1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(**************************************************************************)
(* *)
(* Omega: a solver of quantifier-free problems in Presburger Arithmetic *)
(* *)
(* Pierre Crégut (CNET, Lannion, France) *)
(* *)
(**************************************************************************)
open CErrors
open Util
open Names
open Nameops
open Term
open EConstr
open Tacticals.New
open Tacmach.New
open Tactics
open Logic
open Libnames
open Globnames
open Nametab
open Contradiction
open Misctypes
open Context.Named.Declaration
module NamedDecl = Context.Named.Declaration
module OmegaSolver = Omega.MakeOmegaSolver (Bigint)
open OmegaSolver
(* Added by JCF, 09/03/98 *)
let elim_id id =
Proofview.Goal.enter begin fun gl ->
simplest_elim (mkVar id)
end
let resolve_id id = Proofview.Goal.enter begin fun gl ->
apply (mkVar id)
end
let timing timer_name f arg = f arg
let display_time_flag = ref false
let display_system_flag = ref false
let display_action_flag = ref false
let old_style_flag = ref false
let letin_flag = ref true
(* Should we reset all variable labels between two runs of omega ? *)
let reset_flag = ref true
(* Coq < 8.5 was not performing such resets, hence omega was slightly
non-deterministic: successive runs of omega on the same problem may
lead to distinct proof-terms.
At the very least, these terms differed on the inner
variable names, but they could even be non-convertible :
the OmegaSolver relies on Hashtbl.iter, it can hence find a different
solution when variable indices differ. *)
let read f () = !f
let write f x = f:=x
open Goptions
let _ =
declare_bool_option
{ optdepr = false;
optname = "Omega system time displaying flag";
optkey = ["Omega";"System"];
optread = read display_system_flag;
optwrite = write display_system_flag }
let _ =
declare_bool_option
{ optdepr = false;
optname = "Omega action display flag";
optkey = ["Omega";"Action"];
optread = read display_action_flag;
optwrite = write display_action_flag }
let _ =
declare_bool_option
{ optdepr = false;
optname = "Omega old style flag";
optkey = ["Omega";"OldStyle"];
optread = read old_style_flag;
optwrite = write old_style_flag }
let _ =
declare_bool_option
{ optdepr = true;
optname = "Omega automatic reset of generated names";
optkey = ["Stable";"Omega"];
optread = read reset_flag;
optwrite = write reset_flag }
let _ =
declare_bool_option
{ optdepr = false;
optname = "Omega takes advantage of context variables with body";
optkey = ["Omega";"UseLocalDefs"];
optread = read letin_flag;
optwrite = write letin_flag }
let intref, reset_all_references =
let refs = ref [] in
(fun n -> let r = ref n in refs := (r,n) :: !refs; r),
(fun () -> List.iter (fun (r,n) -> r:=n) !refs)
let new_identifier =
let cpt = intref 0 in
(fun () -> let s = "Omega" ^ string_of_int !cpt in incr cpt; Id.of_string s)
let new_identifier_state =
let cpt = intref 0 in
(fun () -> let s = make_ident "State" (Some !cpt) in incr cpt; s)
let new_identifier_var =
let cpt = intref 0 in
(fun () -> let s = "Zvar" ^ string_of_int !cpt in incr cpt; Id.of_string s)
let new_id =
let cpt = intref 0 in fun () -> incr cpt; !cpt
let new_var_num =
let cpt = intref 1000 in (fun () -> incr cpt; !cpt)
let new_var =
let cpt = intref 0 in fun () -> incr cpt; Nameops.make_ident "WW" (Some !cpt)
let display_var i = Printf.sprintf "X%d" i
let intern_id,unintern_id,reset_intern_tables =
let cpt = ref 0 in
let table = Hashtbl.create 7 and co_table = Hashtbl.create 7 in
(fun (name : Id.t) ->
try Hashtbl.find table name with Not_found ->
let idx = !cpt in
Hashtbl.add table name idx;
Hashtbl.add co_table idx name;
incr cpt; idx),
(fun idx ->
try Hashtbl.find co_table idx with Not_found ->
let v = new_var () in
Hashtbl.add table v idx; Hashtbl.add co_table idx v; v),
(fun () -> cpt := 0; Hashtbl.clear table)
let mk_then tacs = tclTHENLIST tacs
let exists_tac c = constructor_tac false (Some 1) 1 (ImplicitBindings [c])
let generalize_tac t = generalize t
let elim t = simplest_elim t
let unfold s = Tactics.unfold_in_concl [Locus.AllOccurrences, Lazy.force s]
let pf_nf gl c = pf_apply Tacred.simpl gl c
let rev_assoc k =
let rec loop = function
| [] -> raise Not_found
| (v,k')::_ when Int.equal k k' -> v
| _ :: l -> loop l
in
loop
let tag_hypothesis,tag_of_hyp, hyp_of_tag, clear_tags =
let l = ref ([]:(Id.t * int) list) in
(fun h id -> l := (h,id):: !l),
(fun h -> try Id.List.assoc h !l with Not_found -> failwith "tag_hypothesis"),
(fun h -> try rev_assoc h !l with Not_found -> failwith "tag_hypothesis"),
(fun () -> l := [])
let hide_constr,find_constr,clear_constr_tables,dump_tables =
let l = ref ([]:(constr * (Id.t * Id.t * bool)) list) in
(fun h id eg b -> l := (h,(id,eg,b)):: !l),
(fun sigma h ->
try List.assoc_f (eq_constr_nounivs sigma) h !l with Not_found -> failwith "find_contr"),
(fun () -> l := []),
(fun () -> !l)
let reset_all () =
if !reset_flag then begin
reset_all_references ();
reset_intern_tables ();
clear_tags ();
clear_constr_tables ()
end
(* Lazy evaluation is used for Coq constants, because this code
is evaluated before the compiled modules are loaded.
To use the constant Zplus, one must type "Lazy.force coq_Zplus"
This is the right way to access to Coq constants in tactics ML code *)
open Coqlib
let logic_dir = ["Coq";"Logic";"Decidable"]
let coq_modules =
init_modules @arith_modules @ [logic_dir] @ zarith_base_modules
@ [["Coq"; "omega"; "OmegaLemmas"]]
let gen_constant_in_modules n m s = EConstr.of_constr (UnivGen.constr_of_global @@ gen_reference_in_modules n m s)
let init_constant = gen_constant_in_modules "Omega" init_modules
let constant = gen_constant_in_modules "Omega" coq_modules
let z_constant = gen_constant_in_modules "Omega" [["Coq";"ZArith"]]
let zbase_constant =
gen_constant_in_modules "Omega" [["Coq";"ZArith";"BinInt"]]
(* Zarith *)
let coq_xH = lazy (constant "xH")
let coq_xO = lazy (constant "xO")
let coq_xI = lazy (constant "xI")
let coq_Z0 = lazy (constant "Z0")
let coq_Zpos = lazy (constant "Zpos")
let coq_Zneg = lazy (constant "Zneg")
let coq_Z = lazy (constant "Z")
let coq_comparison = lazy (constant "comparison")
let coq_Gt = lazy (constant "Gt")
let coq_Zplus = lazy (zbase_constant "Z.add")
let coq_Zmult = lazy (zbase_constant "Z.mul")
let coq_Zopp = lazy (zbase_constant "Z.opp")
let coq_Zminus = lazy (zbase_constant "Z.sub")
let coq_Zsucc = lazy (zbase_constant "Z.succ")
let coq_Zpred = lazy (zbase_constant "Z.pred")
let coq_Z_of_nat = lazy (zbase_constant "Z.of_nat")
let coq_inj_plus = lazy (z_constant "Nat2Z.inj_add")
let coq_inj_mult = lazy (z_constant "Nat2Z.inj_mul")
let coq_inj_minus1 = lazy (z_constant "Nat2Z.inj_sub")
let coq_inj_minus2 = lazy (constant "inj_minus2")
let coq_inj_S = lazy (z_constant "Nat2Z.inj_succ")
let coq_inj_le = lazy (z_constant "Znat.inj_le")
let coq_inj_lt = lazy (z_constant "Znat.inj_lt")
let coq_inj_ge = lazy (z_constant "Znat.inj_ge")
let coq_inj_gt = lazy (z_constant "Znat.inj_gt")
let coq_inj_neq = lazy (z_constant "inj_neq")
let coq_inj_eq = lazy (z_constant "inj_eq")
let coq_fast_Zplus_assoc_reverse = lazy (constant "fast_Zplus_assoc_reverse")
let coq_fast_Zplus_assoc = lazy (constant "fast_Zplus_assoc")
let coq_fast_Zmult_assoc_reverse = lazy (constant "fast_Zmult_assoc_reverse")
let coq_fast_Zplus_permute = lazy (constant "fast_Zplus_permute")
let coq_fast_Zplus_comm = lazy (constant "fast_Zplus_comm")
let coq_fast_Zmult_comm = lazy (constant "fast_Zmult_comm")
let coq_Zmult_le_approx = lazy (constant "Zmult_le_approx")
let coq_OMEGA1 = lazy (constant "OMEGA1")
let coq_OMEGA2 = lazy (constant "OMEGA2")
let coq_OMEGA3 = lazy (constant "OMEGA3")
let coq_OMEGA4 = lazy (constant "OMEGA4")
let coq_OMEGA5 = lazy (constant "OMEGA5")
let coq_OMEGA6 = lazy (constant "OMEGA6")
let coq_OMEGA7 = lazy (constant "OMEGA7")
let coq_OMEGA8 = lazy (constant "OMEGA8")
let coq_OMEGA9 = lazy (constant "OMEGA9")
let coq_fast_OMEGA10 = lazy (constant "fast_OMEGA10")
let coq_fast_OMEGA11 = lazy (constant "fast_OMEGA11")
let coq_fast_OMEGA12 = lazy (constant "fast_OMEGA12")
let coq_fast_OMEGA13 = lazy (constant "fast_OMEGA13")
let coq_fast_OMEGA14 = lazy (constant "fast_OMEGA14")
let coq_fast_OMEGA15 = lazy (constant "fast_OMEGA15")
let coq_fast_OMEGA16 = lazy (constant "fast_OMEGA16")
let coq_OMEGA17 = lazy (constant "OMEGA17")
let coq_OMEGA18 = lazy (constant "OMEGA18")
let coq_OMEGA19 = lazy (constant "OMEGA19")
let coq_OMEGA20 = lazy (constant "OMEGA20")
let coq_fast_Zred_factor0 = lazy (constant "fast_Zred_factor0")
let coq_fast_Zred_factor1 = lazy (constant "fast_Zred_factor1")
let coq_fast_Zred_factor2 = lazy (constant "fast_Zred_factor2")
let coq_fast_Zred_factor3 = lazy (constant "fast_Zred_factor3")
let coq_fast_Zred_factor4 = lazy (constant "fast_Zred_factor4")
let coq_fast_Zred_factor5 = lazy (constant "fast_Zred_factor5")
let coq_fast_Zred_factor6 = lazy (constant "fast_Zred_factor6")
let coq_fast_Zmult_plus_distr_l = lazy (constant "fast_Zmult_plus_distr_l")
let coq_fast_Zmult_opp_comm = lazy (constant "fast_Zmult_opp_comm")
let coq_fast_Zopp_plus_distr = lazy (constant "fast_Zopp_plus_distr")
let coq_fast_Zopp_mult_distr_r = lazy (constant "fast_Zopp_mult_distr_r")
let coq_fast_Zopp_eq_mult_neg_1 = lazy (constant "fast_Zopp_eq_mult_neg_1")
let coq_fast_Zopp_involutive = lazy (constant "fast_Zopp_involutive")
let coq_Zegal_left = lazy (constant "Zegal_left")
let coq_Zne_left = lazy (constant "Zne_left")
let coq_Zlt_left = lazy (constant "Zlt_left")
let coq_Zge_left = lazy (constant "Zge_left")
let coq_Zgt_left = lazy (constant "Zgt_left")
let coq_Zle_left = lazy (constant "Zle_left")
let coq_new_var = lazy (constant "new_var")
let coq_intro_Z = lazy (constant "intro_Z")
let coq_dec_eq = lazy (zbase_constant "Z.eq_decidable")
let coq_dec_Zne = lazy (constant "dec_Zne")
let coq_dec_Zle = lazy (zbase_constant "Z.le_decidable")
let coq_dec_Zlt = lazy (zbase_constant "Z.lt_decidable")
let coq_dec_Zgt = lazy (constant "dec_Zgt")
let coq_dec_Zge = lazy (constant "dec_Zge")
let coq_not_Zeq = lazy (constant "not_Zeq")
let coq_not_Zne = lazy (constant "not_Zne")
let coq_Znot_le_gt = lazy (constant "Znot_le_gt")
let coq_Znot_lt_ge = lazy (constant "Znot_lt_ge")
let coq_Znot_ge_lt = lazy (constant "Znot_ge_lt")
let coq_Znot_gt_le = lazy (constant "Znot_gt_le")
let coq_neq = lazy (constant "neq")
let coq_Zne = lazy (constant "Zne")
let coq_Zle = lazy (zbase_constant "Z.le")
let coq_Zgt = lazy (zbase_constant "Z.gt")
let coq_Zge = lazy (zbase_constant "Z.ge")
let coq_Zlt = lazy (zbase_constant "Z.lt")
(* Peano/Datatypes *)
let coq_le = lazy (init_constant "le")
let coq_lt = lazy (init_constant "lt")
let coq_ge = lazy (init_constant "ge")
let coq_gt = lazy (init_constant "gt")
let coq_minus = lazy (init_constant "Nat.sub")
let coq_plus = lazy (init_constant "Nat.add")
let coq_mult = lazy (init_constant "Nat.mul")
let coq_pred = lazy (init_constant "Nat.pred")
let coq_nat = lazy (init_constant "nat")
let coq_S = lazy (init_constant "S")
let coq_O = lazy (init_constant "O")
(* Compare_dec/Peano_dec/Minus *)
let coq_pred_of_minus = lazy (constant "pred_of_minus")
let coq_le_gt_dec = lazy (constant "le_gt_dec")
let coq_dec_eq_nat = lazy (constant "dec_eq_nat")
let coq_dec_le = lazy (constant "dec_le")
let coq_dec_lt = lazy (constant "dec_lt")
let coq_dec_ge = lazy (constant "dec_ge")
let coq_dec_gt = lazy (constant "dec_gt")
let coq_not_eq = lazy (constant "not_eq")
let coq_not_le = lazy (constant "not_le")
let coq_not_lt = lazy (constant "not_lt")
let coq_not_ge = lazy (constant "not_ge")
let coq_not_gt = lazy (constant "not_gt")
(* Logic/Decidable *)
let coq_eq_ind_r = lazy (constant "eq_ind_r")
let coq_dec_or = lazy (constant "dec_or")
let coq_dec_and = lazy (constant "dec_and")
let coq_dec_imp = lazy (constant "dec_imp")
let coq_dec_iff = lazy (constant "dec_iff")
let coq_dec_not = lazy (constant "dec_not")
let coq_dec_False = lazy (constant "dec_False")
let coq_dec_not_not = lazy (constant "dec_not_not")
let coq_dec_True = lazy (constant "dec_True")
let coq_not_or = lazy (constant "not_or")
let coq_not_and = lazy (constant "not_and")
let coq_not_imp = lazy (constant "not_imp")
let coq_not_iff = lazy (constant "not_iff")
let coq_not_not = lazy (constant "not_not")
let coq_imp_simp = lazy (constant "imp_simp")
let coq_iff = lazy (constant "iff")
let coq_not = lazy (init_constant "not")
let coq_and = lazy (init_constant "and")
let coq_or = lazy (init_constant "or")
let coq_eq = lazy (init_constant "eq")
let coq_ex = lazy (init_constant "ex")
let coq_False = lazy (init_constant "False")
let coq_True = lazy (init_constant "True")
(* uses build_coq_and, build_coq_not, build_coq_or, build_coq_ex *)
(* For unfold *)
let evaluable_ref_of_constr s c =
let env = Global.env () in
let evd = Evd.from_env env in
match EConstr.kind evd (Lazy.force c) with
| Const (kn,u) when Tacred.is_evaluable env (EvalConstRef kn) ->
EvalConstRef kn
| _ -> anomaly ~label:"Coq_omega" (Pp.str (s^" is not an evaluable constant."))
let sp_Zsucc = lazy (evaluable_ref_of_constr "Z.succ" coq_Zsucc)
let sp_Zpred = lazy (evaluable_ref_of_constr "Z.pred" coq_Zpred)
let sp_Zminus = lazy (evaluable_ref_of_constr "Z.sub" coq_Zminus)
let sp_Zle = lazy (evaluable_ref_of_constr "Z.le" coq_Zle)
let sp_Zgt = lazy (evaluable_ref_of_constr "Z.gt" coq_Zgt)
let sp_Zge = lazy (evaluable_ref_of_constr "Z.ge" coq_Zge)
let sp_Zlt = lazy (evaluable_ref_of_constr "Z.lt" coq_Zlt)
let sp_not = lazy (evaluable_ref_of_constr "not" coq_not)
let mk_var v = mkVar (Id.of_string v)
let mk_plus t1 t2 = mkApp (Lazy.force coq_Zplus, [| t1; t2 |])
let mk_times t1 t2 = mkApp (Lazy.force coq_Zmult, [| t1; t2 |])
let mk_minus t1 t2 = mkApp (Lazy.force coq_Zminus, [| t1;t2 |])
let mk_gen_eq ty t1 t2 = mkApp (Lazy.force coq_eq, [| ty; t1; t2 |])
let mk_eq t1 t2 = mk_gen_eq (Lazy.force coq_Z) t1 t2
let mk_le t1 t2 = mkApp (Lazy.force coq_Zle, [| t1; t2 |])
let mk_gt t1 t2 = mkApp (Lazy.force coq_Zgt, [| t1; t2 |])
let mk_inv t = mkApp (Lazy.force coq_Zopp, [| t |])
let mk_and t1 t2 = mkApp (Lazy.force coq_and, [| t1; t2 |])
let mk_or t1 t2 = mkApp (Lazy.force coq_or, [| t1; t2 |])
let mk_not t = mkApp (Lazy.force coq_not, [| t |])
let mk_eq_rel t1 t2 = mk_gen_eq (Lazy.force coq_comparison) t1 t2
let mk_inj t = mkApp (Lazy.force coq_Z_of_nat, [| t |])
let mk_integer n =
let rec loop n =
if n =? one then Lazy.force coq_xH else
mkApp((if n mod two =? zero then Lazy.force coq_xO else Lazy.force coq_xI),
[| loop (n/two) |])
in
if n =? zero then Lazy.force coq_Z0
else mkApp ((if n >? zero then Lazy.force coq_Zpos else Lazy.force coq_Zneg),
[| loop (abs n) |])
type omega_constant =
| Zplus | Zmult | Zminus | Zsucc | Zopp | Zpred
| Plus | Mult | Minus | Pred | S | O
| Zpos | Zneg | Z0 | Z_of_nat
| Eq | Neq
| Zne | Zle | Zlt | Zge | Zgt
| Z | Nat
| And | Or | False | True | Not | Iff
| Le | Lt | Ge | Gt
| Other of string
type omega_proposition =
| Keq of constr * constr * constr
| Kn
type result =
| Kvar of Id.t
| Kapp of omega_constant * constr list
| Kimp of constr * constr
| Kufo
(* Nota: Kimp correspond to a binder (Prod), but hopefully we won't
have to bother with term lifting: Kimp will correspond to anonymous
product, for which (Rel 1) doesn't occur in the right term.
Moreover, we'll work on fully introduced goals, hence no Rel's in
the term parts that we manipulate, but rather Var's.
Said otherwise: all constr manipulated here are closed *)
let destructurate_prop sigma t =
let eq_constr c1 c2 = eq_constr sigma c1 c2 in
let c, args = decompose_app sigma t in
match EConstr.kind sigma c, args with
| _, [_;_;_] when eq_constr (Lazy.force coq_eq) c -> Kapp (Eq,args)
| _, [_;_] when eq_constr c (Lazy.force coq_neq) -> Kapp (Neq,args)
| _, [_;_] when eq_constr c (Lazy.force coq_Zne) -> Kapp (Zne,args)
| _, [_;_] when eq_constr c (Lazy.force coq_Zle) -> Kapp (Zle,args)
| _, [_;_] when eq_constr c (Lazy.force coq_Zlt) -> Kapp (Zlt,args)
| _, [_;_] when eq_constr c (Lazy.force coq_Zge) -> Kapp (Zge,args)
| _, [_;_] when eq_constr c (Lazy.force coq_Zgt) -> Kapp (Zgt,args)
| _, [_;_] when eq_constr c (Lazy.force coq_and) -> Kapp (And,args)
| _, [_;_] when eq_constr c (Lazy.force coq_or) -> Kapp (Or,args)
| _, [_;_] when eq_constr c (Lazy.force coq_iff) -> Kapp (Iff, args)
| _, [_] when eq_constr c (Lazy.force coq_not) -> Kapp (Not,args)
| _, [] when eq_constr c (Lazy.force coq_False) -> Kapp (False,args)
| _, [] when eq_constr c (Lazy.force coq_True) -> Kapp (True,args)
| _, [_;_] when eq_constr c (Lazy.force coq_le) -> Kapp (Le,args)
| _, [_;_] when eq_constr c (Lazy.force coq_lt) -> Kapp (Lt,args)
| _, [_;_] when eq_constr c (Lazy.force coq_ge) -> Kapp (Ge,args)
| _, [_;_] when eq_constr c (Lazy.force coq_gt) -> Kapp (Gt,args)
| Const (sp,_), args ->
Kapp (Other (string_of_path (path_of_global (ConstRef sp))),args)
| Construct (csp,_) , args ->
Kapp (Other (string_of_path (path_of_global (ConstructRef csp))), args)
| Ind (isp,_), args ->
Kapp (Other (string_of_path (path_of_global (IndRef isp))),args)
| Var id,[] -> Kvar id
| Prod (Anonymous,typ,body), [] -> Kimp(typ,body)
| Prod (Name _,_,_),[] -> CErrors.user_err Pp.(str "Omega: Not a quantifier-free goal")
| _ -> Kufo
let nf = Tacred.simpl
let destructurate_type env sigma t =
let is_conv = Reductionops.is_conv env sigma in
let c, args = decompose_app sigma (nf env sigma t) in
match EConstr.kind sigma c, args with
| _, [] when is_conv c (Lazy.force coq_Z) -> Kapp (Z,args)
| _, [] when is_conv c (Lazy.force coq_nat) -> Kapp (Nat,args)
| _ -> Kufo
let destructurate_term sigma t =
let eq_constr c1 c2 = eq_constr sigma c1 c2 in
let c, args = decompose_app sigma t in
match EConstr.kind sigma c, args with
| _, [_;_] when eq_constr c (Lazy.force coq_Zplus) -> Kapp (Zplus,args)
| _, [_;_] when eq_constr c (Lazy.force coq_Zmult) -> Kapp (Zmult,args)
| _, [_;_] when eq_constr c (Lazy.force coq_Zminus) -> Kapp (Zminus,args)
| _, [_] when eq_constr c (Lazy.force coq_Zsucc) -> Kapp (Zsucc,args)
| _, [_] when eq_constr c (Lazy.force coq_Zpred) -> Kapp (Zpred,args)
| _, [_] when eq_constr c (Lazy.force coq_Zopp) -> Kapp (Zopp,args)
| _, [_;_] when eq_constr c (Lazy.force coq_plus) -> Kapp (Plus,args)
| _, [_;_] when eq_constr c (Lazy.force coq_mult) -> Kapp (Mult,args)
| _, [_;_] when eq_constr c (Lazy.force coq_minus) -> Kapp (Minus,args)
| _, [_] when eq_constr c (Lazy.force coq_pred) -> Kapp (Pred,args)
| _, [_] when eq_constr c (Lazy.force coq_S) -> Kapp (S,args)
| _, [] when eq_constr c (Lazy.force coq_O) -> Kapp (O,args)
| _, [_] when eq_constr c (Lazy.force coq_Zpos) -> Kapp (Zneg,args)
| _, [_] when eq_constr c (Lazy.force coq_Zneg) -> Kapp (Zpos,args)
| _, [] when eq_constr c (Lazy.force coq_Z0) -> Kapp (Z0,args)
| _, [_] when eq_constr c (Lazy.force coq_Z_of_nat) -> Kapp (Z_of_nat,args)
| Var id,[] -> Kvar id
| _ -> Kufo
let recognize_number sigma t =
let eq_constr c1 c2 = eq_constr sigma c1 c2 in
let rec loop t =
match decompose_app sigma t with
| f, [t] when eq_constr f (Lazy.force coq_xI) -> one + two * loop t
| f, [t] when eq_constr f (Lazy.force coq_xO) -> two * loop t
| f, [] when eq_constr f (Lazy.force coq_xH) -> one
| _ -> failwith "not a number"
in
match decompose_app sigma t with
| f, [t] when eq_constr f (Lazy.force coq_Zpos) -> loop t
| f, [t] when eq_constr f (Lazy.force coq_Zneg) -> neg (loop t)
| f, [] when eq_constr f (Lazy.force coq_Z0) -> zero
| _ -> failwith "not a number"
type constr_path =
| P_APP of int
(* Abstraction and product *)
| P_BODY
| P_TYPE
(* Case *)
| P_BRANCH of int
| P_ARITY
| P_ARG
let context sigma operation path (t : constr) =
let rec loop i p0 t =
match (p0,EConstr.kind sigma t) with
| (p, Cast (c,k,t)) -> mkCast (loop i p c,k,t)
| ([], _) -> operation i t
| ((P_APP n :: p), App (f,v)) ->
let v' = Array.copy v in
v'.(pred n) <- loop i p v'.(pred n); mkApp (f, v')
| ((P_BRANCH n :: p), Case (ci,q,c,v)) ->
(* avant, y avait mkApp... anyway, BRANCH seems nowhere used *)
let v' = Array.copy v in
v'.(n) <- loop i p v'.(n); (mkCase (ci,q,c,v'))
| ((P_ARITY :: p), App (f,l)) ->
mkApp (loop i p f,l)
| ((P_ARG :: p), App (f,v)) ->
let v' = Array.copy v in
v'.(0) <- loop i p v'.(0); mkApp (f,v')
| (p, Fix ((_,n as ln),(tys,lna,v))) ->
let l = Array.length v in
let v' = Array.copy v in
v'.(n)<- loop (Pervasives.(+) i l) p v.(n); (mkFix (ln,(tys,lna,v')))
| ((P_BODY :: p), Prod (n,t,c)) ->
(mkProd (n,t,loop (succ i) p c))
| ((P_BODY :: p), Lambda (n,t,c)) ->
(mkLambda (n,t,loop (succ i) p c))
| ((P_BODY :: p), LetIn (n,b,t,c)) ->
(mkLetIn (n,b,t,loop (succ i) p c))
| ((P_TYPE :: p), Prod (n,t,c)) ->
(mkProd (n,loop i p t,c))
| ((P_TYPE :: p), Lambda (n,t,c)) ->
(mkLambda (n,loop i p t,c))
| ((P_TYPE :: p), LetIn (n,b,t,c)) ->
(mkLetIn (n,b,loop i p t,c))
| (p, _) ->
failwith ("abstract_path " ^ string_of_int(List.length p))
in
loop 1 path t
let occurrence sigma path (t : constr) =
let rec loop p0 t = match (p0,EConstr.kind sigma t) with
| (p, Cast (c,_,_)) -> loop p c
| ([], _) -> t
| ((P_APP n :: p), App (f,v)) -> loop p v.(pred n)
| ((P_BRANCH n :: p), Case (_,_,_,v)) -> loop p v.(n)
| ((P_ARITY :: p), App (f,_)) -> loop p f
| ((P_ARG :: p), App (f,v)) -> loop p v.(0)
| (p, Fix((_,n) ,(_,_,v))) -> loop p v.(n)
| ((P_BODY :: p), Prod (n,t,c)) -> loop p c
| ((P_BODY :: p), Lambda (n,t,c)) -> loop p c
| ((P_BODY :: p), LetIn (n,b,t,c)) -> loop p c
| ((P_TYPE :: p), Prod (n,term,c)) -> loop p term
| ((P_TYPE :: p), Lambda (n,term,c)) -> loop p term
| ((P_TYPE :: p), LetIn (n,b,term,c)) -> loop p term
| (p, _) ->
failwith ("occurrence " ^ string_of_int(List.length p))
in
loop path t
let abstract_path sigma typ path t =
let term_occur = ref (mkRel 0) in
let abstract = context sigma (fun i t -> term_occur:= t; mkRel i) path t in
mkLambda (Name (Id.of_string "x"), typ, abstract), !term_occur
let focused_simpl path =
let open Tacmach.New in
Proofview.Goal.nf_enter begin fun gl ->
let newc = context (project gl) (fun i t -> pf_nf gl t) (List.rev path) (pf_concl gl) in
convert_concl_no_check newc DEFAULTcast
end
let focused_simpl path = focused_simpl path
type oformula =
| Oplus of oformula * oformula
| Oinv of oformula
| Otimes of oformula * oformula
| Oatom of Id.t
| Oz of bigint
| Oufo of constr
let rec oprint = function
| Oplus(t1,t2) ->
print_string "("; oprint t1; print_string "+";
oprint t2; print_string ")"
| Oinv t -> print_string "~"; oprint t
| Otimes (t1,t2) ->
print_string "("; oprint t1; print_string "*";
oprint t2; print_string ")"
| Oatom s -> print_string (Id.to_string s)
| Oz i -> print_string (string_of_bigint i)
| Oufo f -> print_string "?"
let rec weight = function
| Oatom c -> intern_id c
| Oz _ -> -1
| Oinv c -> weight c
| Otimes(c,_) -> weight c
| Oplus _ -> failwith "weight"
| Oufo _ -> -1
let rec val_of = function
| Oatom c -> mkVar c
| Oz c -> mk_integer c
| Oinv c -> mkApp (Lazy.force coq_Zopp, [| val_of c |])
| Otimes (t1,t2) -> mkApp (Lazy.force coq_Zmult, [| val_of t1; val_of t2 |])
| Oplus(t1,t2) -> mkApp (Lazy.force coq_Zplus, [| val_of t1; val_of t2 |])
| Oufo c -> c
let compile name kind =
let rec loop accu = function
| Oplus(Otimes(Oatom v,Oz n),r) -> loop ({v=intern_id v; c=n} :: accu) r
| Oz n ->
let id = new_id () in
tag_hypothesis name id;
{kind = kind; body = List.rev accu; constant = n; id = id}
| _ -> anomaly (Pp.str "compile_equation.")
in
loop []
let decompile af =
let rec loop = function
| ({v=v; c=n}::r) -> Oplus(Otimes(Oatom (unintern_id v),Oz n),loop r)
| [] -> Oz af.constant
in
loop af.body
(** Backward compat to emulate the old Refine: normalize the goal conclusion *)
let new_hole env sigma c =
let c = Reductionops.nf_betaiota env sigma c in
Evarutil.new_evar env sigma c
let clever_rewrite_base_poly typ p result theorem =
let open Tacmach.New in
Proofview.Goal.nf_enter begin fun gl ->
let full = pf_concl gl in
let env = pf_env gl in
let (abstracted,occ) = abstract_path (project gl) typ (List.rev p) full in
Refine.refine ~typecheck:false begin fun sigma ->
let t =
applist
(mkLambda
(Name (Id.of_string "P"),
mkArrow typ mkProp,
mkLambda
(Name (Id.of_string "H"),
applist (mkRel 1,[result]),
mkApp (Lazy.force coq_eq_ind_r,
[| typ; result; mkRel 2; mkRel 1; occ; theorem |]))),
[abstracted])
in
let argt = mkApp (abstracted, [|result|]) in
let (sigma, hole) = new_hole env sigma argt in
(sigma, applist (t, [hole]))
end
end
let clever_rewrite_base p result theorem =
clever_rewrite_base_poly (Lazy.force coq_Z) p result theorem
let clever_rewrite_base_nat p result theorem =
clever_rewrite_base_poly (Lazy.force coq_nat) p result theorem
let clever_rewrite_gen p result (t,args) =
let theorem = applist(t, args) in
clever_rewrite_base p result theorem
let clever_rewrite_gen_nat p result (t,args) =
let theorem = applist(t, args) in
clever_rewrite_base_nat p result theorem
(** Solve using the term the term [t _] *)
let refine_app gl t =
let open Tacmach.New in
Refine.refine ~typecheck:false begin fun sigma ->
let env = pf_env gl in
let ht = match EConstr.kind sigma (pf_get_type_of gl t) with
| Prod (_, t, _) -> t
| _ -> assert false
in
let (sigma, hole) = new_hole env sigma ht in
(sigma, applist (t, [hole]))
end
let clever_rewrite p vpath t =
let open Tacmach.New in
Proofview.Goal.nf_enter begin fun gl ->
let full = pf_concl gl in
let (abstracted,occ) = abstract_path (project gl) (Lazy.force coq_Z) (List.rev p) full in
let vargs = List.map (fun p -> occurrence (project gl) p occ) vpath in
let t' = applist(t, (vargs @ [abstracted])) in
refine_app gl t'
end
(** simpl_coeffs :
The subterm at location [path_init] in the current goal should
look like [(v1*c1 + (v2*c2 + ... (vn*cn + k)))], and we reduce
via "simpl" each [ci] and the final constant [k].
The path [path_k] gives the location of constant [k].
Earlier, the whole was a mere call to [focused_simpl],
leading to reduction inside the atoms [vi], which is bad,
for instance when the atom is an evaluable definition
(see #4132). *)
let simpl_coeffs path_init path_k =
Proofview.Goal.enter begin fun gl ->
let sigma = project gl in
let rec loop n t =
if Int.equal n 0 then pf_nf gl t
else
(* t should be of the form ((v * c) + ...) *)
match EConstr.kind sigma t with
| App(f,[|t1;t2|]) ->
(match EConstr.kind sigma t1 with
| App (g,[|v;c|]) ->
let c' = pf_nf gl c in
let t2' = loop (pred n) t2 in
mkApp (f,[|mkApp (g,[|v;c'|]);t2'|])
| _ -> assert false)
| _ -> assert false
in
let n = Pervasives.(-) (List.length path_k) (List.length path_init) in
let newc = context sigma (fun _ t -> loop n t) (List.rev path_init) (pf_concl gl)
in
convert_concl_no_check newc DEFAULTcast
end
let rec shuffle p (t1,t2) =
match t1,t2 with
| Oplus(l1,r1), Oplus(l2,r2) ->
if weight l1 > weight l2 then
let (tac,t') = shuffle (P_APP 2 :: p) (r1,t2) in
(clever_rewrite p [[P_APP 1;P_APP 1];
[P_APP 1; P_APP 2];[P_APP 2]]
(Lazy.force coq_fast_Zplus_assoc_reverse)
:: tac,
Oplus(l1,t'))
else
let (tac,t') = shuffle (P_APP 2 :: p) (t1,r2) in
(clever_rewrite p [[P_APP 1];[P_APP 2;P_APP 1];[P_APP 2;P_APP 2]]
(Lazy.force coq_fast_Zplus_permute)
:: tac,
Oplus(l2,t'))
| Oplus(l1,r1), t2 ->
if weight l1 > weight t2 then
let (tac,t') = shuffle (P_APP 2 :: p) (r1,t2) in
clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
(Lazy.force coq_fast_Zplus_assoc_reverse)
:: tac,
Oplus(l1, t')
else
[clever_rewrite p [[P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zplus_comm)],
Oplus(t2,t1)
| t1,Oplus(l2,r2) ->
if weight l2 > weight t1 then
let (tac,t') = shuffle (P_APP 2 :: p) (t1,r2) in
clever_rewrite p [[P_APP 1];[P_APP 2;P_APP 1];[P_APP 2;P_APP 2]]
(Lazy.force coq_fast_Zplus_permute)
:: tac,
Oplus(l2,t')
else [],Oplus(t1,t2)
| Oz t1,Oz t2 ->
[focused_simpl p], Oz(Bigint.add t1 t2)
| t1,t2 ->
if weight t1 < weight t2 then
[clever_rewrite p [[P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zplus_comm)],
Oplus(t2,t1)
else [],Oplus(t1,t2)
let shuffle_mult p_init k1 e1 k2 e2 =
let rec loop p = function
| (({c=c1;v=v1}::l1) as l1'),(({c=c2;v=v2}::l2) as l2') ->
if Int.equal v1 v2 then
let tac =
clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1; P_APP 1];
[P_APP 1; P_APP 1; P_APP 1; P_APP 2];
[P_APP 2; P_APP 1; P_APP 1; P_APP 2];
[P_APP 1; P_APP 1; P_APP 2];
[P_APP 2; P_APP 1; P_APP 2];
[P_APP 1; P_APP 2];
[P_APP 2; P_APP 2]]
(Lazy.force coq_fast_OMEGA10)
in
if Bigint.add (Bigint.mult k1 c1) (Bigint.mult k2 c2) =? zero then
let tac' =
clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zred_factor5) in
tac :: focused_simpl (P_APP 2::P_APP 1:: p) :: tac' ::
loop p (l1,l2)
else tac :: loop (P_APP 2 :: p) (l1,l2)
else if v1 > v2 then
clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1; P_APP 1];
[P_APP 1; P_APP 1; P_APP 1; P_APP 2];
[P_APP 1; P_APP 1; P_APP 2];
[P_APP 2];
[P_APP 1; P_APP 2]]
(Lazy.force coq_fast_OMEGA11) ::
loop (P_APP 2 :: p) (l1,l2')
else
clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1];
[P_APP 2; P_APP 1; P_APP 1; P_APP 2];
[P_APP 1];
[P_APP 2; P_APP 1; P_APP 2];
[P_APP 2; P_APP 2]]
(Lazy.force coq_fast_OMEGA12) ::
loop (P_APP 2 :: p) (l1',l2)
| ({c=c1;v=v1}::l1), [] ->
clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1; P_APP 1];
[P_APP 1; P_APP 1; P_APP 1; P_APP 2];
[P_APP 1; P_APP 1; P_APP 2];
[P_APP 2];
[P_APP 1; P_APP 2]]
(Lazy.force coq_fast_OMEGA11) ::
loop (P_APP 2 :: p) (l1,[])
| [],({c=c2;v=v2}::l2) ->
clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1];
[P_APP 2; P_APP 1; P_APP 1; P_APP 2];
[P_APP 1];
[P_APP 2; P_APP 1; P_APP 2];
[P_APP 2; P_APP 2]]
(Lazy.force coq_fast_OMEGA12) ::
loop (P_APP 2 :: p) ([],l2)
| [],[] -> [simpl_coeffs p_init p]
in
loop p_init (e1,e2)
let shuffle_mult_right p_init e1 k2 e2 =
let rec loop p = function
| (({c=c1;v=v1}::l1) as l1'),(({c=c2;v=v2}::l2) as l2') ->
if Int.equal v1 v2 then
let tac =
clever_rewrite p
[[P_APP 1; P_APP 1; P_APP 1];
[P_APP 1; P_APP 1; P_APP 2];
[P_APP 2; P_APP 1; P_APP 1; P_APP 2];
[P_APP 1; P_APP 2];
[P_APP 2; P_APP 1; P_APP 2];
[P_APP 2; P_APP 2]]
(Lazy.force coq_fast_OMEGA15)
in
if Bigint.add c1 (Bigint.mult k2 c2) =? zero then
let tac' =
clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zred_factor5)
in
tac :: focused_simpl (P_APP 2::P_APP 1:: p) :: tac' ::
loop p (l1,l2)
else tac :: loop (P_APP 2 :: p) (l1,l2)
else if v1 > v2 then
clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
(Lazy.force coq_fast_Zplus_assoc_reverse) ::
loop (P_APP 2 :: p) (l1,l2')
else
clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1];
[P_APP 2; P_APP 1; P_APP 1; P_APP 2];
[P_APP 1];
[P_APP 2; P_APP 1; P_APP 2];
[P_APP 2; P_APP 2]]
(Lazy.force coq_fast_OMEGA12) ::
loop (P_APP 2 :: p) (l1',l2)
| ({c=c1;v=v1}::l1), [] ->
clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
(Lazy.force coq_fast_Zplus_assoc_reverse) ::
loop (P_APP 2 :: p) (l1,[])
| [],({c=c2;v=v2}::l2) ->
clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1];
[P_APP 2; P_APP 1; P_APP 1; P_APP 2];
[P_APP 1];
[P_APP 2; P_APP 1; P_APP 2];
[P_APP 2; P_APP 2]]
(Lazy.force coq_fast_OMEGA12) ::
loop (P_APP 2 :: p) ([],l2)
| [],[] -> [simpl_coeffs p_init p]
in
loop p_init (e1,e2)
let rec shuffle_cancel p = function
| [] -> [focused_simpl p]
| ({c=c1}::l1) ->
let tac =
clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1];[P_APP 1; P_APP 2];
[P_APP 2; P_APP 2];
[P_APP 1; P_APP 1; P_APP 2; P_APP 1]]
(if c1 >? zero then
(Lazy.force coq_fast_OMEGA13)
else
(Lazy.force coq_fast_OMEGA14))
in
tac :: shuffle_cancel p l1
let rec scalar p n = function
| Oplus(t1,t2) ->
let tac1,t1' = scalar (P_APP 1 :: p) n t1 and
tac2,t2' = scalar (P_APP 2 :: p) n t2 in
clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2];[P_APP 2]]
(Lazy.force coq_fast_Zmult_plus_distr_l) ::
(tac1 @ tac2), Oplus(t1',t2')
| Oinv t ->
[clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zmult_opp_comm);
focused_simpl (P_APP 2 :: p)], Otimes(t,Oz(neg n))
| Otimes(t1,Oz x) ->
[clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2];[P_APP 2]]
(Lazy.force coq_fast_Zmult_assoc_reverse);
focused_simpl (P_APP 2 :: p)],
Otimes(t1,Oz (n*x))
| Otimes(t1,t2) -> CErrors.user_err Pp.(str "Omega: Can't solve a goal with non-linear products")
| (Oatom _ as t) -> [], Otimes(t,Oz n)
| Oz i -> [focused_simpl p],Oz(n*i)
| Oufo c -> [], Oufo (mkApp (Lazy.force coq_Zmult, [| mk_integer n; c |]))
let scalar_norm p_init =
let rec loop p = function
| [] -> [simpl_coeffs p_init p]
| (_::l) ->
clever_rewrite p
[[P_APP 1; P_APP 1; P_APP 1];[P_APP 1; P_APP 1; P_APP 2];
[P_APP 1; P_APP 2];[P_APP 2]]
(Lazy.force coq_fast_OMEGA16) :: loop (P_APP 2 :: p) l
in
loop p_init
let norm_add p_init =
let rec loop p = function
| [] -> [simpl_coeffs p_init p]
| _:: l ->
clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
(Lazy.force coq_fast_Zplus_assoc_reverse) ::
loop (P_APP 2 :: p) l
in
loop p_init
let scalar_norm_add p_init =
let rec loop p = function
| [] -> [simpl_coeffs p_init p]
| _ :: l ->
clever_rewrite p
[[P_APP 1; P_APP 1; P_APP 1; P_APP 1];
[P_APP 1; P_APP 1; P_APP 1; P_APP 2];
[P_APP 1; P_APP 1; P_APP 2]; [P_APP 2]; [P_APP 1; P_APP 2]]
(Lazy.force coq_fast_OMEGA11) :: loop (P_APP 2 :: p) l
in
loop p_init
let rec negate p = function
| Oplus(t1,t2) ->
let tac1,t1' = negate (P_APP 1 :: p) t1 and
tac2,t2' = negate (P_APP 2 :: p) t2 in
clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2]]
(Lazy.force coq_fast_Zopp_plus_distr) ::
(tac1 @ tac2),
Oplus(t1',t2')
| Oinv t ->
[clever_rewrite p [[P_APP 1;P_APP 1]] (Lazy.force coq_fast_Zopp_involutive)], t
| Otimes(t1,Oz x) ->
[clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2]]
(Lazy.force coq_fast_Zopp_mult_distr_r);
focused_simpl (P_APP 2 :: p)], Otimes(t1,Oz (neg x))
| Otimes(t1,t2) -> CErrors.user_err Pp.(str "Omega: Can't solve a goal with non-linear products")
| (Oatom _ as t) ->
let r = Otimes(t,Oz(negone)) in
[clever_rewrite p [[P_APP 1]] (Lazy.force coq_fast_Zopp_eq_mult_neg_1)], r
| Oz i -> [focused_simpl p],Oz(neg i)
| Oufo c -> [], Oufo (mkApp (Lazy.force coq_Zopp, [| c |]))
let rec transform sigma p t =
let default isnat t' =
try
let v,th,_ = find_constr sigma t' in
[clever_rewrite_base p (mkVar v) (mkVar th)], Oatom v
with e when CErrors.noncritical e ->
let v = new_identifier_var ()
and th = new_identifier () in
hide_constr t' v th isnat;
[clever_rewrite_base p (mkVar v) (mkVar th)], Oatom v
in
try match destructurate_term sigma t with
| Kapp(Zplus,[t1;t2]) ->
let tac1,t1' = transform sigma (P_APP 1 :: p) t1
and tac2,t2' = transform sigma (P_APP 2 :: p) t2 in
let tac,t' = shuffle p (t1',t2') in
tac1 @ tac2 @ tac, t'
| Kapp(Zminus,[t1;t2]) ->
let tac,t =
transform sigma p
(mkApp (Lazy.force coq_Zplus,
[| t1; (mkApp (Lazy.force coq_Zopp, [| t2 |])) |])) in
unfold sp_Zminus :: tac,t
| Kapp(Zsucc,[t1]) ->
let tac,t = transform sigma p (mkApp (Lazy.force coq_Zplus,
[| t1; mk_integer one |])) in
unfold sp_Zsucc :: tac,t
| Kapp(Zpred,[t1]) ->
let tac,t = transform sigma p (mkApp (Lazy.force coq_Zplus,
[| t1; mk_integer negone |])) in
unfold sp_Zpred :: tac,t
| Kapp(Zmult,[t1;t2]) ->
let tac1,t1' = transform sigma (P_APP 1 :: p) t1
and tac2,t2' = transform sigma (P_APP 2 :: p) t2 in
begin match t1',t2' with
| (_,Oz n) -> let tac,t' = scalar p n t1' in tac1 @ tac2 @ tac,t'
| (Oz n,_) ->
let sym =
clever_rewrite p [[P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zmult_comm) in
let tac,t' = scalar p n t2' in tac1 @ tac2 @ (sym :: tac),t'
| _ -> default false t
end
| Kapp((Zpos|Zneg|Z0),_) ->
(try ([],Oz(recognize_number sigma t))
with e when CErrors.noncritical e -> default false t)
| Kvar s -> [],Oatom s
| Kapp(Zopp,[t]) ->
let tac,t' = transform sigma (P_APP 1 :: p) t in
let tac',t'' = negate p t' in
tac @ tac', t''
| Kapp(Z_of_nat,[t']) -> default true t'
| _ -> default false t
with e when catchable_exception e -> default false t
let shrink_pair p f1 f2 =
match f1,f2 with
| Oatom v,Oatom _ ->
let r = Otimes(Oatom v,Oz two) in
clever_rewrite p [[P_APP 1]] (Lazy.force coq_fast_Zred_factor1), r
| Oatom v, Otimes(_,c2) ->
let r = Otimes(Oatom v,Oplus(c2,Oz one)) in
clever_rewrite p [[P_APP 1];[P_APP 2;P_APP 2]]
(Lazy.force coq_fast_Zred_factor2), r
| Otimes (v1,c1),Oatom v ->
let r = Otimes(Oatom v,Oplus(c1,Oz one)) in
clever_rewrite p [[P_APP 2];[P_APP 1;P_APP 2]]
(Lazy.force coq_fast_Zred_factor3), r
| Otimes (Oatom v,c1),Otimes (v2,c2) ->
let r = Otimes(Oatom v,Oplus(c1,c2)) in
clever_rewrite p
[[P_APP 1;P_APP 1];[P_APP 1;P_APP 2];[P_APP 2;P_APP 2]]
(Lazy.force coq_fast_Zred_factor4),r
| t1,t2 ->
begin
oprint t1; print_newline (); oprint t2; print_newline ();
flush Pervasives.stdout; CErrors.user_err Pp.(str "shrink.1")
end
let reduce_factor p = function
| Oatom v ->
let r = Otimes(Oatom v,Oz one) in
[clever_rewrite p [[]] (Lazy.force coq_fast_Zred_factor0)],r
| Otimes(Oatom v,Oz n) as f -> [],f
| Otimes(Oatom v,c) ->
let rec compute = function
| Oz n -> n
| Oplus(t1,t2) -> Bigint.add (compute t1) (compute t2)
| _ -> CErrors.user_err Pp.(str "condense.1")
in
[focused_simpl (P_APP 2 :: p)], Otimes(Oatom v,Oz(compute c))
| t -> oprint t; CErrors.user_err Pp.(str "reduce_factor.1")
let rec condense p = function
| Oplus(f1,(Oplus(f2,r) as t)) ->
if Int.equal (weight f1) (weight f2) then begin
let shrink_tac,t = shrink_pair (P_APP 1 :: p) f1 f2 in
let assoc_tac =
clever_rewrite p
[[P_APP 1];[P_APP 2;P_APP 1];[P_APP 2;P_APP 2]]
(Lazy.force coq_fast_Zplus_assoc) in
let tac_list,t' = condense p (Oplus(t,r)) in
(assoc_tac :: shrink_tac :: tac_list), t'
end else begin
let tac,f = reduce_factor (P_APP 1 :: p) f1 in
let tac',t' = condense (P_APP 2 :: p) t in
(tac @ tac'), Oplus(f,t')
end
| Oplus(f1,Oz n) ->
let tac,f1' = reduce_factor (P_APP 1 :: p) f1 in tac,Oplus(f1',Oz n)
| Oplus(f1,f2) ->
if Int.equal (weight f1) (weight f2) then begin
let tac_shrink,t = shrink_pair p f1 f2 in
let tac,t' = condense p t in
tac_shrink :: tac,t'
end else begin
let tac,f = reduce_factor (P_APP 1 :: p) f1 in
let tac',t' = condense (P_APP 2 :: p) f2 in
(tac @ tac'),Oplus(f,t')
end
| Oz _ as t -> [],t
| t ->
let tac,t' = reduce_factor p t in
let final = Oplus(t',Oz zero) in
let tac' = clever_rewrite p [[]] (Lazy.force coq_fast_Zred_factor6) in
tac @ [tac'], final
let rec clear_zero p = function
| Oplus(Otimes(Oatom v,Oz n),r) when n =? zero ->
let tac =
clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zred_factor5) in
let tac',t = clear_zero p r in
tac :: tac',t
| Oplus(f,r) ->
let tac,t = clear_zero (P_APP 2 :: p) r in tac,Oplus(f,t)
| t -> [],t
let replay_history tactic_normalisation =
let aux = Id.of_string "auxiliary" in
let aux1 = Id.of_string "auxiliary_1" in
let aux2 = Id.of_string "auxiliary_2" in
let izero = mk_integer zero in
let rec loop t : unit Proofview.tactic =
match t with
| HYP e :: l ->
begin
try
tclTHEN
(Id.List.assoc (hyp_of_tag e.id) tactic_normalisation)
(loop l)
with Not_found -> loop l end
| NEGATE_CONTRADICT (e2,e1,b) :: l ->
let eq1 = decompile e1
and eq2 = decompile e2 in
let id1 = hyp_of_tag e1.id
and id2 = hyp_of_tag e2.id in
let k = if b then negone else one in
let p_initial = [P_APP 1;P_TYPE] in
let tac= shuffle_mult_right p_initial e1.body k e2.body in
tclTHENLIST [
generalize_tac
[mkApp (Lazy.force coq_OMEGA17, [|
val_of eq1;
val_of eq2;
mk_integer k;
mkVar id1; mkVar id2 |])];
mk_then tac;
(intros_using [aux]);
resolve_id aux;
reflexivity
]
| CONTRADICTION (e1,e2) :: l ->
let eq1 = decompile e1
and eq2 = decompile e2 in
let p_initial = [P_APP 2;P_TYPE] in
let tac = shuffle_cancel p_initial e1.body in
let solve_le =
let not_sup_sup = mkApp (Lazy.force coq_eq,
[|
Lazy.force coq_comparison;
Lazy.force coq_Gt;
Lazy.force coq_Gt |])
in
tclTHENS
(tclTHENLIST [
unfold sp_Zle;
simpl_in_concl;
intro;
(absurd not_sup_sup) ])
[ assumption ; reflexivity ]
in
let theorem =
mkApp (Lazy.force coq_OMEGA2, [|
val_of eq1; val_of eq2;
mkVar (hyp_of_tag e1.id);
mkVar (hyp_of_tag e2.id) |])
in
Proofview.tclTHEN (tclTHEN (generalize_tac [theorem]) (mk_then tac)) solve_le
| DIVIDE_AND_APPROX (e1,e2,k,d) :: l ->
let id = hyp_of_tag e1.id in
let eq1 = val_of(decompile e1)
and eq2 = val_of(decompile e2) in
let kk = mk_integer k
and dd = mk_integer d in
let rhs = mk_plus (mk_times eq2 kk) dd in
let state_eg = mk_eq eq1 rhs in
let tac = scalar_norm_add [P_APP 3] e2.body in
tclTHENS
(cut state_eg)
[ tclTHENS
(tclTHENLIST [
(intros_using [aux]);
(generalize_tac
[mkApp (Lazy.force coq_OMEGA1,
[| eq1; rhs; mkVar aux; mkVar id |])]);
(clear [aux;id]);
(intros_using [id]);
(cut (mk_gt kk dd)) ])
[ tclTHENS
(cut (mk_gt kk izero))
[ tclTHENLIST [
(intros_using [aux1; aux2]);
(generalize_tac
[mkApp (Lazy.force coq_Zmult_le_approx,
[| kk;eq2;dd;mkVar aux1;mkVar aux2; mkVar id |])]);
(clear [aux1;aux2;id]);
(intros_using [id]);
(loop l) ];
tclTHENLIST [
(unfold sp_Zgt);
simpl_in_concl;
reflexivity ] ];
tclTHENLIST [ unfold sp_Zgt; simpl_in_concl; reflexivity ]
];
tclTHEN (mk_then tac) reflexivity ]
| NOT_EXACT_DIVIDE (e1,k) :: l ->
let c = floor_div e1.constant k in
let d = Bigint.sub e1.constant (Bigint.mult c k) in
let e2 = {id=e1.id; kind=EQUA;constant = c;
body = map_eq_linear (fun c -> c / k) e1.body } in
let eq2 = val_of(decompile e2) in
let kk = mk_integer k
and dd = mk_integer d in
let tac = scalar_norm_add [P_APP 2] e2.body in
tclTHENS
(cut (mk_gt dd izero))
[ tclTHENS (cut (mk_gt kk dd))
[tclTHENLIST [
(intros_using [aux2;aux1]);
(generalize_tac
[mkApp (Lazy.force coq_OMEGA4,
[| dd;kk;eq2;mkVar aux1; mkVar aux2 |])]);
(clear [aux1;aux2]);
unfold sp_not;
(intros_using [aux]);
resolve_id aux;
mk_then tac;
assumption ] ;
tclTHENLIST [
unfold sp_Zgt;
simpl_in_concl;
reflexivity ] ];
tclTHENLIST [
unfold sp_Zgt;
simpl_in_concl;
reflexivity ] ]
| EXACT_DIVIDE (e1,k) :: l ->
let id = hyp_of_tag e1.id in
let e2 = map_eq_afine (fun c -> c / k) e1 in
let eq1 = val_of(decompile e1)
and eq2 = val_of(decompile e2) in
let kk = mk_integer k in
let state_eq = mk_eq eq1 (mk_times eq2 kk) in
if e1.kind == DISE then
let tac = scalar_norm [P_APP 3] e2.body in
tclTHENS
(cut state_eq)
[tclTHENLIST [
(intros_using [aux1]);
(generalize_tac
[mkApp (Lazy.force coq_OMEGA18,
[| eq1;eq2;kk;mkVar aux1; mkVar id |])]);
(clear [aux1;id]);
(intros_using [id]);
(loop l) ];
tclTHEN (mk_then tac) reflexivity ]
else
let tac = scalar_norm [P_APP 3] e2.body in
tclTHENS (cut state_eq)
[
tclTHENS
(cut (mk_gt kk izero))
[tclTHENLIST [
(intros_using [aux2;aux1]);
(generalize_tac
[mkApp (Lazy.force coq_OMEGA3,
[| eq1; eq2; kk; mkVar aux2; mkVar aux1;mkVar id|])]);
(clear [aux1;aux2;id]);
(intros_using [id]);
(loop l) ];
tclTHENLIST [
unfold sp_Zgt;
simpl_in_concl;
reflexivity ] ];
tclTHEN (mk_then tac) reflexivity ]
| (MERGE_EQ(e3,e1,e2)) :: l ->
let id = new_identifier () in
tag_hypothesis id e3;
let id1 = hyp_of_tag e1.id
and id2 = hyp_of_tag e2 in
let eq1 = val_of(decompile e1)
and eq2 = val_of (decompile (negate_eq e1)) in
let tac =
clever_rewrite [P_APP 3] [[P_APP 1]]
(Lazy.force coq_fast_Zopp_eq_mult_neg_1) ::
scalar_norm [P_APP 3] e1.body
in
tclTHENS
(cut (mk_eq eq1 (mk_inv eq2)))
[tclTHENLIST [
(intros_using [aux]);
(generalize_tac [mkApp (Lazy.force coq_OMEGA8,
[| eq1;eq2;mkVar id1;mkVar id2; mkVar aux|])]);
(clear [id1;id2;aux]);
(intros_using [id]);
(loop l) ];
tclTHEN (mk_then tac) reflexivity]
| STATE {st_new_eq=e;st_def=def;st_orig=orig;st_coef=m;st_var=v} :: l ->
let id = new_identifier ()
and id2 = hyp_of_tag orig.id in
tag_hypothesis id e.id;
let eq1 = val_of(decompile def)
and eq2 = val_of(decompile orig) in
let vid = unintern_id v in
let theorem =
mkApp (Lazy.force coq_ex, [|
Lazy.force coq_Z;
mkLambda
(Name vid,
Lazy.force coq_Z,
mk_eq (mkRel 1) eq1) |])
in
let mm = mk_integer m in
let p_initial = [P_APP 2;P_TYPE] in
let tac =
clever_rewrite (P_APP 1 :: P_APP 1 :: P_APP 2 :: p_initial)
[[P_APP 1]] (Lazy.force coq_fast_Zopp_eq_mult_neg_1) ::
shuffle_mult_right p_initial
orig.body m ({c= negone;v= v}::def.body) in
tclTHENS
(cut theorem)
[tclTHENLIST [
(intros_using [aux]);
(elim_id aux);
(clear [aux]);
(intros_using [vid; aux]);
(generalize_tac
[mkApp (Lazy.force coq_OMEGA9,
[| mkVar vid;eq2;eq1;mm; mkVar id2;mkVar aux |])]);
mk_then tac;
(clear [aux]);
(intros_using [id]);
(loop l) ];
tclTHEN (exists_tac eq1) reflexivity ]
| SPLIT_INEQ(e,(e1,act1),(e2,act2)) :: l ->
let id1 = new_identifier ()
and id2 = new_identifier () in
tag_hypothesis id1 e1; tag_hypothesis id2 e2;
let id = hyp_of_tag e.id in
let tac1 = norm_add [P_APP 2;P_TYPE] e.body in
let tac2 = scalar_norm_add [P_APP 2;P_TYPE] e.body in
let eq = val_of(decompile e) in
tclTHENS
(simplest_elim (applist (Lazy.force coq_OMEGA19, [eq; mkVar id])))
[tclTHENLIST [ mk_then tac1; (intros_using [id1]); (loop act1) ];
tclTHENLIST [ mk_then tac2; (intros_using [id2]); (loop act2) ]]
| SUM(e3,(k1,e1),(k2,e2)) :: l ->
let id = new_identifier () in
tag_hypothesis id e3;
let id1 = hyp_of_tag e1.id
and id2 = hyp_of_tag e2.id in
let eq1 = val_of(decompile e1)
and eq2 = val_of(decompile e2) in
if k1 =? one && e2.kind == EQUA then
let tac_thm =
match e1.kind with
| EQUA -> Lazy.force coq_OMEGA5
| INEQ -> Lazy.force coq_OMEGA6
| DISE -> Lazy.force coq_OMEGA20
in
let kk = mk_integer k2 in
let p_initial =
if e1.kind == DISE then [P_APP 1; P_TYPE] else [P_APP 2; P_TYPE] in
let tac = shuffle_mult_right p_initial e1.body k2 e2.body in
tclTHENLIST [
(generalize_tac
[mkApp (tac_thm, [| eq1; eq2; kk; mkVar id1; mkVar id2 |])]);
mk_then tac;
(intros_using [id]);
(loop l)
]
else
let kk1 = mk_integer k1
and kk2 = mk_integer k2 in
let p_initial = [P_APP 2;P_TYPE] in
let tac= shuffle_mult p_initial k1 e1.body k2 e2.body in
tclTHENS (cut (mk_gt kk1 izero))
[tclTHENS
(cut (mk_gt kk2 izero))
[tclTHENLIST [
(intros_using [aux2;aux1]);
(generalize_tac
[mkApp (Lazy.force coq_OMEGA7, [|
eq1;eq2;kk1;kk2;
mkVar aux1;mkVar aux2;
mkVar id1;mkVar id2 |])]);
(clear [aux1;aux2]);
mk_then tac;
(intros_using [id]);
(loop l) ];
tclTHENLIST [
unfold sp_Zgt;
simpl_in_concl;
reflexivity ] ];
tclTHENLIST [
unfold sp_Zgt;
simpl_in_concl;
reflexivity ] ]
| CONSTANT_NOT_NUL(e,k) :: l ->
tclTHEN ((generalize_tac [mkVar (hyp_of_tag e)])) Equality.discrConcl
| CONSTANT_NUL(e) :: l ->
tclTHEN (resolve_id (hyp_of_tag e)) reflexivity
| CONSTANT_NEG(e,k) :: l ->
tclTHENLIST [
(generalize_tac [mkVar (hyp_of_tag e)]);
unfold sp_Zle;
simpl_in_concl;
unfold sp_not;
(intros_using [aux]);
resolve_id aux;
reflexivity
]
| _ -> Proofview.tclUNIT ()
in
loop
let normalize sigma p_initial t =
let (tac,t') = transform sigma p_initial t in
let (tac',t'') = condense p_initial t' in
let (tac'',t''') = clear_zero p_initial t'' in
tac @ tac' @ tac'' , t'''
let normalize_equation sigma id flag theorem pos t t1 t2 (tactic,defs) =
let p_initial = [P_APP pos ;P_TYPE] in
let (tac,t') = normalize sigma p_initial t in
let shift_left =
tclTHEN
(generalize_tac [mkApp (theorem, [| t1; t2; mkVar id |]) ])
(tclTRY (clear [id]))
in
if not (List.is_empty tac) then
let id' = new_identifier () in
((id',(tclTHENLIST [ shift_left; mk_then tac; (intros_using [id']) ]))
:: tactic,
compile id' flag t' :: defs)
else
(tactic,defs)
let destructure_omega env sigma tac_def (id,c) =
if String.equal (atompart_of_id id) "State" then
tac_def
else
try match destructurate_prop sigma c with
| Kapp(Eq,[typ;t1;t2])
when begin match destructurate_type env sigma typ with Kapp(Z,[]) -> true | _ -> false end ->
let t = mk_plus t1 (mk_inv t2) in
normalize_equation sigma
id EQUA (Lazy.force coq_Zegal_left) 2 t t1 t2 tac_def
| Kapp(Zne,[t1;t2]) ->
let t = mk_plus t1 (mk_inv t2) in
normalize_equation sigma
id DISE (Lazy.force coq_Zne_left) 1 t t1 t2 tac_def
| Kapp(Zle,[t1;t2]) ->
let t = mk_plus t2 (mk_inv t1) in
normalize_equation sigma
id INEQ (Lazy.force coq_Zle_left) 2 t t1 t2 tac_def
| Kapp(Zlt,[t1;t2]) ->
let t = mk_plus (mk_plus t2 (mk_integer negone)) (mk_inv t1) in
normalize_equation sigma
id INEQ (Lazy.force coq_Zlt_left) 2 t t1 t2 tac_def
| Kapp(Zge,[t1;t2]) ->
let t = mk_plus t1 (mk_inv t2) in
normalize_equation sigma
id INEQ (Lazy.force coq_Zge_left) 2 t t1 t2 tac_def
| Kapp(Zgt,[t1;t2]) ->
let t = mk_plus (mk_plus t1 (mk_integer negone)) (mk_inv t2) in
normalize_equation sigma
id INEQ (Lazy.force coq_Zgt_left) 2 t t1 t2 tac_def
| _ -> tac_def
with e when catchable_exception e -> tac_def
let reintroduce id =
(* [id] cannot be cleared if dependent: protect it by a try *)
tclTHEN (tclTRY (clear [id])) (intro_using id)
open Proofview.Notations
let coq_omega =
Proofview.Goal.enter begin fun gl ->
clear_constr_tables ();
let hyps_types = Tacmach.New.pf_hyps_types gl in
let destructure_omega = Tacmach.New.pf_apply destructure_omega gl in
let tactic_normalisation, system =
List.fold_left destructure_omega ([],[]) hyps_types in
let prelude,sys =
List.fold_left
(fun (tac,sys) (t,(v,th,b)) ->
if b then
let id = new_identifier () in
let i = new_id () in
tag_hypothesis id i;
(tclTHENLIST [
(simplest_elim (applist (Lazy.force coq_intro_Z, [t])));
(intros_using [v; id]);
(elim_id id);
(clear [id]);
(intros_using [th;id]);
tac ]),
{kind = INEQ;
body = [{v=intern_id v; c=one}];
constant = zero; id = i} :: sys
else
(tclTHENLIST [
(simplest_elim (applist (Lazy.force coq_new_var, [t])));
(intros_using [v;th]);
tac ]),
sys)
(Proofview.tclUNIT (),[]) (dump_tables ())
in
let system = system @ sys in
if !display_system_flag then display_system display_var system;
if !old_style_flag then begin
try
let _ = simplify (new_id,new_var_num,display_var) false system in
Proofview.tclUNIT ()
with UNSOLVABLE ->
let _,path = depend [] [] (history ()) in
if !display_action_flag then display_action display_var path;
(tclTHEN prelude (replay_history tactic_normalisation path))
end else begin
try
let path = simplify_strong (new_id,new_var_num,display_var) system in
if !display_action_flag then display_action display_var path;
tclTHEN prelude (replay_history tactic_normalisation path)
with NO_CONTRADICTION -> tclZEROMSG (Pp.str"Omega can't solve this system")
end
end
let coq_omega = coq_omega
let nat_inject =
Proofview.Goal.enter begin fun gl ->
let is_conv = Tacmach.New.pf_apply Reductionops.is_conv gl in
let rec explore p t : unit Proofview.tactic =
Proofview.tclEVARMAP >>= fun sigma ->
try match destructurate_term sigma t with
| Kapp(Plus,[t1;t2]) ->
tclTHENLIST [
(clever_rewrite_gen p (mk_plus (mk_inj t1) (mk_inj t2))
((Lazy.force coq_inj_plus),[t1;t2]));
(explore (P_APP 1 :: p) t1);
(explore (P_APP 2 :: p) t2)
]
| Kapp(Mult,[t1;t2]) ->
tclTHENLIST [
(clever_rewrite_gen p (mk_times (mk_inj t1) (mk_inj t2))
((Lazy.force coq_inj_mult),[t1;t2]));
(explore (P_APP 1 :: p) t1);
(explore (P_APP 2 :: p) t2)
]
| Kapp(Minus,[t1;t2]) ->
let id = new_identifier () in
tclTHENS
(tclTHEN
(simplest_elim (applist (Lazy.force coq_le_gt_dec, [t2;t1])))
(intros_using [id]))
[
tclTHENLIST [
(clever_rewrite_gen p
(mk_minus (mk_inj t1) (mk_inj t2))
((Lazy.force coq_inj_minus1),[t1;t2;mkVar id]));
(loop [id,mkApp (Lazy.force coq_le, [| t2;t1 |])]);
(explore (P_APP 1 :: p) t1);
(explore (P_APP 2 :: p) t2) ];
(tclTHEN
(clever_rewrite_gen p (mk_integer zero)
((Lazy.force coq_inj_minus2),[t1;t2;mkVar id]))
(loop [id,mkApp (Lazy.force coq_gt, [| t2;t1 |])]))
]
| Kapp(S,[t']) ->
let rec is_number t =
try match destructurate_term sigma t with
Kapp(S,[t]) -> is_number t
| Kapp(O,[]) -> true
| _ -> false
with e when catchable_exception e -> false
in
let rec loop p t : unit Proofview.tactic =
try match destructurate_term sigma t with
Kapp(S,[t]) ->
(tclTHEN
(clever_rewrite_gen p
(mkApp (Lazy.force coq_Zsucc, [| mk_inj t |]))
((Lazy.force coq_inj_S),[t]))
(loop (P_APP 1 :: p) t))
| _ -> explore p t
with e when catchable_exception e -> explore p t
in
if is_number t' then focused_simpl p else loop p t
| Kapp(Pred,[t]) ->
let t_minus_one =
mkApp (Lazy.force coq_minus, [| t;
mkApp (Lazy.force coq_S, [| Lazy.force coq_O |]) |]) in
tclTHEN
(clever_rewrite_gen_nat (P_APP 1 :: p) t_minus_one
((Lazy.force coq_pred_of_minus),[t]))
(explore p t_minus_one)
| Kapp(O,[]) -> focused_simpl p
| _ -> Proofview.tclUNIT ()
with e when catchable_exception e -> Proofview.tclUNIT ()
and loop = function
| [] -> Proofview.tclUNIT ()
| (i,t)::lit ->
Proofview.tclEVARMAP >>= fun sigma ->
begin try match destructurate_prop sigma t with
Kapp(Le,[t1;t2]) ->
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_inj_le, [| t1;t2;mkVar i |]) ]);
(explore [P_APP 1; P_TYPE] t1);
(explore [P_APP 2; P_TYPE] t2);
(reintroduce i);
(loop lit)
]
| Kapp(Lt,[t1;t2]) ->
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_inj_lt, [| t1;t2;mkVar i |]) ]);
(explore [P_APP 1; P_TYPE] t1);
(explore [P_APP 2; P_TYPE] t2);
(reintroduce i);
(loop lit)
]
| Kapp(Ge,[t1;t2]) ->
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_inj_ge, [| t1;t2;mkVar i |]) ]);
(explore [P_APP 1; P_TYPE] t1);
(explore [P_APP 2; P_TYPE] t2);
(reintroduce i);
(loop lit)
]
| Kapp(Gt,[t1;t2]) ->
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_inj_gt, [| t1;t2;mkVar i |]) ]);
(explore [P_APP 1; P_TYPE] t1);
(explore [P_APP 2; P_TYPE] t2);
(reintroduce i);
(loop lit)
]
| Kapp(Neq,[t1;t2]) ->
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_inj_neq, [| t1;t2;mkVar i |]) ]);
(explore [P_APP 1; P_TYPE] t1);
(explore [P_APP 2; P_TYPE] t2);
(reintroduce i);
(loop lit)
]
| Kapp(Eq,[typ;t1;t2]) ->
if is_conv typ (Lazy.force coq_nat) then
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_inj_eq, [| t1;t2;mkVar i |]) ]);
(explore [P_APP 2; P_TYPE] t1);
(explore [P_APP 3; P_TYPE] t2);
(reintroduce i);
(loop lit)
]
else loop lit
| _ -> loop lit
with e when catchable_exception e -> loop lit end
in
let hyps_types = Tacmach.New.pf_hyps_types gl in
loop (List.rev hyps_types)
end
let dec_binop = function
| Zne -> coq_dec_Zne
| Zle -> coq_dec_Zle
| Zlt -> coq_dec_Zlt
| Zge -> coq_dec_Zge
| Zgt -> coq_dec_Zgt
| Le -> coq_dec_le
| Lt -> coq_dec_lt
| Ge -> coq_dec_ge
| Gt -> coq_dec_gt
| _ -> raise Not_found
let not_binop = function
| Zne -> coq_not_Zne
| Zle -> coq_Znot_le_gt
| Zlt -> coq_Znot_lt_ge
| Zge -> coq_Znot_ge_lt
| Zgt -> coq_Znot_gt_le
| Le -> coq_not_le
| Lt -> coq_not_lt
| Ge -> coq_not_ge
| Gt -> coq_not_gt
| _ -> raise Not_found
(** A decidability check : for some [t], could we build a term
of type [decidable t] (i.e. [t\/~t]) ? Otherwise, we raise
[Undecidable]. Note that a successful check implies that
[t] has type Prop.
*)
exception Undecidable
let rec decidability env sigma t =
match destructurate_prop sigma t with
| Kapp(Or,[t1;t2]) ->
mkApp (Lazy.force coq_dec_or, [| t1; t2;
decidability env sigma t1; decidability env sigma t2 |])
| Kapp(And,[t1;t2]) ->
mkApp (Lazy.force coq_dec_and, [| t1; t2;
decidability env sigma t1; decidability env sigma t2 |])
| Kapp(Iff,[t1;t2]) ->
mkApp (Lazy.force coq_dec_iff, [| t1; t2;
decidability env sigma t1; decidability env sigma t2 |])
| Kimp(t1,t2) ->
(* This is the only situation where it's not obvious that [t]
is in Prop. The recursive call on [t2] will ensure that. *)
mkApp (Lazy.force coq_dec_imp,
[| t1; t2; decidability env sigma t1; decidability env sigma t2 |])
| Kapp(Not,[t1]) ->
mkApp (Lazy.force coq_dec_not, [| t1; decidability env sigma t1 |])
| Kapp(Eq,[typ;t1;t2]) ->
begin match destructurate_type env sigma typ with
| Kapp(Z,[]) -> mkApp (Lazy.force coq_dec_eq, [| t1;t2 |])
| Kapp(Nat,[]) -> mkApp (Lazy.force coq_dec_eq_nat, [| t1;t2 |])
| _ -> raise Undecidable
end
| Kapp(op,[t1;t2]) ->
(try mkApp (Lazy.force (dec_binop op), [| t1; t2 |])
with Not_found -> raise Undecidable)
| Kapp(False,[]) -> Lazy.force coq_dec_False
| Kapp(True,[]) -> Lazy.force coq_dec_True
| _ -> raise Undecidable
let fresh_id avoid id gl =
fresh_id_in_env avoid id (Proofview.Goal.env gl)
let onClearedName id tac =
(* We cannot ensure that hyps can be cleared (because of dependencies), *)
(* so renaming may be necessary *)
tclTHEN
(tclTRY (clear [id]))
(Proofview.Goal.nf_enter begin fun gl ->
let id = fresh_id Id.Set.empty id gl in
tclTHEN (introduction id) (tac id)
end)
let onClearedName2 id tac =
tclTHEN
(tclTRY (clear [id]))
(Proofview.Goal.nf_enter begin fun gl ->
let id1 = fresh_id Id.Set.empty (add_suffix id "_left") gl in
let id2 = fresh_id Id.Set.empty (add_suffix id "_right") gl in
tclTHENLIST [ introduction id1; introduction id2; tac id1 id2 ]
end)
let destructure_hyps =
Proofview.Goal.enter begin fun gl ->
let type_of = Tacmach.New.pf_unsafe_type_of gl in
let env = Proofview.Goal.env gl in
let sigma = Proofview.Goal.sigma gl in
let decidability = decidability env sigma in
let rec loop = function
| [] -> (tclTHEN nat_inject coq_omega)
| LocalDef (i,body,typ) :: lit when !letin_flag ->
Proofview.tclEVARMAP >>= fun sigma ->
begin
try
match destructurate_type env sigma typ with
| Kapp(Nat,_) | Kapp(Z,_) ->
let hid = fresh_id Id.Set.empty (add_suffix i "_eqn") gl in
let hty = mk_gen_eq typ (mkVar i) body in
tclTHEN
(assert_by (Name hid) hty reflexivity)
(loop (LocalAssum (hid, hty) :: lit))
| _ -> loop lit
with e when catchable_exception e -> loop lit
end
| decl :: lit -> (* variable without body (or !letin_flag isn't set) *)
let i = NamedDecl.get_id decl in
Proofview.tclEVARMAP >>= fun sigma ->
begin try match destructurate_prop sigma (NamedDecl.get_type decl) with
| Kapp(False,[]) -> elim_id i
| Kapp((Zle|Zge|Zgt|Zlt|Zne),[t1;t2]) -> loop lit
| Kapp(Or,[t1;t2]) ->
(tclTHENS
(elim_id i)
[ onClearedName i (fun i -> (loop (LocalAssum (i,t1)::lit)));
onClearedName i (fun i -> (loop (LocalAssum (i,t2)::lit))) ])
| Kapp(And,[t1;t2]) ->
tclTHEN
(elim_id i)
(onClearedName2 i (fun i1 i2 ->
loop (LocalAssum (i1,t1) :: LocalAssum (i2,t2) :: lit)))
| Kapp(Iff,[t1;t2]) ->
tclTHEN
(elim_id i)
(onClearedName2 i (fun i1 i2 ->
loop (LocalAssum (i1,mkArrow t1 t2) :: LocalAssum (i2,mkArrow t2 t1) :: lit)))
| Kimp(t1,t2) ->
(* t1 and t2 might be in Type rather than Prop.
For t1, the decidability check will ensure being Prop. *)
if Termops.is_Prop sigma (type_of t2)
then
let d1 = decidability t1 in
tclTHENLIST [
(generalize_tac [mkApp (Lazy.force coq_imp_simp,
[| t1; t2; d1; mkVar i|])]);
(onClearedName i (fun i ->
(loop (LocalAssum (i,mk_or (mk_not t1) t2) :: lit))))
]
else
loop lit
| Kapp(Not,[t]) ->
begin match destructurate_prop sigma t with
Kapp(Or,[t1;t2]) ->
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_not_or,[| t1; t2; mkVar i |])]);
(onClearedName i (fun i ->
(loop (LocalAssum (i,mk_and (mk_not t1) (mk_not t2)) :: lit))))
]
| Kapp(And,[t1;t2]) ->
let d1 = decidability t1 in
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_not_and,
[| t1; t2; d1; mkVar i |])]);
(onClearedName i (fun i ->
(loop (LocalAssum (i,mk_or (mk_not t1) (mk_not t2)) :: lit))))
]
| Kapp(Iff,[t1;t2]) ->
let d1 = decidability t1 in
let d2 = decidability t2 in
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_not_iff,
[| t1; t2; d1; d2; mkVar i |])]);
(onClearedName i (fun i ->
(loop (LocalAssum (i, mk_or (mk_and t1 (mk_not t2))
(mk_and (mk_not t1) t2)) :: lit))))
]
| Kimp(t1,t2) ->
(* t2 must be in Prop otherwise ~(t1->t2) wouldn't be ok.
For t1, being decidable implies being Prop. *)
let d1 = decidability t1 in
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_not_imp,
[| t1; t2; d1; mkVar i |])]);
(onClearedName i (fun i ->
(loop (LocalAssum (i,mk_and t1 (mk_not t2)) :: lit))))
]
| Kapp(Not,[t]) ->
let d = decidability t in
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_not_not, [| t; d; mkVar i |])]);
(onClearedName i (fun i -> (loop (LocalAssum (i,t) :: lit))))
]
| Kapp(op,[t1;t2]) ->
(try
let thm = not_binop op in
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force thm, [| t1;t2;mkVar i|])]);
(onClearedName i (fun _ -> loop lit))
]
with Not_found -> loop lit)
| Kapp(Eq,[typ;t1;t2]) ->
if !old_style_flag then begin
match destructurate_type env sigma typ with
| Kapp(Nat,_) ->
tclTHENLIST [
(simplest_elim
(mkApp
(Lazy.force coq_not_eq, [|t1;t2;mkVar i|])));
(onClearedName i (fun _ -> loop lit))
]
| Kapp(Z,_) ->
tclTHENLIST [
(simplest_elim
(mkApp
(Lazy.force coq_not_Zeq, [|t1;t2;mkVar i|])));
(onClearedName i (fun _ -> loop lit))
]
| _ -> loop lit
end else begin
match destructurate_type env sigma typ with
| Kapp(Nat,_) ->
(tclTHEN
(convert_hyp_no_check (NamedDecl.set_type (mkApp (Lazy.force coq_neq, [| t1;t2|]))
decl))
(loop lit))
| Kapp(Z,_) ->
(tclTHEN
(convert_hyp_no_check (NamedDecl.set_type (mkApp (Lazy.force coq_Zne, [| t1;t2|]))
decl))
(loop lit))
| _ -> loop lit
end
| _ -> loop lit
end
| _ -> loop lit
with
| Undecidable -> loop lit
| e when catchable_exception e -> loop lit
end
in
let hyps = Proofview.Goal.hyps gl in
loop hyps
end
let destructure_goal =
Proofview.Goal.enter begin fun gl ->
let concl = Proofview.Goal.concl gl in
let env = Proofview.Goal.env gl in
let sigma = Proofview.Goal.sigma gl in
let decidability = decidability env sigma in
let rec loop t =
Proofview.tclEVARMAP >>= fun sigma ->
let prop () = Proofview.tclUNIT (destructurate_prop sigma t) in
Proofview.V82.wrap_exceptions prop >>= fun prop ->
match prop with
| Kapp(Not,[t]) ->
(tclTHEN
(tclTHEN (unfold sp_not) intro)
destructure_hyps)
| Kimp(a,b) -> (tclTHEN intro (loop b))
| Kapp(False,[]) -> destructure_hyps
| _ ->
let goal_tac =
try
let dec = decidability t in
tclTHEN
(Proofview.Goal.nf_enter begin fun gl ->
refine_app gl (mkApp (Lazy.force coq_dec_not_not, [| t; dec |]))
end)
intro
with Undecidable -> Tactics.elim_type (Lazy.force coq_False)
| e when Proofview.V82.catchable_exception e -> Proofview.tclZERO e
in
tclTHEN goal_tac destructure_hyps
in
(loop concl)
end
let destructure_goal = destructure_goal
let omega_solver =
Proofview.tclUNIT () >>= fun () -> (* delay for [check_required_library] *)
Coqlib.check_required_library ["Coq";"omega";"Omega"];
reset_all ();
destructure_goal
|