end.
Theorem bad_constant_valid i : valid_hyps (bad_constant i).
Proof.
unfold valid_hyps, bad_constant; intros ep e lp H.
generalize (nth_valid ep e i lp H); Simplify.
rewrite le_lt_iff. intuition.
Qed.
(** [O_NOT_EXACT_DIVIDE] *)
Definition not_exact_divide (i : nat) (k : int) (l : hyps) :=
match nth_hyps i l with
| EqTerm (Tint Nul) b =>
match scalar_div b k with
| Some (body,c) =>
if (Nul =? 0) && (0 <? c) && (c <? k) then absurd
else l
| None => l
end
| _ => l
end.
Theorem not_exact_divide_valid i k :
valid_hyps (not_exact_divide i k).
Proof.
unfold valid_hyps, not_exact_divide; intros.
generalize (nth_valid ep e i lp).
destruct (nth_hyps i lp); simpl; auto.
destruct t0; auto.
destruct (scalar_div t1 k) as [(body,c)|] eqn:E; auto.
Simplify.
assert (k <> 0).
{ intro. apply (lt_not_eq 0 k); eauto using lt_trans. }
apply (scalar_div_stable e) in E; auto. simpl in E.
intros H'; rewrite <- H' in E; auto.
exfalso. revert E. now apply OMEGA4.
Qed.
(** Now, the steps generating a new equation. *)
(** [O_DIVIDE] *)
Definition divide (k : int) (prop : proposition) :=
match prop with
| EqTerm (Tint o) b =>
match scalar_div b k with
| Some (body,c) =>
if (o =? 0) && (c =? 0) && negb (k =? 0)
then EqTerm (Tint 0) body
else TrueTerm
| None => TrueTerm
end
| NeqTerm (Tint o) b =>
match scalar_div b k with
| Some (body,c) =>
if (o =? 0) && (c =? 0) && negb (k =? 0)
then NeqTerm (Tint 0) body
else TrueTerm
| None => TrueTerm
end
| LeqTerm (Tint o) b =>
match scalar_div b k with
| Some (body,c) =>
if (o =? 0) && (0 <? k) && (c <? k)
then LeqTerm (Tint 0) body
else prop
| None => prop
end
| _ => TrueTerm
end.
Theorem divide_valid k : valid1 (divide k).
Proof.
unfold valid1, divide; intros ep e p;
destruct p; simpl; auto;
destruct t0; simpl; auto;
destruct scalar_div as [(body,c)|] eqn:E; simpl; Simplify; auto.
- apply (scalar_div_stable e) in E; auto. simpl in E.
intros H'; rewrite <- H' in E. rewrite plus_0_r in E.
apply mult_integral in E. intuition.
- apply (scalar_div_stable e) in E; auto. simpl in E.
intros H' H''. now rewrite <- H'', mult_0_l, plus_0_l in E.
- assert (k <> 0).
{ intro. apply (lt_not_eq 0 k); eauto using lt_trans. }
apply (scalar_div_stable e) in E; auto. simpl in E. rewrite <- E.
intro H'. now apply mult_le_approx with (3 := H').
Qed.
(** [O_SUM]. Invariant: [k1] and [k2] non-nul. *)
Definition sum (k1 k2 : int) (prop1 prop2 : proposition) :=
match prop1 with
| EqTerm (Tint o) b1 =>
match prop2 with
| EqTerm (Tint o') b2 =>
if (o =? 0) && (o' =? 0)
then EqTerm (Tint 0) (fusion b1 b2 k1 k2)
else TrueTerm
| LeqTerm (Tint o') b2 =>
if (o =? 0) && (o' =? 0) && (0 <? k2)
then LeqTerm (Tint 0) (fusion b1 b2 k1 k2)
else TrueTerm
| NeqTerm (Tint o') b2 =>
if (o =? 0) && (o' =? 0) && negb (k2 =? 0)
then NeqTerm (Tint 0) (fusion b1 b2 k1 k2)
else TrueTerm
| _ => TrueTerm
end
| LeqTerm (Tint o) b1 =>
if (o =? 0) && (0 <? k1)
then match prop2 with
| EqTerm (Tint o') b2 =>
if o' =? 0 then
LeqTerm (Tint 0) (fusion b1 b2 k1 k2)
else TrueTerm
| LeqTerm (Tint o') b2 =>
if (o' =? 0) && (0 <? k2)
then LeqTerm (Tint 0) (fusion b1 b2 k1 k2)
else TrueTerm
| _ => TrueTerm
end
else TrueTerm
| NeqTerm (Tint o) b1 =>
match prop2 with
| EqTerm (Tint o') b2 =>
if (o =? 0) && (o' =? 0) && negb (k1 =? 0)
then NeqTerm (Tint 0) (fusion b1 b2 k1 k2)
else TrueTerm
| _ => TrueTerm
end
| _ => TrueTerm
end.
Theorem sum_valid :
forall (k1 k2 : int), valid2 (sum k1 k2).
Proof.
unfold valid2; intros k1 k2 t ep e p1 p2; unfold sum;
Simplify; simpl; rewrite ?fusion_stable;
simpl; intros; auto.
- apply sum1; auto.
- rewrite plus_comm. apply sum5; auto.
- apply sum2; auto using lt_le_weak.
- apply sum5; auto.
- rewrite plus_comm. apply sum2; auto using lt_le_weak.
- apply sum3; auto using lt_le_weak.
Qed.
(** [MERGE_EQ] *)
Definition merge_eq (prop1 prop2 : proposition) :=
match prop1 with
| LeqTerm (Tint o) b1 =>
match prop2 with
| LeqTerm (Tint o') b2 =>
if (o =? 0) && (o' =? 0) &&
(b1 =? scalar_mult b2 (-(1)))%term
then EqTerm (Tint 0) b1
else TrueTerm
| _ => TrueTerm
end
| _ => TrueTerm
end.
Theorem merge_eq_valid : valid2 merge_eq.
Proof.
unfold valid2, merge_eq; intros ep e p1 p2; Simplify; simpl; auto.
rewrite scalar_mult_stable. simpl.
intros; symmetry ; apply OMEGA8 with (2 := H0).
- assumption.
- elim opp_eq_mult_neg_1; trivial.
Qed.
(** [O_SPLIT_INEQ] (only step to produce two subgoals). *)
Definition split_ineq (i : nat) (f1 f2 : hyps -> lhyps) (l : hyps) :=
match nth_hyps i l with
| NeqTerm (Tint o) b1 =>
if o =? 0 then
f1 (LeqTerm (Tint 0) (scalar_add b1 (-(1))) :: l) ++
f2 (LeqTerm (Tint 0) (scalar_mult_add b1 (-(1)) (-(1))) :: l)
else l :: nil
| _ => l :: nil
end.
Theorem split_ineq_valid :
forall (i : nat) (f1 f2 : hyps -> lhyps),
valid_list_hyps f1 ->
valid_list_hyps f2 -> valid_list_hyps (split_ineq i f1 f2).
Proof.
unfold valid_list_hyps, split_ineq; intros i f1 f2 H1 H2 ep e lp H;
generalize (nth_valid _ _ i _ H); case (nth_hyps i lp);
simpl; auto; intros t1 t2; case t1; simpl;
auto; intros z; simpl; auto; intro H3.
Simplify.
apply append_valid; elim (OMEGA19 (interp_term e t2)).
- intro H4; left; apply H1; simpl; rewrite scalar_add_stable;
simpl; auto.
- intro H4; right; apply H2; simpl; rewrite scalar_mult_add_stable;
simpl; auto.
- generalize H3; unfold not; intros E1 E2; apply E1;
symmetry ; trivial.
Qed.
(** ** Replaying the resolution trace *)
Fixpoint execute_omega (t : t_omega) (l : hyps) : lhyps :=
match t with
| O_BAD_CONSTANT i => singleton (bad_constant i l)
| O_NOT_EXACT_DIVIDE i k => singleton (not_exact_divide i k l)
| O_DIVIDE i k cont =>
execute_omega cont (apply_oper_1 i (divide k) l)
| O_SUM k1 i1 k2 i2 cont =>
execute_omega cont (apply_oper_2 i1 i2 (sum k1 k2) l)
| O_MERGE_EQ i1 i2 cont =>
execute_omega cont (apply_oper_2 i1 i2 merge_eq l)
| O_SPLIT_INEQ i cont1 cont2 =>
split_ineq i (execute_omega cont1) (execute_omega cont2) l
end.
Theorem omega_valid : forall tr : t_omega, valid_list_hyps (execute_omega tr).
Proof.
simple induction tr; unfold valid_list_hyps, valid_hyps; simpl.
- intros; left; now apply bad_constant_valid.
- intros; left; now apply not_exact_divide_valid.
- intros m k t' Ht' ep e lp H; apply Ht';
apply
(apply_oper_1_valid m (divide k)
(divide_valid k) ep e lp H).
- intros k1 i1 k2 i2 t' Ht' ep e lp H; apply Ht';
apply
(apply_oper_2_valid i1 i2 (sum k1 k2) (sum_valid k1 k2) ep e
lp H).
- intros i1 i2 t' Ht' ep e lp H; apply Ht';
apply
(apply_oper_2_valid i1 i2 merge_eq merge_eq_valid ep e
lp H).
- intros i k1 H1 k2 H2 ep e lp H;
apply
(split_ineq_valid i (execute_omega k1) (execute_omega k2) H1 H2 ep e
lp H).
Qed.
(** ** Rules for decomposing the hypothesis
This type allows navigation in the logical constructors that
form the predicats of the hypothesis in order to decompose them.
This allows in particular to extract one hypothesis from a conjunction.
NB: negations are now silently traversed. *)
Inductive direction : Set :=
| D_left : direction
| D_right : direction.
(** This type allows extracting useful components from hypothesis, either
hypothesis generated by splitting a disjonction, or equations.
The last constructor indicates how to solve the obtained system
via the use of the trace type of Omega [t_omega] *)
Inductive e_step : Set :=
| E_SPLIT : nat -> list direction -> e_step -> e_step -> e_step
| E_EXTRACT : nat -> list direction -> e_step -> e_step
| E_SOLVE : t_omega -> e_step.
(** Selection of a basic fact inside an hypothesis. *)
Fixpoint extract_hyp_pos (s : list direction) (p : proposition) :
proposition :=
match p, s with
| Tand x y, D_left :: l => extract_hyp_pos l x
| Tand x y, D_right :: l => extract_hyp_pos l y
| Tnot x, _ => extract_hyp_neg s x
| _, _ => p
end
with extract_hyp_neg (s : list direction) (p : proposition) :
proposition :=
match p, s with
| Tor x y, D_left :: l => extract_hyp_neg l x
| Tor x y, D_right :: l => extract_hyp_neg l y
| Timp x y, D_left :: l =>
if decidability x then extract_hyp_pos l x else Tnot p
| Timp x y, D_right :: l => extract_hyp_neg l y
| Tnot x, _ => if decidability x then extract_hyp_pos s x else Tnot p
| _, _ => Tnot p
end.
Theorem extract_valid :
forall s : list direction, valid1 (extract_hyp_pos s).
Proof.
assert (forall p s ep e,
(interp_prop ep e p ->
interp_prop ep e (extract_hyp_pos s p)) /\
(interp_prop ep e (Tnot p) ->
interp_prop ep e (extract_hyp_neg s p))).
{ induction p; destruct s; simpl; auto; split; try destruct d; try easy;
intros; (apply IHp || apply IHp1 || apply IHp2 || idtac); simpl; try tauto;
destruct decidability eqn:D; auto;
apply (decidable_correct ep e) in D; unfold decidable in D;
(apply IHp || apply IHp1); tauto. }
red. intros. now apply H.
Qed.
(** Attempt to shorten error messages if romega goes rogue...
NB: [interp_list_goal _ _ BUG = False /\ True]. *)
Definition BUG : lhyps := nil :: nil.
(** Split and extract in hypotheses *)
Fixpoint decompose_solve (s : e_step) (h : hyps) : lhyps :=
match s with
| E_SPLIT i dl s1 s2 =>
match extract_hyp_pos dl (nth_hyps i h) with
| Tor x y => decompose_solve s1 (x :: h) ++ decompose_solve s2 (y :: h)
| Tnot (Tand x y) =>
if decidability x
then
decompose_solve s1 (Tnot x :: h) ++
decompose_solve s2 (Tnot y :: h)
else BUG
| Timp x y =>
if decidability x then
decompose_solve s1 (Tnot x :: h) ++ decompose_solve s2 (y :: h)
else BUG
| _ => BUG
end
| E_EXTRACT i dl s1 =>
decompose_solve s1 (extract_hyp_pos dl (nth_hyps i h) :: h)
| E_SOLVE t => execute_omega t h
end.
Theorem decompose_solve_valid (s : e_step) :
valid_list_goal (decompose_solve s).
Proof.
apply goal_valid. red. induction s; simpl; intros ep e lp H.
- assert (H' : interp_prop ep e (extract_hyp_pos l (nth_hyps n lp))).
{ now apply extract_valid, nth_valid. }
destruct extract_hyp_pos; simpl in *; auto.
+ destruct p; simpl; auto.
destruct decidability eqn:D; [ | simpl; auto].
apply (decidable_correct ep e) in D.
apply append_valid. simpl in *. destruct D.
* right. apply IHs2. simpl; auto.
* left. apply IHs1. simpl; auto.
+ apply append_valid. destruct H'.
* left. apply IHs1. simpl; auto.
* right. apply IHs2. simpl; auto.
+ destruct decidability eqn:D; [ | simpl; auto].
apply (decidable_correct ep e) in D.
apply append_valid. destruct D.
* right. apply IHs2. simpl; auto.
* left. apply IHs1. simpl; auto.
- apply IHs; simpl; split; auto.
now apply extract_valid, nth_valid.
- now apply omega_valid.
Qed.
(** Reduction of subgoal list by discarding the contradictory subgoals. *)
Definition valid_lhyps (f : lhyps -> lhyps) :=
forall (ep : list Prop) (e : list int) (lp : lhyps),
interp_list_hyps ep e lp -> interp_list_hyps ep e (f lp).
Fixpoint reduce_lhyps (lp : lhyps) : lhyps :=
match lp with
| nil => nil
| (FalseTerm :: nil) :: lp' => reduce_lhyps lp'
| x :: lp' => BUG
end.
Theorem reduce_lhyps_valid : valid_lhyps reduce_lhyps.
Proof.
unfold valid_lhyps; intros ep e lp; elim lp.
- simpl; auto.
- intros a l HR; elim a.
+ simpl; tauto.
+ intros a1 l1; case l1; case a1; simpl; tauto.
Qed.
Theorem do_reduce_lhyps :
forall (envp : list Prop) (env : list int) (l : lhyps),
interp_list_goal envp env (reduce_lhyps l) -> interp_list_goal envp env l.
Proof.
intros envp env l H; apply list_goal_to_hyps; intro H1;
apply list_hyps_to_goal with (1 := H); apply reduce_lhyps_valid;
assumption.
Qed.
(** Pushing the conclusion into the hypotheses. *)
Definition concl_to_hyp (p : proposition) :=
if decidability p then Tnot p else TrueTerm.
Definition do_concl_to_hyp :
forall (envp : list Prop) (env : list int) (c : proposition) (l : hyps),
interp_goal envp env (concl_to_hyp c :: l) ->
interp_goal_concl c envp env l.
Proof.
induction l; simpl.
- unfold concl_to_hyp; simpl.
destruct decidability eqn:D; [ | simpl; tauto ].
apply (decidable_correct envp env) in D. unfold decidable in D.
simpl. tauto.
- simpl in *; tauto.
Qed.
(** The omega tactic : all steps together *)
Definition omega_tactic (t1 : e_step) (c : proposition) (l : hyps) :=
reduce_lhyps (decompose_solve t1 (normalize_hyps (concl_to_hyp c :: l))).
Theorem do_omega :
forall (t : e_step) (envp : list Prop)
(env : list int) (c : proposition) (l : hyps),
interp_list_goal envp env (omega_tactic t c l) ->
interp_goal_concl c envp env l.
Proof.
unfold omega_tactic; intros t ep e c l H.
apply do_concl_to_hyp.
apply normalize_hyps_goal.
apply (decompose_solve_valid t).
now apply do_reduce_lhyps.
Qed.
End IntOmega.
(** For now, the above modular construction is instanciated on Z,
in order to retrieve the initial ROmega. *)
Module ZOmega := IntOmega(Z_as_Int).
|