1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import BinInt Znat.
Local Open Scope Z_scope.
(** Factorization lemmas *)
Theorem Zred_factor0 n : n = n * 1.
Proof.
now Z.nzsimpl.
Qed.
Theorem Zred_factor1 n : n + n = n * 2.
Proof.
rewrite Z.mul_comm. apply Z.add_diag.
Qed.
Theorem Zred_factor2 n m : n + n * m = n * (1 + m).
Proof.
rewrite Z.mul_add_distr_l; now Z.nzsimpl.
Qed.
Theorem Zred_factor3 n m : n * m + n = n * (1 + m).
Proof.
now Z.nzsimpl.
Qed.
Theorem Zred_factor4 n m p : n * m + n * p = n * (m + p).
Proof.
symmetry; apply Z.mul_add_distr_l.
Qed.
Theorem Zred_factor5 n m : n * 0 + m = m.
Proof.
now Z.nzsimpl.
Qed.
Theorem Zred_factor6 n : n = n + 0.
Proof.
now Z.nzsimpl.
Qed.
(** Other specific variants of theorems dedicated for the Omega tactic *)
Lemma new_var : forall x : Z, exists y : Z, x = y.
Proof.
intros x; now exists x.
Qed.
Lemma OMEGA1 x y : x = y -> 0 <= x -> 0 <= y.
Proof.
now intros ->.
Qed.
Lemma OMEGA2 x y : 0 <= x -> 0 <= y -> 0 <= x + y.
Proof.
Z.order_pos.
Qed.
Lemma OMEGA3 x y k : k > 0 -> x = y * k -> x = 0 -> y = 0.
Proof.
intros LT -> EQ. apply Z.mul_eq_0 in EQ. destruct EQ; now subst.
Qed.
Lemma OMEGA4 x y z : x > 0 -> y > x -> z * y + x <> 0.
Proof.
Z.swap_greater. intros Hx Hxy.
rewrite Z.add_move_0_l, <- Z.mul_opp_l.
destruct (Z.lt_trichotomy (-z) 1) as [LT|[->|GT]].
- intro. revert LT. apply Z.le_ngt, (Z.le_succ_l 0).
apply Z.mul_pos_cancel_r with y; Z.order.
- Z.nzsimpl. Z.order.
- rewrite (Z.mul_lt_mono_pos_r y), Z.mul_1_l in GT; Z.order.
Qed.
Lemma OMEGA5 x y z : x = 0 -> y = 0 -> x + y * z = 0.
Proof.
now intros -> ->.
Qed.
Lemma OMEGA6 x y z : 0 <= x -> y = 0 -> 0 <= x + y * z.
Proof.
intros H ->. now Z.nzsimpl.
Qed.
Lemma OMEGA7 x y z t :
z > 0 -> t > 0 -> 0 <= x -> 0 <= y -> 0 <= x * z + y * t.
Proof.
intros. Z.swap_greater. Z.order_pos.
Qed.
Lemma OMEGA8 x y : 0 <= x -> 0 <= y -> x = - y -> x = 0.
Proof.
intros H1 H2 H3. rewrite <- Z.opp_nonpos_nonneg in H2. Z.order.
Qed.
Lemma OMEGA9 x y z t : y = 0 -> x = z -> y + (- x + z) * t = 0.
Proof.
intros. subst. now rewrite Z.add_opp_diag_l.
Qed.
Lemma OMEGA10 v c1 c2 l1 l2 k1 k2 :
(v * c1 + l1) * k1 + (v * c2 + l2) * k2 =
v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2).
Proof.
rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc.
rewrite <- !Z.add_assoc. f_equal. apply Z.add_shuffle3.
Qed.
Lemma OMEGA11 v1 c1 l1 l2 k1 :
(v1 * c1 + l1) * k1 + l2 = v1 * (c1 * k1) + (l1 * k1 + l2).
Proof.
rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc.
now rewrite Z.add_assoc.
Qed.
Lemma OMEGA12 v2 c2 l1 l2 k2 :
l1 + (v2 * c2 + l2) * k2 = v2 * (c2 * k2) + (l1 + l2 * k2).
Proof.
rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc.
apply Z.add_shuffle3.
Qed.
Lemma OMEGA13 (v l1 l2 : Z) (x : positive) :
v * Zpos x + l1 + (v * Zneg x + l2) = l1 + l2.
Proof.
rewrite Z.add_shuffle1.
rewrite <- Z.mul_add_distr_l, <- Pos2Z.opp_neg, Z.add_opp_diag_r.
now Z.nzsimpl.
Qed.
Lemma OMEGA14 (v l1 l2 : Z) (x : positive) :
v * Zneg x + l1 + (v * Zpos x + l2) = l1 + l2.
Proof.
rewrite Z.add_shuffle1.
rewrite <- Z.mul_add_distr_l, <- Pos2Z.opp_neg, Z.add_opp_diag_r.
now Z.nzsimpl.
Qed.
Lemma OMEGA15 v c1 c2 l1 l2 k2 :
v * c1 + l1 + (v * c2 + l2) * k2 = v * (c1 + c2 * k2) + (l1 + l2 * k2).
Proof.
rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc.
apply Z.add_shuffle1.
Qed.
Lemma OMEGA16 v c l k : (v * c + l) * k = v * (c * k) + l * k.
Proof.
now rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc.
Qed.
Lemma OMEGA17 x y z : Zne x 0 -> y = 0 -> Zne (x + y * z) 0.
Proof.
unfold Zne, not. intros NE EQ. subst. now Z.nzsimpl.
Qed.
Lemma OMEGA18 x y k : x = y * k -> Zne x 0 -> Zne y 0.
Proof.
unfold Zne, not. intros. subst; auto.
Qed.
Lemma OMEGA19 x : Zne x 0 -> 0 <= x + -1 \/ 0 <= x * -1 + -1.
Proof.
unfold Zne. intros Hx. apply Z.lt_gt_cases in Hx.
destruct Hx as [LT|GT].
- right. change (-1) with (-(1)).
rewrite Z.mul_opp_r, <- Z.opp_add_distr. Z.nzsimpl.
rewrite Z.opp_nonneg_nonpos. now apply Z.le_succ_l.
- left. now apply Z.lt_le_pred.
Qed.
Lemma OMEGA20 x y z : Zne x 0 -> y = 0 -> Zne (x + y * z) 0.
Proof.
unfold Zne, not. intros H1 H2 H3; apply H1; rewrite H2 in H3;
simpl in H3; rewrite Z.add_0_r in H3; trivial with arith.
Qed.
Definition fast_Zplus_comm (x y : Z) (P : Z -> Prop)
(H : P (y + x)) := eq_ind_r P H (Z.add_comm x y).
Definition fast_Zplus_assoc_reverse (n m p : Z) (P : Z -> Prop)
(H : P (n + (m + p))) := eq_ind_r P H (Zplus_assoc_reverse n m p).
Definition fast_Zplus_assoc (n m p : Z) (P : Z -> Prop)
(H : P (n + m + p)) := eq_ind_r P H (Z.add_assoc n m p).
Definition fast_Zplus_permute (n m p : Z) (P : Z -> Prop)
(H : P (m + (n + p))) := eq_ind_r P H (Z.add_shuffle3 n m p).
Definition fast_OMEGA10 (v c1 c2 l1 l2 k1 k2 : Z) (P : Z -> Prop)
(H : P (v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2))) :=
eq_ind_r P H (OMEGA10 v c1 c2 l1 l2 k1 k2).
Definition fast_OMEGA11 (v1 c1 l1 l2 k1 : Z) (P : Z -> Prop)
(H : P (v1 * (c1 * k1) + (l1 * k1 + l2))) :=
eq_ind_r P H (OMEGA11 v1 c1 l1 l2 k1).
Definition fast_OMEGA12 (v2 c2 l1 l2 k2 : Z) (P : Z -> Prop)
(H : P (v2 * (c2 * k2) + (l1 + l2 * k2))) :=
eq_ind_r P H (OMEGA12 v2 c2 l1 l2 k2).
Definition fast_OMEGA15 (v c1 c2 l1 l2 k2 : Z) (P : Z -> Prop)
(H : P (v * (c1 + c2 * k2) + (l1 + l2 * k2))) :=
eq_ind_r P H (OMEGA15 v c1 c2 l1 l2 k2).
Definition fast_OMEGA16 (v c l k : Z) (P : Z -> Prop)
(H : P (v * (c * k) + l * k)) := eq_ind_r P H (OMEGA16 v c l k).
Definition fast_OMEGA13 (v l1 l2 : Z) (x : positive) (P : Z -> Prop)
(H : P (l1 + l2)) := eq_ind_r P H (OMEGA13 v l1 l2 x).
Definition fast_OMEGA14 (v l1 l2 : Z) (x : positive) (P : Z -> Prop)
(H : P (l1 + l2)) := eq_ind_r P H (OMEGA14 v l1 l2 x).
Definition fast_Zred_factor0 (x : Z) (P : Z -> Prop)
(H : P (x * 1)) := eq_ind_r P H (Zred_factor0 x).
Definition fast_Zopp_eq_mult_neg_1 (x : Z) (P : Z -> Prop)
(H : P (x * -1)) := eq_ind_r P H (Z.opp_eq_mul_m1 x).
Definition fast_Zmult_comm (x y : Z) (P : Z -> Prop)
(H : P (y * x)) := eq_ind_r P H (Z.mul_comm x y).
Definition fast_Zopp_plus_distr (x y : Z) (P : Z -> Prop)
(H : P (- x + - y)) := eq_ind_r P H (Z.opp_add_distr x y).
Definition fast_Zopp_involutive (x : Z) (P : Z -> Prop) (H : P x) :=
eq_ind_r P H (Z.opp_involutive x).
Definition fast_Zopp_mult_distr_r (x y : Z) (P : Z -> Prop)
(H : P (x * - y)) := eq_ind_r P H (Zopp_mult_distr_r x y).
Definition fast_Zmult_plus_distr_l (n m p : Z) (P : Z -> Prop)
(H : P (n * p + m * p)) := eq_ind_r P H (Z.mul_add_distr_r n m p).
Definition fast_Zmult_opp_comm (x y : Z) (P : Z -> Prop)
(H : P (x * - y)) := eq_ind_r P H (Z.mul_opp_comm x y).
Definition fast_Zmult_assoc_reverse (n m p : Z) (P : Z -> Prop)
(H : P (n * (m * p))) := eq_ind_r P H (Zmult_assoc_reverse n m p).
Definition fast_Zred_factor1 (x : Z) (P : Z -> Prop)
(H : P (x * 2)) := eq_ind_r P H (Zred_factor1 x).
Definition fast_Zred_factor2 (x y : Z) (P : Z -> Prop)
(H : P (x * (1 + y))) := eq_ind_r P H (Zred_factor2 x y).
Definition fast_Zred_factor3 (x y : Z) (P : Z -> Prop)
(H : P (x * (1 + y))) := eq_ind_r P H (Zred_factor3 x y).
Definition fast_Zred_factor4 (x y z : Z) (P : Z -> Prop)
(H : P (x * (y + z))) := eq_ind_r P H (Zred_factor4 x y z).
Definition fast_Zred_factor5 (x y : Z) (P : Z -> Prop)
(H : P y) := eq_ind_r P H (Zred_factor5 x y).
Definition fast_Zred_factor6 (x : Z) (P : Z -> Prop)
(H : P (x + 0)) := eq_ind_r P H (Zred_factor6 x).
Theorem intro_Z :
forall n:nat, exists y : Z, Z.of_nat n = y /\ 0 <= y * 1 + 0.
Proof.
intros n; exists (Z.of_nat n); split; trivial.
rewrite Z.mul_1_r, Z.add_0_r. apply Nat2Z.is_nonneg.
Qed.
|