aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins/micromega/micromega.mli
blob: 9619781786cd12e34b636adffca02b841193d5db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

val negb : bool -> bool

type nat =
| O
| S of nat

val app : 'a1 list -> 'a1 list -> 'a1 list

type comparison =
| Eq
| Lt
| Gt

val compOpp : comparison -> comparison

val add : nat -> nat -> nat

type positive =
| XI of positive
| XO of positive
| XH

type n =
| N0
| Npos of positive

type z =
| Z0
| Zpos of positive
| Zneg of positive

module Pos :
 sig
  type mask =
  | IsNul
  | IsPos of positive
  | IsNeg
 end

module Coq_Pos :
 sig
  val succ : positive -> positive

  val add : positive -> positive -> positive

  val add_carry : positive -> positive -> positive

  val pred_double : positive -> positive

  type mask = Pos.mask =
  | IsNul
  | IsPos of positive
  | IsNeg

  val succ_double_mask : mask -> mask

  val double_mask : mask -> mask

  val double_pred_mask : positive -> mask

  val sub_mask : positive -> positive -> mask

  val sub_mask_carry : positive -> positive -> mask

  val sub : positive -> positive -> positive

  val mul : positive -> positive -> positive

  val size_nat : positive -> nat

  val compare_cont : comparison -> positive -> positive -> comparison

  val compare : positive -> positive -> comparison

  val gcdn : nat -> positive -> positive -> positive

  val gcd : positive -> positive -> positive

  val of_succ_nat : nat -> positive
 end

module N :
 sig
  val of_nat : nat -> n
 end

val pow_pos : ('a1 -> 'a1 -> 'a1) -> 'a1 -> positive -> 'a1

val nth : nat -> 'a1 list -> 'a1 -> 'a1

val map : ('a1 -> 'a2) -> 'a1 list -> 'a2 list

val fold_right : ('a2 -> 'a1 -> 'a1) -> 'a1 -> 'a2 list -> 'a1

module Z :
 sig
  val double : z -> z

  val succ_double : z -> z

  val pred_double : z -> z

  val pos_sub : positive -> positive -> z

  val add : z -> z -> z

  val opp : z -> z

  val sub : z -> z -> z

  val mul : z -> z -> z

  val compare : z -> z -> comparison

  val leb : z -> z -> bool

  val ltb : z -> z -> bool

  val gtb : z -> z -> bool

  val max : z -> z -> z

  val abs : z -> z

  val to_N : z -> n

  val pos_div_eucl : positive -> z -> z * z

  val div_eucl : z -> z -> z * z

  val div : z -> z -> z

  val gcd : z -> z -> z
 end

val zeq_bool : z -> z -> bool

type 'c pol =
| Pc of 'c
| Pinj of positive * 'c pol
| PX of 'c pol * positive * 'c pol

val p0 : 'a1 -> 'a1 pol

val p1 : 'a1 -> 'a1 pol

val peq : ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> bool

val mkPinj : positive -> 'a1 pol -> 'a1 pol

val mkPinj_pred : positive -> 'a1 pol -> 'a1 pol

val mkPX :
  'a1 -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol

val mkXi : 'a1 -> 'a1 -> positive -> 'a1 pol

val mkX : 'a1 -> 'a1 -> 'a1 pol

val popp : ('a1 -> 'a1) -> 'a1 pol -> 'a1 pol

val paddC : ('a1 -> 'a1 -> 'a1) -> 'a1 pol -> 'a1 -> 'a1 pol

val psubC : ('a1 -> 'a1 -> 'a1) -> 'a1 pol -> 'a1 -> 'a1 pol

val paddI :
  ('a1 -> 'a1 -> 'a1) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> 'a1 pol ->
  positive -> 'a1 pol -> 'a1 pol

val psubI :
  ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1 pol -> 'a1 pol -> 'a1 pol) ->
  'a1 pol -> positive -> 'a1 pol -> 'a1 pol

val paddX :
  'a1 -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> 'a1 pol
  -> positive -> 'a1 pol -> 'a1 pol

val psubX :
  'a1 -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> 'a1 pol -> 'a1
  pol) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol

val padd :
  'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol ->
  'a1 pol

val psub :
  'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1
  -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol

val pmulC_aux :
  'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 -> 'a1
  pol

val pmulC :
  'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1
  -> 'a1 pol

val pmulI :
  'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> ('a1 pol ->
  'a1 pol -> 'a1 pol) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol

val pmul :
  'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
  bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol

val psquare :
  'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
  bool) -> 'a1 pol -> 'a1 pol

type 'c pExpr =
| PEc of 'c
| PEX of positive
| PEadd of 'c pExpr * 'c pExpr
| PEsub of 'c pExpr * 'c pExpr
| PEmul of 'c pExpr * 'c pExpr
| PEopp of 'c pExpr
| PEpow of 'c pExpr * n

val mk_X : 'a1 -> 'a1 -> positive -> 'a1 pol

val ppow_pos :
  'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
  bool) -> ('a1 pol -> 'a1 pol) -> 'a1 pol -> 'a1 pol -> positive -> 'a1 pol

val ppow_N :
  'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
  bool) -> ('a1 pol -> 'a1 pol) -> 'a1 pol -> n -> 'a1 pol

val norm_aux :
  'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
  'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol

type 'a bFormula =
| TT
| FF
| X
| A of 'a
| Cj of 'a bFormula * 'a bFormula
| D of 'a bFormula * 'a bFormula
| N of 'a bFormula
| I of 'a bFormula * 'a bFormula

val map_bformula : ('a1 -> 'a2) -> 'a1 bFormula -> 'a2 bFormula

type 'x clause = 'x list

type 'x cnf = 'x clause list

val tt : 'a1 cnf

val ff : 'a1 cnf

val add_term :
  ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 -> 'a1 clause -> 'a1
  clause option

val or_clause :
  ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 clause -> 'a1 clause ->
  'a1 clause option

val or_clause_cnf :
  ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 clause -> 'a1 cnf -> 'a1
  cnf

val or_cnf :
  ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 cnf -> 'a1 cnf -> 'a1 cnf

val and_cnf : 'a1 cnf -> 'a1 cnf -> 'a1 cnf

val xcnf :
  ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> ('a1 -> 'a2 cnf) -> ('a1 ->
  'a2 cnf) -> bool -> 'a1 bFormula -> 'a2 cnf

val cnf_checker : ('a1 list -> 'a2 -> bool) -> 'a1 cnf -> 'a2 list -> bool

val tauto_checker :
  ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> ('a1 -> 'a2 cnf) -> ('a1 ->
  'a2 cnf) -> ('a2 list -> 'a3 -> bool) -> 'a1 bFormula -> 'a3 list -> bool

val cneqb : ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 -> bool

val cltb : ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 -> bool

type 'c polC = 'c pol

type op1 =
| Equal
| NonEqual
| Strict
| NonStrict

type 'c nFormula = 'c polC * op1

val opMult : op1 -> op1 -> op1 option

val opAdd : op1 -> op1 -> op1 option

type 'c psatz =
| PsatzIn of nat
| PsatzSquare of 'c polC
| PsatzMulC of 'c polC * 'c psatz
| PsatzMulE of 'c psatz * 'c psatz
| PsatzAdd of 'c psatz * 'c psatz
| PsatzC of 'c
| PsatzZ

val map_option : ('a1 -> 'a2 option) -> 'a1 option -> 'a2 option

val map_option2 :
  ('a1 -> 'a2 -> 'a3 option) -> 'a1 option -> 'a2 option -> 'a3 option

val pexpr_times_nformula :
  'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
  bool) -> 'a1 polC -> 'a1 nFormula -> 'a1 nFormula option

val nformula_times_nformula :
  'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
  bool) -> 'a1 nFormula -> 'a1 nFormula -> 'a1 nFormula option

val nformula_plus_nformula :
  'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula -> 'a1
  nFormula -> 'a1 nFormula option

val eval_Psatz :
  'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
  bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula list -> 'a1 psatz -> 'a1
  nFormula option

val check_inconsistent :
  'a1 -> ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula -> bool

val check_normalised_formulas :
  'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
  bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula list -> 'a1 psatz -> bool

type op2 =
| OpEq
| OpNEq
| OpLe
| OpGe
| OpLt
| OpGt

type 't formula = { flhs : 't pExpr; fop : op2; frhs : 't pExpr }

val norm :
  'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
  'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol

val psub0 :
  'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1
  -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol

val padd0 :
  'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol ->
  'a1 pol

val xnormalise :
  'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
  'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1 nFormula
  list

val cnf_normalise :
  'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
  'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1 nFormula
  cnf

val xnegate :
  'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
  'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1 nFormula
  list

val cnf_negate :
  'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
  'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1 nFormula
  cnf

val xdenorm : positive -> 'a1 pol -> 'a1 pExpr

val denorm : 'a1 pol -> 'a1 pExpr

val map_PExpr : ('a2 -> 'a1) -> 'a2 pExpr -> 'a1 pExpr

val map_Formula : ('a2 -> 'a1) -> 'a2 formula -> 'a1 formula

val simpl_cone :
  'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 psatz ->
  'a1 psatz

type q = { qnum : z; qden : positive }

val qnum : q -> z

val qden : q -> positive

val qeq_bool : q -> q -> bool

val qle_bool : q -> q -> bool

val qplus : q -> q -> q

val qmult : q -> q -> q

val qopp : q -> q

val qminus : q -> q -> q

val qinv : q -> q

val qpower_positive : q -> positive -> q

val qpower : q -> z -> q

type 'a t =
| Empty
| Leaf of 'a
| Node of 'a t * 'a * 'a t

val find : 'a1 -> 'a1 t -> positive -> 'a1

val singleton : 'a1 -> positive -> 'a1 -> 'a1 t

val vm_add : 'a1 -> positive -> 'a1 -> 'a1 t -> 'a1 t

type zWitness = z psatz

val zWeakChecker : z nFormula list -> z psatz -> bool

val psub1 : z pol -> z pol -> z pol

val padd1 : z pol -> z pol -> z pol

val norm0 : z pExpr -> z pol

val xnormalise0 : z formula -> z nFormula list

val normalise : z formula -> z nFormula cnf

val xnegate0 : z formula -> z nFormula list

val negate : z formula -> z nFormula cnf

val zunsat : z nFormula -> bool

val zdeduce : z nFormula -> z nFormula -> z nFormula option

val ceiling : z -> z -> z

type zArithProof =
| DoneProof
| RatProof of zWitness * zArithProof
| CutProof of zWitness * zArithProof
| EnumProof of zWitness * zWitness * zArithProof list

val zgcdM : z -> z -> z

val zgcd_pol : z polC -> z * z

val zdiv_pol : z polC -> z -> z polC

val makeCuttingPlane : z polC -> z polC * z

val genCuttingPlane : z nFormula -> ((z polC * z) * op1) option

val nformula_of_cutting_plane : ((z polC * z) * op1) -> z nFormula

val is_pol_Z0 : z polC -> bool

val eval_Psatz0 : z nFormula list -> zWitness -> z nFormula option

val valid_cut_sign : op1 -> bool

val zChecker : z nFormula list -> zArithProof -> bool

val zTautoChecker : z formula bFormula -> zArithProof list -> bool

type qWitness = q psatz

val qWeakChecker : q nFormula list -> q psatz -> bool

val qnormalise : q formula -> q nFormula cnf

val qnegate : q formula -> q nFormula cnf

val qunsat : q nFormula -> bool

val qdeduce : q nFormula -> q nFormula -> q nFormula option

val qTautoChecker : q formula bFormula -> qWitness list -> bool

type rcst =
| C0
| C1
| CQ of q
| CZ of z
| CPlus of rcst * rcst
| CMinus of rcst * rcst
| CMult of rcst * rcst
| CInv of rcst
| COpp of rcst

val q_of_Rcst : rcst -> q

type rWitness = q psatz

val rWeakChecker : q nFormula list -> q psatz -> bool

val rnormalise : q formula -> q nFormula cnf

val rnegate : q formula -> q nFormula cnf

val runsat : q nFormula -> bool

val rdeduce : q nFormula -> q nFormula -> q nFormula option

val rTautoChecker : rcst formula bFormula -> rWitness list -> bool