aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins/nsatz/ideal.ml
blob: f8fc943713d294ab44ee0d1e62289ee829dcbe9c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(* Nullstellensatz with Groebner basis computation

We use a sparse representation for polynomials:
a monomial is an array of exponents (one for each variable)
with its degree in head
a polynomial is a sorted list of (coefficient, monomial)

 *)

open Utile

exception NotInIdeal

(***********************************************************************
   Global options
*)
let lexico = ref false

(* division of tail monomials *)

let reduire_les_queues = false

(* divide first with new polynomials *)

let nouveaux_pol_en_tete = false

type metadata = {
  name_var : string list;
}

module Monomial :
sig
type t
val repr : t -> int array
val make : int array -> t
val deg : t -> int
val nvar : t -> int
val var_mon : int -> int -> t
val mult_mon : t -> t -> t
val compare_mon : t -> t -> int
val div_mon : t -> t -> t
val div_mon_test : t -> t -> bool
val ppcm_mon : t -> t -> t
val const_mon : int -> t
end =
struct
type t = int array
type mon = t
let repr m = m
let make m = m
let nvar (m : mon) =  Array.length m - 1

let deg (m : mon) = m.(0)

let mult_mon (m : mon) (m' : mon) =
  let d = nvar m in
  let m'' = Array.make (d+1) 0 in
  for i=0 to d do
    m''.(i)<- (m.(i)+m'.(i));
  done;
  m''


let compare_mon (m : mon) (m' : mon) =
  let d = nvar m in
  if !lexico
  then (
    (* Comparaison de monomes avec ordre du degre lexicographique = on commence par regarder la 1ere variable*)
    let res=ref 0 in
    let i=ref 1 in (* 1 si lexico pur 0 si degre*)
    while (!res=0) && (!i<=d) do
      res:= (Int.compare m.(!i) m'.(!i));
      i:=!i+1;
    done;
    !res)
  else (
     (* degre lexicographique inverse *)
    match Int.compare m.(0) m'.(0) with
    | 0 -> (* meme degre total *)
	let res=ref 0 in
	let i=ref d in
	while (!res=0) && (!i>=1) do
	  res:= - (Int.compare m.(!i) m'.(!i));
	  i:=!i-1;
	done;
	!res
    | x -> x)

let div_mon m m' =
  let d = nvar m in
  let m'' = Array.make (d+1) 0 in
  for i=0 to d do
    m''.(i)<- (m.(i)-m'.(i));
  done;
  m''

(* m' divides m  *)
let div_mon_test m m' =
  let d = nvar m in
  let res=ref true in
  let i=ref 0 in (*il faut que le degre total soit bien mis sinon, i=ref 1*)
  while (!res) && (!i<=d) do
    res:= (m.(!i) >= m'.(!i));
    i:=succ !i;
  done;
  !res

let set_deg m =
  let d = nvar m in
  m.(0)<-0;
  for i=1 to d do
    m.(0)<-  m.(i)+m.(0);
  done;
  m

(* lcm *)
let ppcm_mon m m' =
  let d = nvar m in
  let m'' = Array.make (d+1) 0 in
  for i=1 to d do
    m''.(i)<- (max m.(i) m'.(i));
  done;
  set_deg m''

(* returns a constant polynom ial with d variables *)
let const_mon d =
  let m = Array.make (d+1) 0 in
  let m = set_deg m in 
  m

let var_mon d i =
  let m = Array.make (d+1) 0 in
  m.(i) <- 1;
  let m = set_deg m in 
  m

end

(***********************************************************************
   Functor
*)

module Make (P:Polynom.S) = struct

  type coef = P.t
  let coef0 = P.of_num (Num.Int 0)
  let coef1 = P.of_num (Num.Int 1)
  let string_of_coef c = "["^(P.to_string c)^"]"

(***********************************************************************
   Monomials
 array of integers, first is the degree
*)

open Monomial

type mon = Monomial.t
type deg = int
type poly = (coef * mon) list
type polynom = {
  pol : poly;
  num : int;
}

(**********************************************************************
  Polynomials
  list of (coefficient, monomial) decreasing order 
*)

let repr p = p

let equal =
  Util.List.for_all2eq
    (fun (c1,m1) (c2,m2) -> P.equal c1 c2 && m1=m2)

let hash p =
  let c = List.map fst p in
  let m = List.map snd p in
  List.fold_left (fun h p -> h * 17 + P.hash p) (Hashtbl.hash m) c

module Hashpol = Hashtbl.Make(
  struct
    type t = poly
    let equal = equal
    let hash = hash
  end)


(* A pretty printer for polynomials, with Maple-like syntax. *)

let getvar lv i =
  try (List.nth lv i)
  with Failure _ -> (List.fold_left (fun r x -> r^" "^x) "lv= " lv)
    ^" i="^(string_of_int i)

let string_of_pol zeroP hdP tlP coefterm monterm string_of_coef
    dimmon string_of_exp lvar p =


  let rec string_of_mon m coefone =
    let s=ref [] in
    for i=1 to (dimmon m) do
      (match (string_of_exp m i) with
        "0" -> ()
      | "1" -> s:= (!s) @ [(getvar lvar (i-1))]
      | e -> s:= (!s) @ [((getvar lvar (i-1)) ^ "^" ^ e)]);
    done;
    (match !s with
      [] -> if coefone 
      then  "1"
      else ""
    | l -> if coefone 
    then  (String.concat "*" l)
    else ( "*" ^
           (String.concat "*" l)))
  and string_of_term t start = let a = coefterm t and m = monterm t in
  match (string_of_coef a) with
    "0" -> ""
  | "1" ->(match start with
      true -> string_of_mon m true
    |false -> ( "+ "^
                (string_of_mon m true)))
  | "-1" ->( "-" ^" "^(string_of_mon m true))
  | c -> if (String.get c 0)='-'
  then ( "- "^
         (String.sub c 1 
            ((String.length c)-1))^
         (string_of_mon m false))
  else (match start with
    true -> ( c^(string_of_mon m false))
  |false -> ( "+ "^
              c^(string_of_mon m false)))
  and stringP p start = 
    if (zeroP p)
    then (if start 
    then ("0")
    else "")
    else ((string_of_term (hdP p) start)^
          " "^
          (stringP (tlP p) false))
  in 
  (stringP p true)

let stringP metadata (p : poly) =
  string_of_pol 
    (fun p -> match p with [] -> true | _ -> false)
    (fun p -> match p with (t::p) -> t |_ -> failwith "print_pol dans dansideal")
    (fun p -> match p with (t::p) -> p |_ -> failwith "print_pol dans dansideal")
    (fun (a,m) -> a)
    (fun (a,m) -> m)
    string_of_coef
    (fun m -> (Array.length (Monomial.repr m))-1)
    (fun m i -> (string_of_int ((Monomial.repr m).(i))))
    metadata.name_var
    p

let nsP2 = 10

let stringPcut metadata (p : poly) =
  (*Polynomesrec.nsP1:=20;*)
  let res =
    if (List.length p)> nsP2
    then (stringP metadata [List.hd p])^" + "^(string_of_int (List.length p))^" terms"
    else  stringP metadata p in
  (*Polynomesrec.nsP1:= max_int;*)
  res

(* Operations *)

let zeroP = []

(* returns a constant polynom ial with d variables *)
let polconst d c =
  let m = const_mon d in
  [(c,m)]

let plusP p q =
  let rec plusP p q accu = match p, q with
  | [], [] -> List.rev accu
  | [], _ -> List.rev_append accu q
  | _, [] -> List.rev_append accu p
  | t :: p', t' :: q' ->
    let c = compare_mon (snd t) (snd t') in
    if c > 0 then plusP p' q (t :: accu)
    else if c < 0 then plusP p q' (t' :: accu)
    else
      let c = P.plusP (fst t) (fst t') in
      if P.equal c coef0 then plusP p' q' accu
      else plusP p' q' ((c, (snd t)) :: accu)
  in
  plusP p q []

(* multiplication by (a,monomial) *)
let mult_t_pol a m p =
  let map (b, m') = (P.multP a b, mult_mon m m') in
  CList.map map p

let coef_of_int x = P.of_num (Num.Int x)

(* variable i *)
let gen d i =
  let m = var_mon d i in 
  [((coef_of_int 1),m)]

let oppP p =
  let rec oppP p =
    match p with
      [] -> []
    |(b,m')::p -> ((P.oppP b),m')::(oppP p)
  in oppP p

(* multiplication by a coefficient *)
let emultP a p =
  let rec emultP p =
    match p with
      [] -> []
    |(b,m')::p -> ((P.multP a b),m')::(emultP p)
  in emultP p

let multP p q =
  let rec aux p accu =
    match p with
      [] -> accu
    |(a,m)::p' -> aux p' (plusP (mult_t_pol a m q) accu)
  in aux p []

let puisP p n=
  match p with
    [] -> []
  |_ ->
    if n = 0 then
      let d = nvar (snd (List.hd p)) in
      [coef1, const_mon d]
    else
      let rec puisP p n =
        if n = 1 then p
        else
          let q = puisP p (n / 2) in
          let q = multP q q in
          if n mod 2 = 0 then q else multP p q
      in puisP p n
	
(***********************************************************************
   Division of polynomials
 *)

type table = {
  hmon : (mon, poly) Hashtbl.t option;
  (* coefficients of polynomials when written with initial polynomials *)
  coefpoldep : ((int * int), poly) Hashtbl.t;
  mutable nallpol : int;
  mutable allpol : polynom array;
  (* list of initial polynomials *)
}

let pgcdpos a b  = P.pgcdP a b

let polynom0 = { pol = []; num = 0 }
   
let ppol p = p.pol

let lm p = snd (List.hd (ppol p))

let new_allpol table p =
  table.nallpol <- table.nallpol + 1;
  if table.nallpol >= Array.length table.allpol
  then
    table.allpol <- Array.append table.allpol (Array.make table.nallpol polynom0);
  let p = { pol = p; num = table.nallpol } in
  table.allpol.(table.nallpol) <- p;
  p

(* returns a polynomial of l whose head monomial divides m, else [] *)

let rec selectdiv m l =
  match l with
    [] -> polynom0
  |q::r -> let m'= snd (List.hd (ppol q)) in
    match (div_mon_test m m') with
      true -> q
    |false -> selectdiv m r

let div_pol p q a b m = 
  plusP (emultP a p) (mult_t_pol b m q)

let find_hmon table m = match table.hmon with
| None -> raise Not_found
| Some hmon -> Hashtbl.find hmon m

let add_hmon table m q =
match table.hmon with
| None -> ()
| Some hmon -> Hashtbl.add hmon m q

let selectdiv table m l =
  try find_hmon table m
  with Not_found ->
    let q = selectdiv m l in
    let q = ppol q in
    match q with
    | [] -> q
    | _ :: _ ->
      let () = add_hmon table m q in
      q

let div_coef a b = P.divP a b


(* remainder r of the division of p by polynomials of l, returns (c,r) where c is the coefficient for pseudo-division : c p = sum_i q_i p_i + r *)

let reduce2 table p l =
  let l = if nouveaux_pol_en_tete then List.rev l else l in
  let rec reduce p =
    match p with
      [] -> (coef1,[])
    |t::p' ->
	let (a,m)=t in
      let q = selectdiv table m l in
      match q with
	[] -> if reduire_les_queues
	then
	  let (c,r)=(reduce p') in
          (c,((P.multP a c,m)::r))
	else (coef1,p)
      |(b,m')::q' -> 
          let c=(pgcdpos a b) in
          let a'= (div_coef b c) in
          let b'=(P.oppP (div_coef a c)) in
          let (e,r)=reduce (div_pol p' q' a' b'
                              (div_mon m m')) in
          (P.multP a' e,r)
  in let (c,r) = reduce p in
  (c,r)

(* coef of q in p = sum_i c_i*q_i *)
let coefpoldep_find table p q =
  try (Hashtbl.find table.coefpoldep (p.num,q.num))
  with Not_found -> []

let coefpoldep_set table p q c =
  Hashtbl.add table.coefpoldep (p.num,q.num) c

(* keeps trace in coefpoldep 
   divides without pseudodivisions *)

let reduce2_trace table p l lcp =
  let lp = l in
  let l = if nouveaux_pol_en_tete then List.rev l else l in
  (* rend (lq,r), ou r = p + sum(lq) *)
  let rec reduce p =
    match p with
      [] -> ([],[])
    |t::p' ->
	let (a,m)=t in
      let q = selectdiv table m l in
      match q with
	[] ->
	  if reduire_les_queues
	  then
	    let (lq,r)=(reduce p') in
            (lq,((a,m)::r))
	  else ([],p)
      |(b,m')::q' -> 
          let b'=(P.oppP (div_coef a b)) in
          let m''= div_mon m m' in
          let p1=plusP p' (mult_t_pol b' m'' q') in
          let (lq,r)=reduce p1 in
          ((b',m'',q)::lq, r)
  in let (lq,r) = reduce p in
  (List.map2
     (fun c0 q ->
       let c =
	 List.fold_left
	   (fun x (a,m,s) ->
	     if equal s (ppol q)
	     then
	       plusP x (mult_t_pol a m (polconst (nvar m) (coef_of_int 1)))
	     else x)
	   c0
	   lq in
       c)
     lcp
     lp,
   r)     

(***********************************************************************
   Completion
 *)

let spol0 ps qs=
  let p = ppol ps in
  let q = ppol qs in
  let m = snd (List.hd p) in
  let m'= snd (List.hd q) in
  let a = fst (List.hd p) in
  let b = fst (List.hd q) in
  let p'= List.tl p in
  let q'= List.tl q in
  let c = (pgcdpos a b) in
  let m''=(ppcm_mon m m') in
  let m1 = div_mon m'' m in
  let m2 = div_mon m'' m' in
  let fsp p' q' =
    plusP 
      (mult_t_pol 
	 (div_coef b c)
	 m1 p')
      (mult_t_pol 
	 (P.oppP (div_coef a c))
         m2 q') in
  let sp = fsp p' q' in
  let p0 = fsp (polconst (nvar m) (coef_of_int 1)) [] in
  let q0 = fsp [] (polconst (nvar m) (coef_of_int 1)) in
  (sp, p0, q0)

let etrangers p p'=
  let m = snd (List.hd p) in
  let m'= snd (List.hd p') in
  let d = nvar m in
  let res=ref true in
  let i=ref 1 in
  while (!res) && (!i<=d) do
    res:= ((Monomial.repr m).(!i) = 0) || ((Monomial.repr m').(!i)=0);
      i:=!i+1;
  done;
  !res

let addS x l =    l @ [x] (* oblige de mettre en queue sinon le certificat deconne *)

(***********************************************************************
 critical pairs/s-polynomials
 *)

module CPair =
struct
type t = (int * int) * Monomial.t
let compare ((i1, j1), m1) ((i2, j2), m2) = compare_mon m2 m1
end

module Heap :
sig
  type elt = (int * int) * Monomial.t
  type t
  val length : t -> int
  val empty : t
  val add : elt -> t -> t
  val pop : t -> (elt * t) option
end =
struct
  include Heap.Functional(CPair)
  let length h = fold (fun _ accu -> accu + 1) h 0
  let pop h = try Some (maximum h, remove h) with Heap.EmptyHeap -> None
end

let ord i j =
  if i<j then (i,j) else (j,i)
    
let cpair p q accu =
  if etrangers (ppol p) (ppol q) then accu
  else Heap.add (ord p.num q.num, ppcm_mon (lm p) (lm q)) accu

let cpairs1 p lq accu =
  List.fold_left (fun r q -> cpair p q r) accu lq

let rec cpairs l accu = match l with
| [] | [_] -> accu
| p :: l ->
  cpairs l (cpairs1 p l accu)

let critere3 table ((i,j),m) lp lcp =
  List.exists
    (fun h ->
      h.num <> i && h.num <> j
        && (div_mon_test m (lm h))
	&& (h.num < j
	   || not (m = ppcm_mon 
		   (lm (table.allpol.(i)))
		   (lm h)))
	&& (h.num < i
	  || not (m = ppcm_mon 
		   (lm (table.allpol.(j)))
		   (lm h))))
    lp

let infobuch p q =
  (info (fun () -> Printf.sprintf "[%i,%i]" (List.length p) (Heap.length q)))

(* in lp new polynomials are at the end *)

type certificate =
    { coef : coef; power : int;
      gb_comb : poly list list; last_comb : poly list }

type current_problem = {
  cur_poly : poly;
  cur_coef : coef;
}

exception NotInIdealUpdate of current_problem

let test_dans_ideal cur_pb table metadata p lp len0 =
  (** Invariant: [lp] is [List.tl (Array.to_list table.allpol)] *)
  let (c,r) = reduce2 table cur_pb.cur_poly lp in
  info (fun () -> "remainder: "^(stringPcut metadata r));
  let cur_pb = {
    cur_coef = P.multP cur_pb.cur_coef c;
    cur_poly = r;
  } in
  match r with
  | [] ->
    sinfo "polynomial reduced to 0";
    let lcp = List.map (fun q -> []) lp in
    let c = cur_pb.cur_coef in
    let (lcq,r) = reduce2_trace table (emultP c p) lp lcp in
    sinfo "r ok";
    info (fun () -> "r: "^(stringP metadata r));
    info (fun () ->
      let fold res cq q = plusP res (multP cq (ppol q)) in
      let res = List.fold_left2 fold (emultP c p) lcq lp in
      "verif sum: "^(stringP metadata res)
    );
    info (fun () -> "coefficient: "^(stringP metadata (polconst 1 c)));
    let coefficient_multiplicateur = c in
    let liste_des_coefficients_intermediaires =
      let rec aux accu lp =
        match lp with
        | [] -> accu
        | p :: lp ->
          let elt = List.map (fun q -> coefpoldep_find table p q) lp in
          aux (elt :: accu) lp
      in
      let lci = aux [] (List.rev lp) in
      CList.skipn len0 lci
    in
    let liste_des_coefficients =
      List.rev_map (fun cq -> emultP (coef_of_int (-1)) cq) lcq
    in
      {coef = coefficient_multiplicateur;
      power = 1;
      gb_comb = liste_des_coefficients_intermediaires;
      last_comb = liste_des_coefficients}
  | _ -> raise (NotInIdealUpdate cur_pb)

let deg_hom p =
  match p with
  | [] -> -1
  | (a,m)::_ -> Monomial.deg m

let pbuchf table metadata cur_pb homogeneous (lp, lpc) p =
  (** Invariant: [lp] is [List.tl (Array.to_list table.allpol)] *)
  sinfo "computation of the Groebner basis";
  let () = match table.hmon with
  | None -> ()
  | Some hmon -> Hashtbl.clear hmon
  in
  let len0 = List.length lp in
  let rec pbuchf cur_pb (lp, lpc) =
      infobuch lp lpc;
      match Heap.pop lpc with
      | None ->
	  test_dans_ideal cur_pb table metadata p lp len0
      | Some (((i, j), m), lpc2) ->
	  if critere3 table ((i,j),m) lp lpc2
	  then (sinfo "c"; pbuchf cur_pb (lp, lpc2))
	  else    
	    let (a0, p0, q0) = spol0 table.allpol.(i) table.allpol.(j) in
	    if homogeneous && a0 <>[] && deg_hom a0 > deg_hom cur_pb.cur_poly
	    then (sinfo "h"; pbuchf cur_pb (lp, lpc2))
	    else
(*	      let sa = a.sugar in*)
              match reduce2 table a0 lp with
		_, [] -> sinfo "0";pbuchf cur_pb (lp, lpc2)
              | ca, _ :: _ ->
(*		info "pair reduced\n";*)
                  let map q =
                    let r =
                      if q.num == i then p0 else if q.num == j then q0 else []
                    in
                    emultP ca r
                  in
                  let lcp = List.map map lp in
                  let (lca, a0) = reduce2_trace table (emultP ca a0) lp lcp in
(*		info "paire re-reduced";*)
                  let a = new_allpol table a0 in
		  List.iter2 (fun c q -> coefpoldep_set table a q c) lca lp;
		  let a0 = a in
		  info (fun () -> "new polynomial: "^(stringPcut metadata (ppol a0)));
                  let nlp = addS a0 lp in
		  try test_dans_ideal cur_pb table metadata p nlp len0
		  with NotInIdealUpdate cur_pb ->
		    let newlpc = cpairs1 a0 lp lpc2 in
		    pbuchf cur_pb (nlp, newlpc)
  in pbuchf cur_pb (lp, lpc)
    
let is_homogeneous p =
  match p with
  | [] -> true
  | (a,m)::p1 -> let d = deg m in
    List.for_all (fun (b,m') -> deg m' =d) p1
    
(* returns
   c
   lp = [pn;...;p1]
   p
   lci = [[a(n+1,n);...;a(n+1,1)];
   [a(n+2,n+1);...;a(n+2,1)];
   ...
   [a(n+m,n+m-1);...;a(n+m,1)]]
   lc = [qn+m; ... q1]

   such that
   c*p = sum qi*pi 
   where pn+k = a(n+k,n+k-1)*pn+k-1 + ... + a(n+k,1)* p1
 *)

let in_ideal metadata d lp p =
  let table = {
    hmon = None;
    coefpoldep = Hashtbl.create 51;
    nallpol = 0;
    allpol = Array.make 1000 polynom0;
  } in
  let homogeneous = List.for_all is_homogeneous (p::lp) in
  if homogeneous then sinfo "homogeneous polynomials";
  info (fun () -> "p: "^(stringPcut metadata p));
  info (fun () -> "lp:\n"^(List.fold_left (fun r p -> r^(stringPcut metadata p)^"\n") "" lp));

  let lp = List.map (fun c -> new_allpol table c) lp in
  List.iter (fun p -> coefpoldep_set table p p (polconst d (coef_of_int 1))) lp;
  let cur_pb = {
    cur_poly = p;
    cur_coef = coef1;
  } in

  let cert =
    try pbuchf table metadata cur_pb homogeneous (lp, Heap.empty) p
    with NotInIdealUpdate cur_pb ->
      try pbuchf table metadata cur_pb homogeneous (lp, cpairs lp Heap.empty) p
      with NotInIdealUpdate _ -> raise NotInIdeal
    in
  sinfo "computed";

  cert

end