1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*
Tactic nsatz: proofs of polynomials equalities in an integral domain
(commutative ring without zero divisor).
Examples: see test-suite/success/Nsatz.v
Reification is done using type classes, defined in Ncring_tac.v
*)
Require Import List.
Require Import Setoid.
Require Import BinPos.
Require Import BinList.
Require Import Znumtheory.
Require Export Morphisms Setoid Bool.
Require Export Algebra_syntax.
Require Export Ncring.
Require Export Ncring_initial.
Require Export Ncring_tac.
Require Export Integral_domain.
Require Import DiscrR.
Declare ML Module "nsatz_plugin".
Section nsatz1.
Context {R:Type}`{Rid:Integral_domain R}.
Lemma psos_r1b: forall x y:R, x - y == 0 -> x == y.
intros x y H; setoid_replace x with ((x - y) + y); simpl;
[setoid_rewrite H | idtac]; simpl. cring. cring.
Qed.
Lemma psos_r1: forall x y, x == y -> x - y == 0.
intros x y H; simpl; setoid_rewrite H; simpl; cring.
Qed.
Lemma nsatzR_diff: forall x y:R, not (x == y) -> not (x - y == 0).
intros.
intro; apply H.
simpl; setoid_replace x with ((x - y) + y). simpl.
setoid_rewrite H0.
simpl; cring.
simpl. simpl; cring.
Qed.
(* adpatation du code de Benjamin aux setoides *)
Require Import ZArith.
Require Export Ring_polynom.
Require Export InitialRing.
Definition PolZ := Pol Z.
Definition PEZ := PExpr Z.
Definition P0Z : PolZ := P0 (C:=Z) 0%Z.
Definition PolZadd : PolZ -> PolZ -> PolZ :=
@Padd Z 0%Z Z.add Zeq_bool.
Definition PolZmul : PolZ -> PolZ -> PolZ :=
@Pmul Z 0%Z 1%Z Z.add Z.mul Zeq_bool.
Definition PolZeq := @Peq Z Zeq_bool.
Definition norm :=
@norm_aux Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp Zeq_bool.
Fixpoint mult_l (la : list PEZ) (lp: list PolZ) : PolZ :=
match la, lp with
| a::la, p::lp => PolZadd (PolZmul (norm a) p) (mult_l la lp)
| _, _ => P0Z
end.
Fixpoint compute_list (lla: list (list PEZ)) (lp:list PolZ) :=
match lla with
| List.nil => lp
| la::lla => compute_list lla ((mult_l la lp)::lp)
end.
Definition check (lpe:list PEZ) (qe:PEZ) (certif: list (list PEZ) * list PEZ) :=
let (lla, lq) := certif in
let lp := List.map norm lpe in
PolZeq (norm qe) (mult_l lq (compute_list lla lp)).
(* Correction *)
Definition PhiR : list R -> PolZ -> R :=
(Pphi ring0 add mul
(InitialRing.gen_phiZ ring0 ring1 add mul opp)).
Definition PEevalR : list R -> PEZ -> R :=
PEeval ring0 ring1 add mul sub opp
(gen_phiZ ring0 ring1 add mul opp)
N.to_nat pow.
Lemma P0Z_correct : forall l, PhiR l P0Z = 0.
Proof. trivial. Qed.
Lemma Rext: ring_eq_ext add mul opp _==_.
Proof.
constructor; solve_proper.
Qed.
Lemma Rset : Setoid_Theory R _==_.
apply ring_setoid.
Qed.
Definition Rtheory:ring_theory ring0 ring1 add mul sub opp _==_.
apply mk_rt.
apply ring_add_0_l.
apply ring_add_comm.
apply ring_add_assoc.
apply ring_mul_1_l.
apply cring_mul_comm.
apply ring_mul_assoc.
apply ring_distr_l.
apply ring_sub_def.
apply ring_opp_def.
Defined.
Lemma PolZadd_correct : forall P' P l,
PhiR l (PolZadd P P') == ((PhiR l P) + (PhiR l P')).
Proof.
unfold PolZadd, PhiR. intros. simpl.
refine (Padd_ok Rset Rext (Rth_ARth Rset Rext Rtheory)
(gen_phiZ_morph Rset Rext Rtheory) _ _ _).
Qed.
Lemma PolZmul_correct : forall P P' l,
PhiR l (PolZmul P P') == ((PhiR l P) * (PhiR l P')).
Proof.
unfold PolZmul, PhiR. intros.
refine (Pmul_ok Rset Rext (Rth_ARth Rset Rext Rtheory)
(gen_phiZ_morph Rset Rext Rtheory) _ _ _).
Qed.
Lemma R_power_theory
: Ring_theory.power_theory ring1 mul _==_ N.to_nat pow.
apply Ring_theory.mkpow_th. unfold pow. intros. rewrite Nnat.N2Nat.id.
reflexivity. Qed.
Lemma norm_correct :
forall (l : list R) (pe : PEZ), PEevalR l pe == PhiR l (norm pe).
Proof.
intros;apply (norm_aux_spec Rset Rext (Rth_ARth Rset Rext Rtheory)
(gen_phiZ_morph Rset Rext Rtheory) R_power_theory).
Qed.
Lemma PolZeq_correct : forall P P' l,
PolZeq P P' = true ->
PhiR l P == PhiR l P'.
Proof.
intros;apply
(Peq_ok Rset Rext (gen_phiZ_morph Rset Rext Rtheory));trivial.
Qed.
Fixpoint Cond0 (A:Type) (Interp:A->R) (l:list A) : Prop :=
match l with
| List.nil => True
| a::l => Interp a == 0 /\ Cond0 A Interp l
end.
Lemma mult_l_correct : forall l la lp,
Cond0 PolZ (PhiR l) lp ->
PhiR l (mult_l la lp) == 0.
Proof.
induction la;simpl;intros. cring.
destruct lp;trivial. simpl. cring.
simpl in H;destruct H.
rewrite PolZadd_correct.
simpl. rewrite PolZmul_correct. simpl. rewrite H.
rewrite IHla. cring. trivial.
Qed.
Lemma compute_list_correct : forall l lla lp,
Cond0 PolZ (PhiR l) lp ->
Cond0 PolZ (PhiR l) (compute_list lla lp).
Proof.
induction lla;simpl;intros;trivial.
apply IHlla;simpl;split;trivial.
apply mult_l_correct;trivial.
Qed.
Lemma check_correct :
forall l lpe qe certif,
check lpe qe certif = true ->
Cond0 PEZ (PEevalR l) lpe ->
PEevalR l qe == 0.
Proof.
unfold check;intros l lpe qe (lla, lq) H2 H1.
apply PolZeq_correct with (l:=l) in H2.
rewrite norm_correct, H2.
apply mult_l_correct.
apply compute_list_correct.
clear H2 lq lla qe;induction lpe;simpl;trivial.
simpl in H1;destruct H1.
rewrite <- norm_correct;auto.
Qed.
(* fin *)
Definition R2:= 1 + 1.
Fixpoint IPR p {struct p}: R :=
match p with
xH => ring1
| xO xH => 1+1
| xO p1 => R2*(IPR p1)
| xI xH => 1+(1+1)
| xI p1 => 1+(R2*(IPR p1))
end.
Definition IZR1 z :=
match z with Z0 => 0
| Zpos p => IPR p
| Zneg p => -(IPR p)
end.
Fixpoint interpret3 t fv {struct t}: R :=
match t with
| (PEadd t1 t2) =>
let v1 := interpret3 t1 fv in
let v2 := interpret3 t2 fv in (v1 + v2)
| (PEmul t1 t2) =>
let v1 := interpret3 t1 fv in
let v2 := interpret3 t2 fv in (v1 * v2)
| (PEsub t1 t2) =>
let v1 := interpret3 t1 fv in
let v2 := interpret3 t2 fv in (v1 - v2)
| (PEopp t1) =>
let v1 := interpret3 t1 fv in (-v1)
| (PEpow t1 t2) =>
let v1 := interpret3 t1 fv in pow v1 (N.to_nat t2)
| (PEc t1) => (IZR1 t1)
| PEO => 0
| PEI => 1
| (PEX _ n) => List.nth (pred (Pos.to_nat n)) fv 0
end.
End nsatz1.
Ltac equality_to_goal H x y:=
(* eliminate trivial hypotheses, but it takes time!:
let h := fresh "nH" in
(assert (h:equality x y);
[solve [cring] | clear H; clear h])
|| *) try (generalize (@psos_r1 _ _ _ _ _ _ _ _ _ _ _ x y H); clear H)
.
Ltac equalities_to_goal :=
lazymatch goal with
| H: (_ ?x ?y) |- _ => equality_to_goal H x y
| H: (_ _ ?x ?y) |- _ => equality_to_goal H x y
| H: (_ _ _ ?x ?y) |- _ => equality_to_goal H x y
| H: (_ _ _ _ ?x ?y) |- _ => equality_to_goal H x y
(* extension possible :-) *)
| H: (?x == ?y) |- _ => equality_to_goal H x y
end.
(* lp est incluse dans fv. La met en tete. *)
Ltac parametres_en_tete fv lp :=
match fv with
| (@nil _) => lp
| (@cons _ ?x ?fv1) =>
let res := AddFvTail x lp in
parametres_en_tete fv1 res
end.
Ltac append1 a l :=
match l with
| (@nil _) => constr:(cons a l)
| (cons ?x ?l) => let l' := append1 a l in constr:(cons x l')
end.
Ltac rev l :=
match l with
|(@nil _) => l
| (cons ?x ?l) => let l' := rev l in append1 x l'
end.
Ltac nsatz_call_n info nparam p rr lp kont :=
(* idtac "Trying power: " rr;*)
let ll := constr:(PEc info :: PEc nparam :: PEpow p rr :: lp) in
(* idtac "calcul...";*)
nsatz_compute ll;
(* idtac "done";*)
match goal with
| |- (?c::PEpow _ ?r::?lq0)::?lci0 = _ -> _ =>
intros _;
let lci := fresh "lci" in
set (lci:=lci0);
let lq := fresh "lq" in
set (lq:=lq0);
kont c rr lq lci
end.
Ltac nsatz_call radicalmax info nparam p lp kont :=
let rec try_n n :=
lazymatch n with
| 0%N => fail
| _ =>
(let r := eval compute in (N.sub radicalmax (N.pred n)) in
nsatz_call_n info nparam p r lp kont) ||
let n' := eval compute in (N.pred n) in try_n n'
end in
try_n radicalmax.
Ltac lterm_goal g :=
match g with
?b1 == ?b2 => constr:(b1::b2::nil)
| ?b1 == ?b2 -> ?g => let l := lterm_goal g in constr:(b1::b2::l)
end.
Ltac reify_goal l le lb:=
match le with
nil => idtac
| ?e::?le1 =>
match lb with
?b::?lb1 => (* idtac "b="; idtac b;*)
let x := fresh "B" in
set (x:= b) at 1;
change x with (interpret3 e l);
clear x;
reify_goal l le1 lb1
end
end.
Ltac get_lpol g :=
match g with
(interpret3 ?p _) == _ => constr:(p::nil)
| (interpret3 ?p _) == _ -> ?g =>
let l := get_lpol g in constr:(p::l)
end.
Ltac nsatz_generic radicalmax info lparam lvar :=
let nparam := eval compute in (Z.of_nat (List.length lparam)) in
match goal with
|- ?g => let lb := lterm_goal g in
match (match lvar with
|(@nil _) =>
match lparam with
|(@nil _) =>
let r := eval red in (list_reifyl (lterm:=lb)) in r
|_ =>
match eval red in (list_reifyl (lterm:=lb)) with
|(?fv, ?le) =>
let fv := parametres_en_tete fv lparam in
(* we reify a second time, with the good order
for variables *)
let r := eval red in
(list_reifyl (lterm:=lb) (lvar:=fv)) in r
end
end
|_ =>
let fv := parametres_en_tete lvar lparam in
let r := eval red in (list_reifyl (lterm:=lb) (lvar:=fv)) in r
end) with
|(?fv, ?le) =>
reify_goal fv le lb ;
match goal with
|- ?g =>
let lp := get_lpol g in
let lpol := eval compute in (List.rev lp) in
intros;
let SplitPolyList kont :=
match lpol with
| ?p2::?lp2 => kont p2 lp2
| _ => idtac "polynomial not in the ideal"
end in
SplitPolyList ltac:(fun p lp =>
let p21 := fresh "p21" in
let lp21 := fresh "lp21" in
set (p21:=p) ;
set (lp21:=lp);
(* idtac "nparam:"; idtac nparam; idtac "p:"; idtac p; idtac "lp:"; idtac lp; *)
nsatz_call radicalmax info nparam p lp ltac:(fun c r lq lci =>
let q := fresh "q" in
set (q := PEmul c (PEpow p21 r));
let Hg := fresh "Hg" in
assert (Hg:check lp21 q (lci,lq) = true);
[ (vm_compute;reflexivity) || idtac "invalid nsatz certificate"
| let Hg2 := fresh "Hg" in
assert (Hg2: (interpret3 q fv) == 0);
[ (*simpl*) idtac;
generalize (@check_correct _ _ _ _ _ _ _ _ _ _ _ fv lp21 q (lci,lq) Hg);
let cc := fresh "H" in
(*simpl*) idtac; intro cc; apply cc; clear cc;
(*simpl*) idtac;
repeat (split;[assumption|idtac]); exact I
| (*simpl in Hg2;*) (*simpl*) idtac;
apply Rintegral_domain_pow with (interpret3 c fv) (N.to_nat r);
(*simpl*) idtac;
try apply integral_domain_one_zero;
try apply integral_domain_minus_one_zero;
try trivial;
try exact integral_domain_one_zero;
try exact integral_domain_minus_one_zero
|| (solve [simpl; unfold R2, equality, eq_notation, addition, add_notation,
one, one_notation, multiplication, mul_notation, zero, zero_notation;
discrR || omega])
|| ((*simpl*) idtac) || idtac "could not prove discrimination result"
]
]
)
)
end end end .
Ltac nsatz_default:=
intros;
try apply (@psos_r1b _ _ _ _ _ _ _ _ _ _ _);
match goal with |- (@equality ?r _ _ _) =>
repeat equalities_to_goal;
nsatz_generic 6%N 1%Z (@nil r) (@nil r)
end.
Tactic Notation "nsatz" := nsatz_default.
Tactic Notation "nsatz" "with"
"radicalmax" ":=" constr(radicalmax)
"strategy" ":=" constr(info)
"parameters" ":=" constr(lparam)
"variables" ":=" constr(lvar):=
intros;
try apply (@psos_r1b _ _ _ _ _ _ _ _ _ _ _);
match goal with |- (@equality ?r _ _ _) =>
repeat equalities_to_goal;
nsatz_generic radicalmax info lparam lvar
end.
(* Real numbers *)
Require Import Reals.
Require Import RealField.
Lemma Rsth : Setoid_Theory R (@eq R).
constructor;red;intros;subst;trivial.
Qed.
Instance Rops: (@Ring_ops R 0%R 1%R Rplus Rmult Rminus Ropp (@eq R)).
Instance Rri : (Ring (Ro:=Rops)).
constructor;
try (try apply Rsth;
try (unfold respectful, Proper; unfold equality; unfold eq_notation in *;
intros; try rewrite H; try rewrite H0; reflexivity)).
exact Rplus_0_l. exact Rplus_comm. symmetry. apply Rplus_assoc.
exact Rmult_1_l. exact Rmult_1_r. symmetry. apply Rmult_assoc.
exact Rmult_plus_distr_r. intros; apply Rmult_plus_distr_l.
exact Rplus_opp_r.
Defined.
Lemma R_one_zero: 1%R <> 0%R.
discrR.
Qed.
Instance Rcri: (Cring (Rr:=Rri)).
red. exact Rmult_comm. Defined.
Instance Rdi : (Integral_domain (Rcr:=Rcri)).
constructor.
exact Rmult_integral. exact R_one_zero. Defined.
(* Rational numbers *)
Require Import QArith.
Instance Qops: (@Ring_ops Q 0%Q 1%Q Qplus Qmult Qminus Qopp Qeq).
Instance Qri : (Ring (Ro:=Qops)).
constructor.
try apply Q_Setoid.
apply Qplus_comp.
apply Qmult_comp.
apply Qminus_comp.
apply Qopp_comp.
exact Qplus_0_l. exact Qplus_comm. apply Qplus_assoc.
exact Qmult_1_l. exact Qmult_1_r. apply Qmult_assoc.
apply Qmult_plus_distr_l. intros. apply Qmult_plus_distr_r.
reflexivity. exact Qplus_opp_r.
Defined.
Lemma Q_one_zero: not (Qeq 1%Q 0%Q).
unfold Qeq. simpl. auto with *. Qed.
Instance Qcri: (Cring (Rr:=Qri)).
red. exact Qmult_comm. Defined.
Instance Qdi : (Integral_domain (Rcr:=Qcri)).
constructor.
exact Qmult_integral. exact Q_one_zero. Defined.
(* Integers *)
Lemma Z_one_zero: 1%Z <> 0%Z.
omega.
Qed.
Instance Zcri: (Cring (Rr:=Zr)).
red. exact Z.mul_comm. Defined.
Instance Zdi : (Integral_domain (Rcr:=Zcri)).
constructor.
exact Zmult_integral. exact Z_one_zero. Defined.
|