aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins/micromega/mutils.ml
blob: 23db2928a5451980003c1fdb0fec8f58ef2b1351 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                                                                      *)
(* Micromega: A reflexive tactic using the Positivstellensatz           *)
(*                                                                      *)
(*  Frédéric Besson (Irisa/Inria) 2006-2008                             *)
(*                                                                      *)
(************************************************************************)

let debug = false

let map_option f x = 
  match x with
    | None -> None
    | Some v -> Some (f v)

let from_option = function
  | None -> failwith "from_option"
  | Some v -> v  

let rec try_any l x = 
 match l with
  | [] -> None
  | (f,s)::l -> match f x with
     | None -> try_any l x
     | x -> x

let iteri f l =
 let rec xiter i l = 
  match l with
   | [] -> ()
   | e::l -> f i e ; xiter (i+1) l in
  xiter 0 l

let mapi f l =
 let rec xmap i l = 
  match l with
   | [] -> []
   | e::l -> (f i e)::xmap (i+1) l in
  xmap 0 l

let rec map3 f l1 l2 l3 = 
  match l1 , l2 ,l3 with
    | [] , [] , [] -> []
    | e1::l1 , e2::l2 , e3::l3 -> (f e1 e2 e3)::(map3 f l1 l2 l3)
    |      _   -> raise (Invalid_argument "map3")


let rec is_sublist l1 l2 = 
  match l1 ,l2 with
    | [] ,_ -> true
    | e::l1', [] -> false
    | e::l1' , e'::l2' -> 
	if e = e' then is_sublist l1' l2'
	else is_sublist l1 l2'
		


let list_try_find f =
  let rec try_find_f = function
    | [] -> failwith "try_find"
    | h::t -> try f h with Failure _ -> try_find_f t
  in
  try_find_f

let rec list_fold_right_elements f l =
  let rec aux = function
    | [] -> invalid_arg "list_fold_right_elements"
    | [x] -> x
    | x::l -> f x (aux l) in
  aux l

let interval n m = 
  let rec interval_n (l,m) =
    if n > m then l else interval_n (m::l,pred m)
  in 
  interval_n ([],m)

open Num
open Big_int

let ppcm x y = 
 let g = gcd_big_int x y in
 let x' = div_big_int x g in
 let y' = div_big_int y g in
  mult_big_int g (mult_big_int x' y')


let denominator = function
 | Int _ | Big_int _ -> unit_big_int
 | Ratio r -> Ratio.denominator_ratio r

let numerator = function
 | Ratio r -> Ratio.numerator_ratio r
 | Int i -> Big_int.big_int_of_int i
 | Big_int i -> i

let rec ppcm_list c l =
 match l with
  | [] -> c
  | e::l -> ppcm_list (ppcm c (denominator e)) l

let rec rec_gcd_list c l  = 
 match l with
  | [] -> c
  | e::l -> rec_gcd_list (gcd_big_int  c (numerator e)) l

let rec gcd_list l = 
 let res = rec_gcd_list zero_big_int l in
  if compare_big_int res zero_big_int = 0 
  then unit_big_int else res
   
   
   
let rats_to_ints l = 
 let c = ppcm_list unit_big_int l in
  List.map (fun x ->  (div_big_int (mult_big_int (numerator x) c) 
			(denominator x))) l
   
(* Nasty reordering of lists - useful to trim certificate down *)
let mapi f l =
 let rec xmapi i l = 
  match l with
   | []   -> []
   | e::l ->  (f e i)::(xmapi (i+1) l) in
  xmapi 0 l


let concatMapi f l = List.rev (mapi (fun e i -> (i,f e)) l)

(* assoc_pos j [a0...an] = [j,a0....an,j+n],j+n+1 *)
let assoc_pos j l = (mapi (fun e i -> e,i+j) l, j + (List.length l))

let assoc_pos_assoc l = 
 let rec xpos i l =
  match l with
   | [] -> []
   | (x,l) ::rst -> let (l',j) = assoc_pos i l in 
		     (x,l')::(xpos j rst) in
  xpos 0 l

let filter_pos f l =
 (* Could sort ... take care of duplicates... *)
 let rec xfilter l =
  match l with
   | []  -> []
   | (x,e)::l -> 
      if List.exists (fun ee -> List.mem ee f) (List.map snd e)
      then (x,e)::(xfilter l)
      else xfilter l in
  xfilter l

let  select_pos lpos l =
 let rec xselect i lpos l =
  match lpos with
   | [] -> []
   | j::rpos -> 
      match l with
       | []   -> failwith "select_pos"
       | e::l -> 
	  if i = j 
	  then e:: (xselect (i+1) rpos l)
	  else xselect (i+1) lpos l in
  xselect 0 lpos l


module CoqToCaml =
struct
 open Micromega

 let rec nat = function
  | O -> 0
  | S n -> (nat n) + 1


 let rec positive p = 
  match p with
   | XH -> 1
   | XI p -> 1+ 2*(positive p)
   | XO p -> 2*(positive p)


 let n nt =
  match nt with
   | N0 -> 0
   | Npos p -> positive p


 let rec index i = (* Swap left-right ? *)
  match i with
   | XH -> 1
   | XI i -> 1+(2*(index i))
   | XO i -> 2*(index i)


 let z x = 
  match x with
   | Z0 -> 0
   | Zpos p -> (positive p)
   | Zneg p -> - (positive p)

 open Big_int

 let rec positive_big_int p =
  match p with
   | XH -> unit_big_int
   | XI p -> add_int_big_int 1 (mult_int_big_int 2 (positive_big_int p))
   | XO p -> (mult_int_big_int 2 (positive_big_int p))


 let z_big_int x = 
  match x with
   | Z0 -> zero_big_int
   | Zpos p -> (positive_big_int p)
   | Zneg p -> minus_big_int (positive_big_int p)


 let num x = Num.Big_int (z_big_int x)

 let q_to_num {qnum = x ; qden = y} = 
  Big_int (z_big_int x) // (Big_int (z_big_int (Zpos y)))
  
end


module CamlToCoq =
struct
 open Micromega

 let rec nat = function
  | 0 -> O
  | n -> S (nat (n-1))


 let rec positive n =
  if n=1 then XH
  else if n land 1 = 1 then XI (positive (n lsr 1))
  else  XO (positive (n lsr 1))

 let  n nt = 
  if nt < 0 
  then assert false
  else if nt = 0 then N0
  else Npos (positive nt)

 let rec index  n =
  if n=1 then XH
  else if n land 1 = 1 then XI (index (n lsr 1))
  else  XO (index (n lsr 1))


 let idx n = 
  (*a.k.a path_of_int *)
  (* returns the list of digits of n in reverse order with
     initial 1 removed *)
  let rec digits_of_int n =
   if n=1 then [] 
   else (n mod 2 = 1)::(digits_of_int (n lsr 1))
  in
   List.fold_right 
    (fun b c -> (if b then XI c else XO c))
    (List.rev (digits_of_int n))
    (XH)

 let z x = 
  match compare x 0 with
   | 0 -> Z0
   | 1 -> Zpos (positive x)
   | _ -> (* this should be -1 *)
      Zneg (positive (-x)) 

 open Big_int

 let positive_big_int n = 
  let two = big_int_of_int 2 in 
  let rec _pos n = 
   if eq_big_int n unit_big_int then XH
   else
    let (q,m) = quomod_big_int n two  in
     if eq_big_int unit_big_int m 
     then XI (_pos q)
     else XO (_pos q) in
   _pos n

 let bigint x = 
  match sign_big_int x with
   | 0 -> Z0
   | 1 -> Zpos (positive_big_int x)
   | _ -> Zneg (positive_big_int (minus_big_int x))

 let q n = 
  {Micromega.qnum = bigint (numerator n) ; 
   Micromega.qden = positive_big_int (denominator n)}

end

module Cmp =
struct

 let rec compare_lexical l = 
  match l with
   | [] -> 0 (* Equal *)
   | f::l -> 
      let cmp = f () in
       if cmp = 0 	then  compare_lexical l else cmp

 let rec compare_list cmp l1 l2 = 
  match l1 , l2 with
   | []  , [] -> 0
   | []  , _  -> -1
   | _   , [] -> 1
   | e1::l1 , e2::l2 -> 
      let c = cmp e1 e2 in
       if c = 0 then compare_list cmp l1 l2 else c
	
 let hash_list hash l = 
  let rec _hash_list l h =
   match l with
    | []  -> h lxor (Hashtbl.hash [])
    | e::l -> _hash_list l   ((hash e)  lxor h) in

   _hash_list  l 0
end