1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
(* *)
(************************************************************************)
open Num
open Sos
open Sos_types
open Sos_lib
module Mc = Micromega
module Ml2C = Mutils.CamlToCoq
module C2Ml = Mutils.CoqToCaml
type micromega_polys = (Micromega.q Mc.pol * Mc.op1) list
type csdp_certificate = S of Sos_types.positivstellensatz option | F of string
type provername = string * int option
let debug = false
let flags = [Open_append;Open_binary;Open_creat]
let chan = open_out_gen flags 0o666 "trace"
module M =
struct
open Mc
let rec expr_to_term = function
| PEc z -> Const (C2Ml.q_to_num z)
| PEX v -> Var ("x"^(string_of_int (C2Ml.index v)))
| PEmul(p1,p2) ->
let p1 = expr_to_term p1 in
let p2 = expr_to_term p2 in
let res = Mul(p1,p2) in res
| PEadd(p1,p2) -> Add(expr_to_term p1, expr_to_term p2)
| PEsub(p1,p2) -> Sub(expr_to_term p1, expr_to_term p2)
| PEpow(p,n) -> Pow(expr_to_term p , C2Ml.n n)
| PEopp p -> Opp (expr_to_term p)
end
open M
open Mutils
let canonical_sum_to_string = function s -> failwith "not implemented"
let print_canonical_sum m = Format.print_string (canonical_sum_to_string m)
let print_list_term o l =
output_string o "print_list_term\n";
List.iter (fun (e,k) -> Printf.fprintf o "q: %s %s ;"
(string_of_poly (poly_of_term (expr_to_term e)))
(match k with
Mc.Equal -> "= "
| Mc.Strict -> "> "
| Mc.NonStrict -> ">= "
| _ -> failwith "not_implemented")) (List.map (fun (e, o) -> Mc.denorm e , o) l) ;
output_string o "\n"
let partition_expr l =
let rec f i = function
| [] -> ([],[],[])
| (e,k)::l ->
let (eq,ge,neq) = f (i+1) l in
match k with
| Mc.Equal -> ((e,i)::eq,ge,neq)
| Mc.NonStrict -> (eq,(e,Axiom_le i)::ge,neq)
| Mc.Strict -> (* e > 0 == e >= 0 /\ e <> 0 *)
(eq, (e,Axiom_lt i)::ge,(e,Axiom_lt i)::neq)
| Mc.NonEqual -> (eq,ge,(e,Axiom_eq i)::neq)
(* Not quite sure -- Coq interface has changed *)
in f 0 l
let rec sets_of_list l =
match l with
| [] -> [[]]
| e::l -> let s = sets_of_list l in
s@(List.map (fun s0 -> e::s0) s)
(* The exploration is probably not complete - for simple cases, it works... *)
let real_nonlinear_prover d l =
let l = List.map (fun (e,op) -> (Mc.denorm e,op)) l in
try
let (eq,ge,neq) = partition_expr l in
let rec elim_const = function
[] -> []
| (x,y)::l -> let p = poly_of_term (expr_to_term x) in
if poly_isconst p
then elim_const l
else (p,y)::(elim_const l) in
let eq = elim_const eq in
let peq = List.map fst eq in
let pge = List.map
(fun (e,psatz) -> poly_of_term (expr_to_term e),psatz) ge in
let monoids = List.map (fun m -> (List.fold_right (fun (p,kd) y ->
let p = poly_of_term (expr_to_term p) in
match kd with
| Axiom_lt i -> poly_mul p y
| Axiom_eq i -> poly_mul (poly_pow p 2) y
| _ -> failwith "monoids") m (poly_const (Int 1)) , List.map snd m))
(sets_of_list neq) in
let (cert_ideal, cert_cone,monoid) = deepen_until d (fun d ->
list_try_find (fun m -> let (ci,cc) =
real_positivnullstellensatz_general false d peq pge (poly_neg (fst m) ) in
(ci,cc,snd m)) monoids) 0 in
let proofs_ideal = List.map2 (fun q i -> Eqmul(term_of_poly q,Axiom_eq i))
cert_ideal (List.map snd eq) in
let proofs_cone = List.map term_of_sos cert_cone in
let proof_ne =
let (neq , lt) = List.partition
(function Axiom_eq _ -> true | _ -> false ) monoid in
let sq = match
(List.map (function Axiom_eq i -> i | _ -> failwith "error") neq)
with
| [] -> Rational_lt (Int 1)
| l -> Monoid l in
List.fold_right (fun x y -> Product(x,y)) lt sq in
let proof = list_fold_right_elements
(fun s t -> Sum(s,t)) (proof_ne :: proofs_ideal @ proofs_cone) in
S (Some proof)
with
| Sos_lib.TooDeep -> S None
| any -> F (Printexc.to_string any)
(* This is somewhat buggy, over Z, strict inequality vanish... *)
let pure_sos l =
let l = List.map (fun (e,o) -> Mc.denorm e, o) l in
(* If there is no strict inequality,
I should nonetheless be able to try something - over Z > is equivalent to -1 >= *)
try
let l = List.combine l (interval 0 (List.length l -1)) in
let (lt,i) = try (List.find (fun (x,_) -> Pervasives.(=) (snd x) Mc.Strict) l)
with Not_found -> List.hd l in
let plt = poly_neg (poly_of_term (expr_to_term (fst lt))) in
let (n,polys) = sumofsquares plt in (* n * (ci * pi^2) *)
let pos = Product (Rational_lt n,
List.fold_right (fun (c,p) rst -> Sum (Product (Rational_lt c, Square
(term_of_poly p)), rst))
polys (Rational_lt (Int 0))) in
let proof = Sum(Axiom_lt i, pos) in
(* let s,proof' = scale_certificate proof in
let cert = snd (cert_of_pos proof') in *)
S (Some proof)
with
(* | Sos.CsdpNotFound -> F "Sos.CsdpNotFound" *)
| any -> (* May be that could be refined *) S None
let run_prover prover pb =
match prover with
| "real_nonlinear_prover", Some d -> real_nonlinear_prover d pb
| "pure_sos", None -> pure_sos pb
| prover, _ -> (Printf.printf "unknown prover: %s\n" prover; exit 1)
let output_csdp_certificate o = function
| S None -> output_string o "S None"
| S (Some p) -> Printf.fprintf o "S (Some %a)" output_psatz p
| F s -> Printf.fprintf o "F %s" s
let main () =
try
let (prover,poly) = (input_value stdin : provername * micromega_polys) in
let cert = run_prover prover poly in
(* Printf.fprintf chan "%a -> %a" print_list_term poly output_csdp_certificate cert ;
close_out chan ; *)
output_value stdout (cert:csdp_certificate);
flush stdout ;
Marshal.to_channel chan (cert:csdp_certificate) [] ;
flush chan ;
exit 0
with any -> (Printf.fprintf chan "error %s" (Printexc.to_string any) ; exit 1)
;;
let _ = main () in ()
(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
|