1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
(* ** Toplevel definition of tactics ** *)
(* *)
(* - Modules ISet, M, Mc, Env, Cache, CacheZ *)
(* *)
(* Frédéric Besson (Irisa/Inria) 2006-20011 *)
(* *)
(************************************************************************)
open Pp
open Mutils
open Goptions
open Names
open Constr
(**
* Debug flag
*)
let debug = false
(**
* Time function
*)
let time str f x =
let t0 = (Unix.times()).Unix.tms_utime in
let res = f x in
let t1 = (Unix.times()).Unix.tms_utime in
(*if debug then*) (Printf.printf "time %s %f\n" str (t1 -. t0) ;
flush stdout);
res
(* Limit the proof search *)
let max_depth = max_int
(* Search limit for provers over Q R *)
let lra_proof_depth = ref max_depth
(* Search limit for provers over Z *)
let lia_enum = ref true
let lia_proof_depth = ref max_depth
let get_lia_option () =
(!lia_enum,!lia_proof_depth)
let get_lra_option () =
!lra_proof_depth
let _ =
let int_opt l vref =
{
optdepr = false;
optname = List.fold_right (^) l "";
optkey = l ;
optread = (fun () -> Some !vref);
optwrite = (fun x -> vref := (match x with None -> max_depth | Some v -> v))
} in
let lia_enum_opt =
{
optdepr = false;
optname = "Lia Enum";
optkey = ["Lia";"Enum"];
optread = (fun () -> !lia_enum);
optwrite = (fun x -> lia_enum := x)
} in
let _ = declare_int_option (int_opt ["Lra"; "Depth"] lra_proof_depth) in
let _ = declare_int_option (int_opt ["Lia"; "Depth"] lia_proof_depth) in
let _ = declare_bool_option lia_enum_opt in
()
(**
* Initialize a tag type to the Tag module declaration (see Mutils).
*)
type tag = Tag.t
(**
* An atom is of the form:
* pExpr1 \{<,>,=,<>,<=,>=\} pExpr2
* where pExpr1, pExpr2 are polynomial expressions (see Micromega). pExprs are
* parametrized by 'cst, which is used as the type of constants.
*)
type 'cst atom = 'cst Micromega.formula
(**
* Micromega's encoding of formulas.
* By order of appearance: boolean constants, variables, atoms, conjunctions,
* disjunctions, negation, implication.
*)
type 'cst formula =
| TT
| FF
| X of EConstr.constr
| A of 'cst atom * tag * EConstr.constr
| C of 'cst formula * 'cst formula
| D of 'cst formula * 'cst formula
| N of 'cst formula
| I of 'cst formula * Names.Id.t option * 'cst formula
(**
* Formula pretty-printer.
*)
let rec pp_formula o f =
match f with
| TT -> output_string o "tt"
| FF -> output_string o "ff"
| X c -> output_string o "X "
| A(_,t,_) -> Printf.fprintf o "A(%a)" Tag.pp t
| C(f1,f2) -> Printf.fprintf o "C(%a,%a)" pp_formula f1 pp_formula f2
| D(f1,f2) -> Printf.fprintf o "D(%a,%a)" pp_formula f1 pp_formula f2
| I(f1,n,f2) -> Printf.fprintf o "I(%a%s,%a)"
pp_formula f1
(match n with
| Some id -> Names.Id.to_string id
| None -> "") pp_formula f2
| N(f) -> Printf.fprintf o "N(%a)" pp_formula f
let rec map_atoms fct f =
match f with
| TT -> TT
| FF -> FF
| X x -> X x
| A (at,tg,cstr) -> A(fct at,tg,cstr)
| C (f1,f2) -> C(map_atoms fct f1, map_atoms fct f2)
| D (f1,f2) -> D(map_atoms fct f1, map_atoms fct f2)
| N f -> N(map_atoms fct f)
| I(f1,o,f2) -> I(map_atoms fct f1, o , map_atoms fct f2)
let rec map_prop fct f =
match f with
| TT -> TT
| FF -> FF
| X x -> X (fct x)
| A (at,tg,cstr) -> A(at,tg,cstr)
| C (f1,f2) -> C(map_prop fct f1, map_prop fct f2)
| D (f1,f2) -> D(map_prop fct f1, map_prop fct f2)
| N f -> N(map_prop fct f)
| I(f1,o,f2) -> I(map_prop fct f1, o , map_prop fct f2)
(**
* Collect the identifiers of a (string of) implications. Implication labels
* are inherited from Coq/CoC's higher order dependent type constructor (Pi).
*)
let rec ids_of_formula f =
match f with
| I(f1,Some id,f2) -> id::(ids_of_formula f2)
| _ -> []
(**
* A clause is a list of (tagged) nFormulas.
* nFormulas are normalized formulas, i.e., of the form:
* cPol \{=,<>,>,>=\} 0
* with cPol compact polynomials (see the Pol inductive type in EnvRing.v).
*)
type 'cst clause = ('cst Micromega.nFormula * tag) list
(**
* A CNF is a list of clauses.
*)
type 'cst cnf = ('cst clause) list
(**
* True and False are empty cnfs and clauses.
*)
let tt : 'cst cnf = []
let ff : 'cst cnf = [ [] ]
(**
* A refinement of cnf with tags left out. This is an intermediary form
* between the cnf tagged list representation ('cst cnf) used to solve psatz,
* and the freeform formulas ('cst formula) that is retrieved from Coq.
*)
module Mc = Micromega
type 'cst mc_cnf = ('cst Mc.nFormula) list list
(**
* From a freeform formula, build a cnf.
* The parametric functions negate and normalize are theory-dependent, and
* originate in micromega.ml (extracted, e.g. for rnegate, from RMicromega.v
* and RingMicromega.v).
*)
type 'a tagged_option = T of tag list | S of 'a
let cnf
(negate: 'cst atom -> 'cst mc_cnf) (normalise:'cst atom -> 'cst mc_cnf)
(unsat : 'cst Mc.nFormula -> bool) (deduce : 'cst Mc.nFormula -> 'cst Mc.nFormula -> 'cst Mc.nFormula option) (f:'cst formula) =
let negate a t =
List.map (fun cl -> List.map (fun x -> (x,t)) cl) (negate a) in
let normalise a t =
List.map (fun cl -> List.map (fun x -> (x,t)) cl) (normalise a) in
let and_cnf x y = x @ y in
let rec add_term t0 = function
| [] ->
(match deduce (fst t0) (fst t0) with
| Some u -> if unsat u then T [snd t0] else S (t0::[])
| None -> S (t0::[]))
| t'::cl0 ->
(match deduce (fst t0) (fst t') with
| Some u ->
if unsat u
then T [snd t0 ; snd t']
else (match add_term t0 cl0 with
| S cl' -> S (t'::cl')
| T l -> T l)
| None ->
(match add_term t0 cl0 with
| S cl' -> S (t'::cl')
| T l -> T l)) in
let rec or_clause cl1 cl2 =
match cl1 with
| [] -> S cl2
| t0::cl ->
(match add_term t0 cl2 with
| S cl' -> or_clause cl cl'
| T l -> T l) in
let or_clause_cnf t f =
List.fold_right (fun e (acc,tg) ->
match or_clause t e with
| S cl -> (cl :: acc,tg)
| T l -> (acc,tg@l)) f ([],[]) in
let rec or_cnf f f' =
match f with
| [] -> tt,[]
| e :: rst ->
let (rst_f',t) = or_cnf rst f' in
let (e_f', t') = or_clause_cnf e f' in
(rst_f' @ e_f', t @ t') in
let rec xcnf (polarity : bool) f =
match f with
| TT -> if polarity then (tt,[]) else (ff,[])
| FF -> if polarity then (ff,[]) else (tt,[])
| X p -> if polarity then (ff,[]) else (ff,[])
| A(x,t,_) -> ((if polarity then normalise x t else negate x t),[])
| N(e) -> xcnf (not polarity) e
| C(e1,e2) ->
let e1,t1 = xcnf polarity e1 in
let e2,t2 = xcnf polarity e2 in
if polarity
then and_cnf e1 e2, t1 @ t2
else let f',t' = or_cnf e1 e2 in
(f', t1 @ t2 @ t')
| D(e1,e2) ->
let e1,t1 = xcnf polarity e1 in
let e2,t2 = xcnf polarity e2 in
if polarity
then let f',t' = or_cnf e1 e2 in
(f', t1 @ t2 @ t')
else and_cnf e1 e2, t1 @ t2
| I(e1,_,e2) ->
let e1 , t1 = (xcnf (not polarity) e1) in
let e2 , t2 = (xcnf polarity e2) in
if polarity
then let f',t' = or_cnf e1 e2 in
(f', t1 @ t2 @ t')
else and_cnf e1 e2, t1 @ t2 in
xcnf true f
(**
* MODULE: Ordered set of integers.
*)
module ISet = Set.Make(Int)
module IMap = Map.Make(Int)
(**
* Given a set of integers s=\{i0,...,iN\} and a list m, return the list of
* elements of m that are at position i0,...,iN.
*)
let selecti s m =
let rec xselecti i m =
match m with
| [] -> []
| e::m -> if ISet.mem i s then e::(xselecti (i+1) m) else xselecti (i+1) m in
xselecti 0 m
(**
* MODULE: Mapping of the Coq data-strustures into Caml and Caml extracted
* code. This includes initializing Caml variables based on Coq terms, parsing
* various Coq expressions into Caml, and dumping Caml expressions into Coq.
*
* Opened here and in csdpcert.ml.
*)
module M =
struct
(**
* Location of the Coq libraries.
*)
let logic_dir = ["Coq";"Logic";"Decidable"]
let mic_modules =
[
["Coq";"Lists";"List"];
["ZMicromega"];
["Tauto"];
["RingMicromega"];
["EnvRing"];
["Coq"; "micromega"; "ZMicromega"];
["Coq"; "micromega"; "RMicromega"];
["Coq" ; "micromega" ; "Tauto"];
["Coq" ; "micromega" ; "RingMicromega"];
["Coq" ; "micromega" ; "EnvRing"];
["Coq";"QArith"; "QArith_base"];
["Coq";"Reals" ; "Rdefinitions"];
["Coq";"Reals" ; "Rpow_def"];
["LRing_normalise"]]
let coq_modules =
Coqlib.(init_modules @
[logic_dir] @ arith_modules @ zarith_base_modules @ mic_modules)
let bin_module = [["Coq";"Numbers";"BinNums"]]
let r_modules =
[["Coq";"Reals" ; "Rdefinitions"];
["Coq";"Reals" ; "Rpow_def"] ;
["Coq";"Reals" ; "Raxioms"] ;
["Coq";"QArith"; "Qreals"] ;
]
let z_modules = [["Coq";"ZArith";"BinInt"]]
(**
* Initialization : a large amount of Caml symbols are derived from
* ZMicromega.v
*)
let gen_constant_in_modules s m n = EConstr.of_constr (Universes.constr_of_global @@ Coqlib.gen_reference_in_modules s m n)
let init_constant = gen_constant_in_modules "ZMicromega" Coqlib.init_modules
let constant = gen_constant_in_modules "ZMicromega" coq_modules
let bin_constant = gen_constant_in_modules "ZMicromega" bin_module
let r_constant = gen_constant_in_modules "ZMicromega" r_modules
let z_constant = gen_constant_in_modules "ZMicromega" z_modules
let m_constant = gen_constant_in_modules "ZMicromega" mic_modules
let coq_and = lazy (init_constant "and")
let coq_or = lazy (init_constant "or")
let coq_not = lazy (init_constant "not")
let coq_iff = lazy (init_constant "iff")
let coq_True = lazy (init_constant "True")
let coq_False = lazy (init_constant "False")
let coq_cons = lazy (constant "cons")
let coq_nil = lazy (constant "nil")
let coq_list = lazy (constant "list")
let coq_O = lazy (init_constant "O")
let coq_S = lazy (init_constant "S")
let coq_nat = lazy (init_constant "nat")
let coq_N0 = lazy (bin_constant "N0")
let coq_Npos = lazy (bin_constant "Npos")
let coq_pair = lazy (init_constant "pair")
let coq_None = lazy (init_constant "None")
let coq_option = lazy (init_constant "option")
let coq_positive = lazy (bin_constant "positive")
let coq_xH = lazy (bin_constant "xH")
let coq_xO = lazy (bin_constant "xO")
let coq_xI = lazy (bin_constant "xI")
let coq_Z = lazy (bin_constant "Z")
let coq_ZERO = lazy (bin_constant "Z0")
let coq_POS = lazy (bin_constant "Zpos")
let coq_NEG = lazy (bin_constant "Zneg")
let coq_Q = lazy (constant "Q")
let coq_R = lazy (constant "R")
let coq_Build_Witness = lazy (constant "Build_Witness")
let coq_Qmake = lazy (constant "Qmake")
let coq_Rcst = lazy (constant "Rcst")
let coq_C0 = lazy (m_constant "C0")
let coq_C1 = lazy (m_constant "C1")
let coq_CQ = lazy (m_constant "CQ")
let coq_CZ = lazy (m_constant "CZ")
let coq_CPlus = lazy (m_constant "CPlus")
let coq_CMinus = lazy (m_constant "CMinus")
let coq_CMult = lazy (m_constant "CMult")
let coq_CInv = lazy (m_constant "CInv")
let coq_COpp = lazy (m_constant "COpp")
let coq_R0 = lazy (constant "R0")
let coq_R1 = lazy (constant "R1")
let coq_proofTerm = lazy (constant "ZArithProof")
let coq_doneProof = lazy (constant "DoneProof")
let coq_ratProof = lazy (constant "RatProof")
let coq_cutProof = lazy (constant "CutProof")
let coq_enumProof = lazy (constant "EnumProof")
let coq_Zgt = lazy (z_constant "Z.gt")
let coq_Zge = lazy (z_constant "Z.ge")
let coq_Zle = lazy (z_constant "Z.le")
let coq_Zlt = lazy (z_constant "Z.lt")
let coq_Eq = lazy (init_constant "eq")
let coq_Zplus = lazy (z_constant "Z.add")
let coq_Zminus = lazy (z_constant "Z.sub")
let coq_Zopp = lazy (z_constant "Z.opp")
let coq_Zmult = lazy (z_constant "Z.mul")
let coq_Zpower = lazy (z_constant "Z.pow")
let coq_Qgt = lazy (constant "Qgt")
let coq_Qge = lazy (constant "Qge")
let coq_Qle = lazy (constant "Qle")
let coq_Qlt = lazy (constant "Qlt")
let coq_Qeq = lazy (constant "Qeq")
let coq_Qplus = lazy (constant "Qplus")
let coq_Qminus = lazy (constant "Qminus")
let coq_Qopp = lazy (constant "Qopp")
let coq_Qmult = lazy (constant "Qmult")
let coq_Qpower = lazy (constant "Qpower")
let coq_Rgt = lazy (r_constant "Rgt")
let coq_Rge = lazy (r_constant "Rge")
let coq_Rle = lazy (r_constant "Rle")
let coq_Rlt = lazy (r_constant "Rlt")
let coq_Rplus = lazy (r_constant "Rplus")
let coq_Rminus = lazy (r_constant "Rminus")
let coq_Ropp = lazy (r_constant "Ropp")
let coq_Rmult = lazy (r_constant "Rmult")
let coq_Rdiv = lazy (r_constant "Rdiv")
let coq_Rinv = lazy (r_constant "Rinv")
let coq_Rpower = lazy (r_constant "pow")
let coq_IZR = lazy (r_constant "IZR")
let coq_IQR = lazy (r_constant "Q2R")
let coq_PEX = lazy (constant "PEX" )
let coq_PEc = lazy (constant"PEc")
let coq_PEadd = lazy (constant "PEadd")
let coq_PEopp = lazy (constant "PEopp")
let coq_PEmul = lazy (constant "PEmul")
let coq_PEsub = lazy (constant "PEsub")
let coq_PEpow = lazy (constant "PEpow")
let coq_PX = lazy (constant "PX" )
let coq_Pc = lazy (constant"Pc")
let coq_Pinj = lazy (constant "Pinj")
let coq_OpEq = lazy (constant "OpEq")
let coq_OpNEq = lazy (constant "OpNEq")
let coq_OpLe = lazy (constant "OpLe")
let coq_OpLt = lazy (constant "OpLt")
let coq_OpGe = lazy (constant "OpGe")
let coq_OpGt = lazy (constant "OpGt")
let coq_PsatzIn = lazy (constant "PsatzIn")
let coq_PsatzSquare = lazy (constant "PsatzSquare")
let coq_PsatzMulE = lazy (constant "PsatzMulE")
let coq_PsatzMultC = lazy (constant "PsatzMulC")
let coq_PsatzAdd = lazy (constant "PsatzAdd")
let coq_PsatzC = lazy (constant "PsatzC")
let coq_PsatzZ = lazy (constant "PsatzZ")
let coq_coneMember = lazy (constant "coneMember")
let coq_make_impl = lazy
(gen_constant_in_modules "Zmicromega" [["Refl"]] "make_impl")
let coq_make_conj = lazy
(gen_constant_in_modules "Zmicromega" [["Refl"]] "make_conj")
let coq_TT = lazy
(gen_constant_in_modules "ZMicromega"
[["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "TT")
let coq_FF = lazy
(gen_constant_in_modules "ZMicromega"
[["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "FF")
let coq_And = lazy
(gen_constant_in_modules "ZMicromega"
[["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "Cj")
let coq_Or = lazy
(gen_constant_in_modules "ZMicromega"
[["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "D")
let coq_Neg = lazy
(gen_constant_in_modules "ZMicromega"
[["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "N")
let coq_Atom = lazy
(gen_constant_in_modules "ZMicromega"
[["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "A")
let coq_X = lazy
(gen_constant_in_modules "ZMicromega"
[["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "X")
let coq_Impl = lazy
(gen_constant_in_modules "ZMicromega"
[["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "I")
let coq_Formula = lazy
(gen_constant_in_modules "ZMicromega"
[["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "BFormula")
(**
* Initialization : a few Caml symbols are derived from other libraries;
* QMicromega, ZArithRing, RingMicromega.
*)
let coq_QWitness = lazy
(gen_constant_in_modules "QMicromega"
[["Coq"; "micromega"; "QMicromega"]] "QWitness")
let coq_ZWitness = lazy
(gen_constant_in_modules "QMicromega"
[["Coq"; "micromega"; "ZMicromega"]] "ZWitness")
let coq_N_of_Z = lazy
(gen_constant_in_modules "ZArithRing"
[["Coq";"setoid_ring";"ZArithRing"]] "N_of_Z")
let coq_Build = lazy
(gen_constant_in_modules "RingMicromega"
[["Coq" ; "micromega" ; "RingMicromega"] ; ["RingMicromega"] ]
"Build_Formula")
let coq_Cstr = lazy
(gen_constant_in_modules "RingMicromega"
[["Coq" ; "micromega" ; "RingMicromega"] ; ["RingMicromega"] ] "Formula")
(**
* Parsing and dumping : transformation functions between Caml and Coq
* data-structures.
*
* dump_* functions go from Micromega to Coq terms
* parse_* functions go from Coq to Micromega terms
* pp_* functions pretty-print Coq terms.
*)
(* Error datastructures *)
type parse_error =
| Ukn
| BadStr of string
| BadNum of int
| BadTerm of constr
| Msg of string
| Goal of (constr list ) * constr * parse_error
let string_of_error = function
| Ukn -> "ukn"
| BadStr s -> s
| BadNum i -> string_of_int i
| BadTerm _ -> "BadTerm"
| Msg s -> s
| Goal _ -> "Goal"
exception ParseError
(* A simple but useful getter function *)
let get_left_construct sigma term =
match EConstr.kind sigma term with
| Term.Construct((_,i),_) -> (i,[| |])
| Term.App(l,rst) ->
(match EConstr.kind sigma l with
| Term.Construct((_,i),_) -> (i,rst)
| _ -> raise ParseError
)
| _ -> raise ParseError
(* Access the Micromega module *)
(* parse/dump/print from numbers up to expressions and formulas *)
let rec parse_nat sigma term =
let (i,c) = get_left_construct sigma term in
match i with
| 1 -> Mc.O
| 2 -> Mc.S (parse_nat sigma (c.(0)))
| i -> raise ParseError
let pp_nat o n = Printf.fprintf o "%i" (CoqToCaml.nat n)
let rec dump_nat x =
match x with
| Mc.O -> Lazy.force coq_O
| Mc.S p -> EConstr.mkApp(Lazy.force coq_S,[| dump_nat p |])
let rec parse_positive sigma term =
let (i,c) = get_left_construct sigma term in
match i with
| 1 -> Mc.XI (parse_positive sigma c.(0))
| 2 -> Mc.XO (parse_positive sigma c.(0))
| 3 -> Mc.XH
| i -> raise ParseError
let rec dump_positive x =
match x with
| Mc.XH -> Lazy.force coq_xH
| Mc.XO p -> EConstr.mkApp(Lazy.force coq_xO,[| dump_positive p |])
| Mc.XI p -> EConstr.mkApp(Lazy.force coq_xI,[| dump_positive p |])
let pp_positive o x = Printf.fprintf o "%i" (CoqToCaml.positive x)
let dump_n x =
match x with
| Mc.N0 -> Lazy.force coq_N0
| Mc.Npos p -> EConstr.mkApp(Lazy.force coq_Npos,[| dump_positive p|])
let rec dump_index x =
match x with
| Mc.XH -> Lazy.force coq_xH
| Mc.XO p -> EConstr.mkApp(Lazy.force coq_xO,[| dump_index p |])
| Mc.XI p -> EConstr.mkApp(Lazy.force coq_xI,[| dump_index p |])
let pp_index o x = Printf.fprintf o "%i" (CoqToCaml.index x)
let pp_n o x = output_string o (string_of_int (CoqToCaml.n x))
let dump_pair t1 t2 dump_t1 dump_t2 (x,y) =
EConstr.mkApp(Lazy.force coq_pair,[| t1 ; t2 ; dump_t1 x ; dump_t2 y|])
let parse_z sigma term =
let (i,c) = get_left_construct sigma term in
match i with
| 1 -> Mc.Z0
| 2 -> Mc.Zpos (parse_positive sigma c.(0))
| 3 -> Mc.Zneg (parse_positive sigma c.(0))
| i -> raise ParseError
let dump_z x =
match x with
| Mc.Z0 ->Lazy.force coq_ZERO
| Mc.Zpos p -> EConstr.mkApp(Lazy.force coq_POS,[| dump_positive p|])
| Mc.Zneg p -> EConstr.mkApp(Lazy.force coq_NEG,[| dump_positive p|])
let pp_z o x = Printf.fprintf o "%s" (Big_int.string_of_big_int (CoqToCaml.z_big_int x))
let dump_num bd1 =
EConstr.mkApp(Lazy.force coq_Qmake,
[|dump_z (CamlToCoq.bigint (numerator bd1)) ;
dump_positive (CamlToCoq.positive_big_int (denominator bd1)) |])
let dump_q q =
EConstr.mkApp(Lazy.force coq_Qmake,
[| dump_z q.Micromega.qnum ; dump_positive q.Micromega.qden|])
let parse_q sigma term =
match EConstr.kind sigma term with
| Term.App(c, args) -> if EConstr.eq_constr sigma c (Lazy.force coq_Qmake) then
{Mc.qnum = parse_z sigma args.(0) ; Mc.qden = parse_positive sigma args.(1) }
else raise ParseError
| _ -> raise ParseError
let rec pp_Rcst o cst =
match cst with
| Mc.C0 -> output_string o "C0"
| Mc.C1 -> output_string o "C1"
| Mc.CQ q -> output_string o "CQ _"
| Mc.CZ z -> pp_z o z
| Mc.CPlus(x,y) -> Printf.fprintf o "(%a + %a)" pp_Rcst x pp_Rcst y
| Mc.CMinus(x,y) -> Printf.fprintf o "(%a - %a)" pp_Rcst x pp_Rcst y
| Mc.CMult(x,y) -> Printf.fprintf o "(%a * %a)" pp_Rcst x pp_Rcst y
| Mc.CInv t -> Printf.fprintf o "(/ %a)" pp_Rcst t
| Mc.COpp t -> Printf.fprintf o "(- %a)" pp_Rcst t
let rec dump_Rcst cst =
match cst with
| Mc.C0 -> Lazy.force coq_C0
| Mc.C1 -> Lazy.force coq_C1
| Mc.CQ q -> EConstr.mkApp(Lazy.force coq_CQ, [| dump_q q |])
| Mc.CZ z -> EConstr.mkApp(Lazy.force coq_CZ, [| dump_z z |])
| Mc.CPlus(x,y) -> EConstr.mkApp(Lazy.force coq_CPlus, [| dump_Rcst x ; dump_Rcst y |])
| Mc.CMinus(x,y) -> EConstr.mkApp(Lazy.force coq_CMinus, [| dump_Rcst x ; dump_Rcst y |])
| Mc.CMult(x,y) -> EConstr.mkApp(Lazy.force coq_CMult, [| dump_Rcst x ; dump_Rcst y |])
| Mc.CInv t -> EConstr.mkApp(Lazy.force coq_CInv, [| dump_Rcst t |])
| Mc.COpp t -> EConstr.mkApp(Lazy.force coq_COpp, [| dump_Rcst t |])
let rec parse_Rcst sigma term =
let (i,c) = get_left_construct sigma term in
match i with
| 1 -> Mc.C0
| 2 -> Mc.C1
| 3 -> Mc.CQ (parse_q sigma c.(0))
| 4 -> Mc.CPlus(parse_Rcst sigma c.(0), parse_Rcst sigma c.(1))
| 5 -> Mc.CMinus(parse_Rcst sigma c.(0), parse_Rcst sigma c.(1))
| 6 -> Mc.CMult(parse_Rcst sigma c.(0), parse_Rcst sigma c.(1))
| 7 -> Mc.CInv(parse_Rcst sigma c.(0))
| 8 -> Mc.COpp(parse_Rcst sigma c.(0))
| _ -> raise ParseError
let rec parse_list sigma parse_elt term =
let (i,c) = get_left_construct sigma term in
match i with
| 1 -> []
| 2 -> parse_elt sigma c.(1) :: parse_list sigma parse_elt c.(2)
| i -> raise ParseError
let rec dump_list typ dump_elt l =
match l with
| [] -> EConstr.mkApp(Lazy.force coq_nil,[| typ |])
| e :: l -> EConstr.mkApp(Lazy.force coq_cons,
[| typ; dump_elt e;dump_list typ dump_elt l|])
let pp_list op cl elt o l =
let rec _pp o l =
match l with
| [] -> ()
| [e] -> Printf.fprintf o "%a" elt e
| e::l -> Printf.fprintf o "%a ,%a" elt e _pp l in
Printf.fprintf o "%s%a%s" op _pp l cl
let pp_var = pp_positive
let dump_var = dump_positive
let pp_expr pp_z o e =
let rec pp_expr o e =
match e with
| Mc.PEX n -> Printf.fprintf o "V %a" pp_var n
| Mc.PEc z -> pp_z o z
| Mc.PEadd(e1,e2) -> Printf.fprintf o "(%a)+(%a)" pp_expr e1 pp_expr e2
| Mc.PEmul(e1,e2) -> Printf.fprintf o "%a*(%a)" pp_expr e1 pp_expr e2
| Mc.PEopp e -> Printf.fprintf o "-(%a)" pp_expr e
| Mc.PEsub(e1,e2) -> Printf.fprintf o "(%a)-(%a)" pp_expr e1 pp_expr e2
| Mc.PEpow(e,n) -> Printf.fprintf o "(%a)^(%a)" pp_expr e pp_n n in
pp_expr o e
let dump_expr typ dump_z e =
let rec dump_expr e =
match e with
| Mc.PEX n -> EConstr.mkApp(Lazy.force coq_PEX,[| typ; dump_var n |])
| Mc.PEc z -> EConstr.mkApp(Lazy.force coq_PEc,[| typ ; dump_z z |])
| Mc.PEadd(e1,e2) -> EConstr.mkApp(Lazy.force coq_PEadd,
[| typ; dump_expr e1;dump_expr e2|])
| Mc.PEsub(e1,e2) -> EConstr.mkApp(Lazy.force coq_PEsub,
[| typ; dump_expr e1;dump_expr e2|])
| Mc.PEopp e -> EConstr.mkApp(Lazy.force coq_PEopp,
[| typ; dump_expr e|])
| Mc.PEmul(e1,e2) -> EConstr.mkApp(Lazy.force coq_PEmul,
[| typ; dump_expr e1;dump_expr e2|])
| Mc.PEpow(e,n) -> EConstr.mkApp(Lazy.force coq_PEpow,
[| typ; dump_expr e; dump_n n|])
in
dump_expr e
let dump_pol typ dump_c e =
let rec dump_pol e =
match e with
| Mc.Pc n -> EConstr.mkApp(Lazy.force coq_Pc, [|typ ; dump_c n|])
| Mc.Pinj(p,pol) -> EConstr.mkApp(Lazy.force coq_Pinj , [| typ ; dump_positive p ; dump_pol pol|])
| Mc.PX(pol1,p,pol2) -> EConstr.mkApp(Lazy.force coq_PX, [| typ ; dump_pol pol1 ; dump_positive p ; dump_pol pol2|]) in
dump_pol e
let pp_pol pp_c o e =
let rec pp_pol o e =
match e with
| Mc.Pc n -> Printf.fprintf o "Pc %a" pp_c n
| Mc.Pinj(p,pol) -> Printf.fprintf o "Pinj(%a,%a)" pp_positive p pp_pol pol
| Mc.PX(pol1,p,pol2) -> Printf.fprintf o "PX(%a,%a,%a)" pp_pol pol1 pp_positive p pp_pol pol2 in
pp_pol o e
let pp_cnf pp_c o f =
let pp_clause o l = List.iter (fun ((p,_),t) -> Printf.fprintf o "(%a @%a)" (pp_pol pp_c) p Tag.pp t) l in
List.iter (fun l -> Printf.fprintf o "[%a]" pp_clause l) f
let dump_psatz typ dump_z e =
let z = Lazy.force typ in
let rec dump_cone e =
match e with
| Mc.PsatzIn n -> EConstr.mkApp(Lazy.force coq_PsatzIn,[| z; dump_nat n |])
| Mc.PsatzMulC(e,c) -> EConstr.mkApp(Lazy.force coq_PsatzMultC,
[| z; dump_pol z dump_z e ; dump_cone c |])
| Mc.PsatzSquare e -> EConstr.mkApp(Lazy.force coq_PsatzSquare,
[| z;dump_pol z dump_z e|])
| Mc.PsatzAdd(e1,e2) -> EConstr.mkApp(Lazy.force coq_PsatzAdd,
[| z; dump_cone e1; dump_cone e2|])
| Mc.PsatzMulE(e1,e2) -> EConstr.mkApp(Lazy.force coq_PsatzMulE,
[| z; dump_cone e1; dump_cone e2|])
| Mc.PsatzC p -> EConstr.mkApp(Lazy.force coq_PsatzC,[| z; dump_z p|])
| Mc.PsatzZ -> EConstr.mkApp(Lazy.force coq_PsatzZ,[| z|]) in
dump_cone e
let pp_psatz pp_z o e =
let rec pp_cone o e =
match e with
| Mc.PsatzIn n ->
Printf.fprintf o "(In %a)%%nat" pp_nat n
| Mc.PsatzMulC(e,c) ->
Printf.fprintf o "( %a [*] %a)" (pp_pol pp_z) e pp_cone c
| Mc.PsatzSquare e ->
Printf.fprintf o "(%a^2)" (pp_pol pp_z) e
| Mc.PsatzAdd(e1,e2) ->
Printf.fprintf o "(%a [+] %a)" pp_cone e1 pp_cone e2
| Mc.PsatzMulE(e1,e2) ->
Printf.fprintf o "(%a [*] %a)" pp_cone e1 pp_cone e2
| Mc.PsatzC p ->
Printf.fprintf o "(%a)%%positive" pp_z p
| Mc.PsatzZ ->
Printf.fprintf o "0" in
pp_cone o e
let dump_op = function
| Mc.OpEq-> Lazy.force coq_OpEq
| Mc.OpNEq-> Lazy.force coq_OpNEq
| Mc.OpLe -> Lazy.force coq_OpLe
| Mc.OpGe -> Lazy.force coq_OpGe
| Mc.OpGt-> Lazy.force coq_OpGt
| Mc.OpLt-> Lazy.force coq_OpLt
let pp_op o e=
match e with
| Mc.OpEq-> Printf.fprintf o "="
| Mc.OpNEq-> Printf.fprintf o "<>"
| Mc.OpLe -> Printf.fprintf o "=<"
| Mc.OpGe -> Printf.fprintf o ">="
| Mc.OpGt-> Printf.fprintf o ">"
| Mc.OpLt-> Printf.fprintf o "<"
let pp_cstr pp_z o {Mc.flhs = l ; Mc.fop = op ; Mc.frhs = r } =
Printf.fprintf o"(%a %a %a)" (pp_expr pp_z) l pp_op op (pp_expr pp_z) r
let dump_cstr typ dump_constant {Mc.flhs = e1 ; Mc.fop = o ; Mc.frhs = e2} =
EConstr.mkApp(Lazy.force coq_Build,
[| typ; dump_expr typ dump_constant e1 ;
dump_op o ;
dump_expr typ dump_constant e2|])
let assoc_const sigma x l =
try
snd (List.find (fun (x',y) -> EConstr.eq_constr sigma x (Lazy.force x')) l)
with
Not_found -> raise ParseError
let zop_table = [
coq_Zgt, Mc.OpGt ;
coq_Zge, Mc.OpGe ;
coq_Zlt, Mc.OpLt ;
coq_Zle, Mc.OpLe ]
let rop_table = [
coq_Rgt, Mc.OpGt ;
coq_Rge, Mc.OpGe ;
coq_Rlt, Mc.OpLt ;
coq_Rle, Mc.OpLe ]
let qop_table = [
coq_Qlt, Mc.OpLt ;
coq_Qle, Mc.OpLe ;
coq_Qeq, Mc.OpEq
]
type gl = { env : Environ.env; sigma : Evd.evar_map }
let is_convertible gl t1 t2 =
Reductionops.is_conv gl.env gl.sigma t1 t2
let parse_zop gl (op,args) =
let sigma = gl.sigma in
match EConstr.kind sigma op with
| Term.Const (x,_) -> (assoc_const sigma op zop_table, args.(0) , args.(1))
| Term.Ind((n,0),_) ->
if EConstr.eq_constr sigma op (Lazy.force coq_Eq) && is_convertible gl args.(0) (Lazy.force coq_Z)
then (Mc.OpEq, args.(1), args.(2))
else raise ParseError
| _ -> failwith "parse_zop"
let parse_rop gl (op,args) =
let sigma = gl.sigma in
match EConstr.kind sigma op with
| Term.Const (x,_) -> (assoc_const sigma op rop_table, args.(0) , args.(1))
| Term.Ind((n,0),_) ->
if EConstr.eq_constr sigma op (Lazy.force coq_Eq) && is_convertible gl args.(0) (Lazy.force coq_R)
then (Mc.OpEq, args.(1), args.(2))
else raise ParseError
| _ -> failwith "parse_zop"
let parse_qop gl (op,args) =
(assoc_const gl.sigma op qop_table, args.(0) , args.(1))
let is_constant sigma t = (* This is an approx *)
match EConstr.kind sigma t with
| Term.Construct(i,_) -> true
| _ -> false
type 'a op =
| Binop of ('a Mc.pExpr -> 'a Mc.pExpr -> 'a Mc.pExpr)
| Opp
| Power
| Ukn of string
let assoc_ops sigma x l =
try
snd (List.find (fun (x',y) -> EConstr.eq_constr sigma x (Lazy.force x')) l)
with
Not_found -> Ukn "Oups"
(**
* MODULE: Env is for environment.
*)
module Env =
struct
type t = EConstr.constr list
let compute_rank_add env sigma v =
let rec _add env n v =
match env with
| [] -> ([v],n)
| e::l ->
if EConstr.eq_constr sigma e v
then (env,n)
else
let (env,n) = _add l ( n+1) v in
(e::env,n) in
let (env, n) = _add env 1 v in
(env, CamlToCoq.positive n)
let get_rank env sigma v =
let rec _get_rank env n =
match env with
| [] -> raise (Invalid_argument "get_rank")
| e::l ->
if EConstr.eq_constr sigma e v
then n
else _get_rank l (n+1) in
_get_rank env 1
let empty = []
let elements env = env
end (* MODULE END: Env *)
(**
* This is the big generic function for expression parsers.
*)
let parse_expr sigma parse_constant parse_exp ops_spec env term =
if debug
then (
let _, env = Pfedit.get_current_context () in
Feedback.msg_debug (Pp.str "parse_expr: " ++ Printer.pr_leconstr_env env sigma term));
(*
let constant_or_variable env term =
try
( Mc.PEc (parse_constant term) , env)
with ParseError ->
let (env,n) = Env.compute_rank_add env term in
(Mc.PEX n , env) in
*)
let parse_variable env term =
let (env,n) = Env.compute_rank_add env sigma term in
(Mc.PEX n , env) in
let rec parse_expr env term =
let combine env op (t1,t2) =
let (expr1,env) = parse_expr env t1 in
let (expr2,env) = parse_expr env t2 in
(op expr1 expr2,env) in
try (Mc.PEc (parse_constant term) , env)
with ParseError ->
match EConstr.kind sigma term with
| Term.App(t,args) ->
(
match EConstr.kind sigma t with
| Term.Const c ->
( match assoc_ops sigma t ops_spec with
| Binop f -> combine env f (args.(0),args.(1))
| Opp -> let (expr,env) = parse_expr env args.(0) in
(Mc.PEopp expr, env)
| Power ->
begin
try
let (expr,env) = parse_expr env args.(0) in
let power = (parse_exp expr args.(1)) in
(power , env)
with e when CErrors.noncritical e ->
(* if the exponent is a variable *)
let (env,n) = Env.compute_rank_add env sigma term in (Mc.PEX n, env)
end
| Ukn s ->
if debug
then (Printf.printf "unknown op: %s\n" s; flush stdout;);
let (env,n) = Env.compute_rank_add env sigma term in (Mc.PEX n, env)
)
| _ -> parse_variable env term
)
| _ -> parse_variable env term in
parse_expr env term
let zop_spec =
[
coq_Zplus , Binop (fun x y -> Mc.PEadd(x,y)) ;
coq_Zminus , Binop (fun x y -> Mc.PEsub(x,y)) ;
coq_Zmult , Binop (fun x y -> Mc.PEmul (x,y)) ;
coq_Zopp , Opp ;
coq_Zpower , Power]
let qop_spec =
[
coq_Qplus , Binop (fun x y -> Mc.PEadd(x,y)) ;
coq_Qminus , Binop (fun x y -> Mc.PEsub(x,y)) ;
coq_Qmult , Binop (fun x y -> Mc.PEmul (x,y)) ;
coq_Qopp , Opp ;
coq_Qpower , Power]
let rop_spec =
[
coq_Rplus , Binop (fun x y -> Mc.PEadd(x,y)) ;
coq_Rminus , Binop (fun x y -> Mc.PEsub(x,y)) ;
coq_Rmult , Binop (fun x y -> Mc.PEmul (x,y)) ;
coq_Ropp , Opp ;
coq_Rpower , Power]
let zconstant = parse_z
let qconstant = parse_q
let rconst_assoc =
[
coq_Rplus , (fun x y -> Mc.CPlus(x,y)) ;
coq_Rminus , (fun x y -> Mc.CMinus(x,y)) ;
coq_Rmult , (fun x y -> Mc.CMult(x,y)) ;
(* coq_Rdiv , (fun x y -> Mc.CMult(x,Mc.CInv y)) ;*)
]
let rec rconstant sigma term =
match EConstr.kind sigma term with
| Term.Const x ->
if EConstr.eq_constr sigma term (Lazy.force coq_R0)
then Mc.C0
else if EConstr.eq_constr sigma term (Lazy.force coq_R1)
then Mc.C1
else raise ParseError
| Term.App(op,args) ->
begin
try
(* the evaluation order is important in the following *)
let f = assoc_const sigma op rconst_assoc in
let a = rconstant sigma args.(0) in
let b = rconstant sigma args.(1) in
f a b
with
ParseError ->
match op with
| op when EConstr.eq_constr sigma op (Lazy.force coq_Rinv) ->
let arg = rconstant sigma args.(0) in
if Mc.qeq_bool (Mc.q_of_Rcst arg) {Mc.qnum = Mc.Z0 ; Mc.qden = Mc.XH}
then raise ParseError (* This is a division by zero -- no semantics *)
else Mc.CInv(arg)
| op when EConstr.eq_constr sigma op (Lazy.force coq_IQR) -> Mc.CQ (parse_q sigma args.(0))
| op when EConstr.eq_constr sigma op (Lazy.force coq_IZR) -> Mc.CZ (parse_z sigma args.(0))
| _ -> raise ParseError
end
| _ -> raise ParseError
let rconstant sigma term =
let _, env = Pfedit.get_current_context () in
if debug
then Feedback.msg_debug (Pp.str "rconstant: " ++ Printer.pr_leconstr_env env sigma term ++ fnl ());
let res = rconstant sigma term in
if debug then
(Printf.printf "rconstant -> %a\n" pp_Rcst res ; flush stdout) ;
res
let parse_zexpr sigma = parse_expr sigma
(zconstant sigma)
(fun expr x ->
let exp = (parse_z sigma x) in
match exp with
| Mc.Zneg _ -> Mc.PEc Mc.Z0
| _ -> Mc.PEpow(expr, Mc.Z.to_N exp))
zop_spec
let parse_qexpr sigma = parse_expr sigma
(qconstant sigma)
(fun expr x ->
let exp = parse_z sigma x in
match exp with
| Mc.Zneg _ ->
begin
match expr with
| Mc.PEc q -> Mc.PEc (Mc.qpower q exp)
| _ -> print_string "parse_qexpr parse error" ; flush stdout ; raise ParseError
end
| _ -> let exp = Mc.Z.to_N exp in
Mc.PEpow(expr,exp))
qop_spec
let parse_rexpr sigma = parse_expr sigma
(rconstant sigma)
(fun expr x ->
let exp = Mc.N.of_nat (parse_nat sigma x) in
Mc.PEpow(expr,exp))
rop_spec
let parse_arith parse_op parse_expr env cstr gl =
let sigma = gl.sigma in
if debug
then Feedback.msg_debug (Pp.str "parse_arith: " ++ Printer.pr_leconstr_env gl.env sigma cstr ++ fnl ());
match EConstr.kind sigma cstr with
| Term.App(op,args) ->
let (op,lhs,rhs) = parse_op gl (op,args) in
let (e1,env) = parse_expr sigma env lhs in
let (e2,env) = parse_expr sigma env rhs in
({Mc.flhs = e1; Mc.fop = op;Mc.frhs = e2},env)
| _ -> failwith "error : parse_arith(2)"
let parse_zarith = parse_arith parse_zop parse_zexpr
let parse_qarith = parse_arith parse_qop parse_qexpr
let parse_rarith = parse_arith parse_rop parse_rexpr
(* generic parsing of arithmetic expressions *)
let rec f2f = function
| TT -> Mc.TT
| FF -> Mc.FF
| X _ -> Mc.X
| A (x,_,_) -> Mc.A x
| C (a,b) -> Mc.Cj(f2f a,f2f b)
| D (a,b) -> Mc.D(f2f a,f2f b)
| N (a) -> Mc.N(f2f a)
| I(a,_,b) -> Mc.I(f2f a,f2f b)
let mkC f1 f2 = C(f1,f2)
let mkD f1 f2 = D(f1,f2)
let mkIff f1 f2 = C(I(f1,None,f2),I(f2,None,f1))
let mkI f1 f2 = I(f1,None,f2)
let mkformula_binary g term f1 f2 =
match f1 , f2 with
| X _ , X _ -> X(term)
| _ -> g f1 f2
(**
* This is the big generic function for formula parsers.
*)
let parse_formula gl parse_atom env tg term =
let sigma = gl.sigma in
let parse_atom env tg t =
try
let (at,env) = parse_atom env t gl in
(A(at,tg,t), env,Tag.next tg)
with e when CErrors.noncritical e -> (X(t),env,tg) in
let is_prop term =
let sort = Retyping.get_sort_of gl.env gl.sigma term in
Sorts.is_prop sort in
let rec xparse_formula env tg term =
match EConstr.kind sigma term with
| Term.App(l,rst) ->
(match rst with
| [|a;b|] when EConstr.eq_constr sigma l (Lazy.force coq_and) ->
let f,env,tg = xparse_formula env tg a in
let g,env, tg = xparse_formula env tg b in
mkformula_binary mkC term f g,env,tg
| [|a;b|] when EConstr.eq_constr sigma l (Lazy.force coq_or) ->
let f,env,tg = xparse_formula env tg a in
let g,env,tg = xparse_formula env tg b in
mkformula_binary mkD term f g,env,tg
| [|a|] when EConstr.eq_constr sigma l (Lazy.force coq_not) ->
let (f,env,tg) = xparse_formula env tg a in (N(f), env,tg)
| [|a;b|] when EConstr.eq_constr sigma l (Lazy.force coq_iff) ->
let f,env,tg = xparse_formula env tg a in
let g,env,tg = xparse_formula env tg b in
mkformula_binary mkIff term f g,env,tg
| _ -> parse_atom env tg term)
| Term.Prod(typ,a,b) when EConstr.Vars.noccurn sigma 1 b ->
let f,env,tg = xparse_formula env tg a in
let g,env,tg = xparse_formula env tg b in
mkformula_binary mkI term f g,env,tg
| _ when EConstr.eq_constr sigma term (Lazy.force coq_True) -> (TT,env,tg)
| _ when EConstr.eq_constr sigma term (Lazy.force coq_False) -> (FF,env,tg)
| _ when is_prop term -> X(term),env,tg
| _ -> raise ParseError
in
xparse_formula env tg ((*Reductionops.whd_zeta*) term)
let dump_formula typ dump_atom f =
let rec xdump f =
match f with
| TT -> EConstr.mkApp(Lazy.force coq_TT,[|typ|])
| FF -> EConstr.mkApp(Lazy.force coq_FF,[|typ|])
| C(x,y) -> EConstr.mkApp(Lazy.force coq_And,[|typ ; xdump x ; xdump y|])
| D(x,y) -> EConstr.mkApp(Lazy.force coq_Or,[|typ ; xdump x ; xdump y|])
| I(x,_,y) -> EConstr.mkApp(Lazy.force coq_Impl,[|typ ; xdump x ; xdump y|])
| N(x) -> EConstr.mkApp(Lazy.force coq_Neg,[|typ ; xdump x|])
| A(x,_,_) -> EConstr.mkApp(Lazy.force coq_Atom,[|typ ; dump_atom x|])
| X(t) -> EConstr.mkApp(Lazy.force coq_X,[|typ ; t|]) in
xdump f
let prop_env_of_formula sigma form =
let rec doit env = function
| TT | FF | A(_,_,_) -> env
| X t -> fst (Env.compute_rank_add env sigma t)
| C(f1,f2) | D(f1,f2) | I(f1,_,f2) ->
doit (doit env f1) f2
| N f -> doit env f in
doit [] form
let var_env_of_formula form =
let rec vars_of_expr = function
| Mc.PEX n -> ISet.singleton (CoqToCaml.positive n)
| Mc.PEc z -> ISet.empty
| Mc.PEadd(e1,e2) | Mc.PEmul(e1,e2) | Mc.PEsub(e1,e2) ->
ISet.union (vars_of_expr e1) (vars_of_expr e2)
| Mc.PEopp e | Mc.PEpow(e,_)-> vars_of_expr e
in
let vars_of_atom {Mc.flhs ; Mc.fop; Mc.frhs} =
ISet.union (vars_of_expr flhs) (vars_of_expr frhs) in
let rec doit = function
| TT | FF | X _ -> ISet.empty
| A (a,t,c) -> vars_of_atom a
| C(f1,f2) | D(f1,f2) |I (f1,_,f2) -> ISet.union (doit f1) (doit f2)
| N f -> doit f in
doit form
type 'cst dump_expr = (* 'cst is the type of the syntactic constants *)
{
interp_typ : EConstr.constr;
dump_cst : 'cst -> EConstr.constr;
dump_add : EConstr.constr;
dump_sub : EConstr.constr;
dump_opp : EConstr.constr;
dump_mul : EConstr.constr;
dump_pow : EConstr.constr;
dump_pow_arg : Mc.n -> EConstr.constr;
dump_op : (Mc.op2 * EConstr.constr) list
}
let dump_zexpr = lazy
{
interp_typ = Lazy.force coq_Z;
dump_cst = dump_z;
dump_add = Lazy.force coq_Zplus;
dump_sub = Lazy.force coq_Zminus;
dump_opp = Lazy.force coq_Zopp;
dump_mul = Lazy.force coq_Zmult;
dump_pow = Lazy.force coq_Zpower;
dump_pow_arg = (fun n -> dump_z (CamlToCoq.z (CoqToCaml.n n)));
dump_op = List.map (fun (x,y) -> (y,Lazy.force x)) zop_table
}
let dump_qexpr = lazy
{
interp_typ = Lazy.force coq_Q;
dump_cst = dump_q;
dump_add = Lazy.force coq_Qplus;
dump_sub = Lazy.force coq_Qminus;
dump_opp = Lazy.force coq_Qopp;
dump_mul = Lazy.force coq_Qmult;
dump_pow = Lazy.force coq_Qpower;
dump_pow_arg = (fun n -> dump_z (CamlToCoq.z (CoqToCaml.n n)));
dump_op = List.map (fun (x,y) -> (y,Lazy.force x)) qop_table
}
let dump_positive_as_R p =
let mult = Lazy.force coq_Rmult in
let add = Lazy.force coq_Rplus in
let one = Lazy.force coq_R1 in
let mk_add x y = EConstr.mkApp(add,[|x;y|]) in
let mk_mult x y = EConstr.mkApp(mult,[|x;y|]) in
let two = mk_add one one in
let rec dump_positive p =
match p with
| Mc.XH -> one
| Mc.XO p -> mk_mult two (dump_positive p)
| Mc.XI p -> mk_add one (mk_mult two (dump_positive p)) in
dump_positive p
let dump_n_as_R n =
let z = CoqToCaml.n n in
if z = 0
then Lazy.force coq_R0
else dump_positive_as_R (CamlToCoq.positive z)
let rec dump_Rcst_as_R cst =
match cst with
| Mc.C0 -> Lazy.force coq_R0
| Mc.C1 -> Lazy.force coq_R1
| Mc.CQ q -> EConstr.mkApp(Lazy.force coq_IQR, [| dump_q q |])
| Mc.CZ z -> EConstr.mkApp(Lazy.force coq_IZR, [| dump_z z |])
| Mc.CPlus(x,y) -> EConstr.mkApp(Lazy.force coq_Rplus, [| dump_Rcst_as_R x ; dump_Rcst_as_R y |])
| Mc.CMinus(x,y) -> EConstr.mkApp(Lazy.force coq_Rminus, [| dump_Rcst_as_R x ; dump_Rcst_as_R y |])
| Mc.CMult(x,y) -> EConstr.mkApp(Lazy.force coq_Rmult, [| dump_Rcst_as_R x ; dump_Rcst_as_R y |])
| Mc.CInv t -> EConstr.mkApp(Lazy.force coq_Rinv, [| dump_Rcst_as_R t |])
| Mc.COpp t -> EConstr.mkApp(Lazy.force coq_Ropp, [| dump_Rcst_as_R t |])
let dump_rexpr = lazy
{
interp_typ = Lazy.force coq_R;
dump_cst = dump_Rcst_as_R;
dump_add = Lazy.force coq_Rplus;
dump_sub = Lazy.force coq_Rminus;
dump_opp = Lazy.force coq_Ropp;
dump_mul = Lazy.force coq_Rmult;
dump_pow = Lazy.force coq_Rpower;
dump_pow_arg = (fun n -> dump_nat (CamlToCoq.nat (CoqToCaml.n n)));
dump_op = List.map (fun (x,y) -> (y,Lazy.force x)) rop_table
}
(** [make_goal_of_formula depxr vars props form] where
- vars is an environment for the arithmetic variables occuring in form
- props is an environment for the propositions occuring in form
@return a goal where all the variables and propositions of the formula are quantified
*)
let prodn n env b =
let rec prodrec = function
| (0, env, b) -> b
| (n, ((v,t)::l), b) -> prodrec (n-1, l, EConstr.mkProd (v,t,b))
| _ -> assert false
in
prodrec (n,env,b)
let make_goal_of_formula sigma dexpr form =
let vars_idx =
List.mapi (fun i v -> (v, i+1)) (ISet.elements (var_env_of_formula form)) in
(* List.iter (fun (v,i) -> Printf.fprintf stdout "var %i has index %i\n" v i) vars_idx ;*)
let props = prop_env_of_formula sigma form in
let vars_n = List.map (fun (_,i) -> (Names.Id.of_string (Printf.sprintf "__x%i" i)) , dexpr.interp_typ) vars_idx in
let props_n = List.mapi (fun i _ -> (Names.Id.of_string (Printf.sprintf "__p%i" (i+1))) , EConstr.mkProp) props in
let var_name_pos = List.map2 (fun (idx,_) (id,_) -> id,idx) vars_idx vars_n in
let dump_expr i e =
let rec dump_expr = function
| Mc.PEX n -> EConstr.mkRel (i+(List.assoc (CoqToCaml.positive n) vars_idx))
| Mc.PEc z -> dexpr.dump_cst z
| Mc.PEadd(e1,e2) -> EConstr.mkApp(dexpr.dump_add,
[| dump_expr e1;dump_expr e2|])
| Mc.PEsub(e1,e2) -> EConstr.mkApp(dexpr.dump_sub,
[| dump_expr e1;dump_expr e2|])
| Mc.PEopp e -> EConstr.mkApp(dexpr.dump_opp,
[| dump_expr e|])
| Mc.PEmul(e1,e2) -> EConstr.mkApp(dexpr.dump_mul,
[| dump_expr e1;dump_expr e2|])
| Mc.PEpow(e,n) -> EConstr.mkApp(dexpr.dump_pow,
[| dump_expr e; dexpr.dump_pow_arg n|])
in dump_expr e in
let mkop op e1 e2 =
try
EConstr.mkApp(List.assoc op dexpr.dump_op, [| e1; e2|])
with Not_found ->
EConstr.mkApp(Lazy.force coq_Eq,[|dexpr.interp_typ ; e1 ;e2|]) in
let dump_cstr i { Mc.flhs ; Mc.fop ; Mc.frhs } =
mkop fop (dump_expr i flhs) (dump_expr i frhs) in
let rec xdump pi xi f =
match f with
| TT -> Lazy.force coq_True
| FF -> Lazy.force coq_False
| C(x,y) -> EConstr.mkApp(Lazy.force coq_and,[|xdump pi xi x ; xdump pi xi y|])
| D(x,y) -> EConstr.mkApp(Lazy.force coq_or,[| xdump pi xi x ; xdump pi xi y|])
| I(x,_,y) -> EConstr.mkArrow (xdump pi xi x) (xdump (pi+1) (xi+1) y)
| N(x) -> EConstr.mkArrow (xdump pi xi x) (Lazy.force coq_False)
| A(x,_,_) -> dump_cstr xi x
| X(t) -> let idx = Env.get_rank props sigma t in
EConstr.mkRel (pi+idx) in
let nb_vars = List.length vars_n in
let nb_props = List.length props_n in
(* Printf.fprintf stdout "NBProps : %i\n" nb_props ;*)
let subst_prop p =
let idx = Env.get_rank props sigma p in
EConstr.mkVar (Names.Id.of_string (Printf.sprintf "__p%i" idx)) in
let form' = map_prop subst_prop form in
(prodn nb_props (List.map (fun (x,y) -> Name.Name x,y) props_n)
(prodn nb_vars (List.map (fun (x,y) -> Name.Name x,y) vars_n)
(xdump (List.length vars_n) 0 form)),
List.rev props_n, List.rev var_name_pos,form')
(**
* Given a conclusion and a list of affectations, rebuild a term prefixed by
* the appropriate letins.
* TODO: reverse the list of bindings!
*)
let set l concl =
let rec xset acc = function
| [] -> acc
| (e::l) ->
let (name,expr,typ) = e in
xset (EConstr.mkNamedLetIn
(Names.Id.of_string name)
expr typ acc) l in
xset concl l
end (**
* MODULE END: M
*)
open M
let rec sig_of_cone = function
| Mc.PsatzIn n -> [CoqToCaml.nat n]
| Mc.PsatzMulE(w1,w2) -> (sig_of_cone w1)@(sig_of_cone w2)
| Mc.PsatzMulC(w1,w2) -> (sig_of_cone w2)
| Mc.PsatzAdd(w1,w2) -> (sig_of_cone w1)@(sig_of_cone w2)
| _ -> []
let same_proof sg cl1 cl2 =
let rec xsame_proof sg =
match sg with
| [] -> true
| n::sg ->
(try Int.equal (List.nth cl1 n) (List.nth cl2 n) with Invalid_argument _ -> false)
&& (xsame_proof sg ) in
xsame_proof sg
let tags_of_clause tgs wit clause =
let rec xtags tgs = function
| Mc.PsatzIn n -> Names.Id.Set.union tgs
(snd (List.nth clause (CoqToCaml.nat n) ))
| Mc.PsatzMulC(e,w) -> xtags tgs w
| Mc.PsatzMulE (w1,w2) | Mc.PsatzAdd(w1,w2) -> xtags (xtags tgs w1) w2
| _ -> tgs in
xtags tgs wit
(*let tags_of_cnf wits cnf =
List.fold_left2 (fun acc w cl -> tags_of_clause acc w cl)
Names.Id.Set.empty wits cnf *)
let find_witness prover polys1 = try_any prover polys1
let rec witness prover l1 l2 =
match l2 with
| [] -> Some []
| e :: l2 ->
match find_witness prover (e::l1) with
| None -> None
| Some w ->
(match witness prover l1 l2 with
| None -> None
| Some l -> Some (w::l)
)
let rec apply_ids t ids =
match ids with
| [] -> t
| i::ids -> apply_ids (mkApp(t,[| mkVar i |])) ids
let coq_Node =
lazy (gen_constant_in_modules "VarMap"
[["Coq" ; "micromega" ; "VarMap"];["VarMap"]] "Node")
let coq_Leaf =
lazy (gen_constant_in_modules "VarMap"
[["Coq" ; "micromega" ; "VarMap"];["VarMap"]] "Leaf")
let coq_Empty =
lazy (gen_constant_in_modules "VarMap"
[["Coq" ; "micromega" ;"VarMap"];["VarMap"]] "Empty")
let coq_VarMap =
lazy (gen_constant_in_modules "VarMap"
[["Coq" ; "micromega" ; "VarMap"] ; ["VarMap"]] "t")
let rec dump_varmap typ m =
match m with
| Mc.Empty -> EConstr.mkApp(Lazy.force coq_Empty,[| typ |])
| Mc.Leaf v -> EConstr.mkApp(Lazy.force coq_Leaf,[| typ; v|])
| Mc.Node(l,o,r) ->
EConstr.mkApp (Lazy.force coq_Node, [| typ; dump_varmap typ l; o ; dump_varmap typ r |])
let vm_of_list env =
match env with
| [] -> Mc.Empty
| (d,_)::_ ->
List.fold_left (fun vm (c,i) ->
Mc.vm_add d (CamlToCoq.positive i) c vm) Mc.Empty env
let rec pp_varmap o vm =
match vm with
| Mc.Empty -> output_string o "[]"
| Mc.Leaf z -> Printf.fprintf o "[%a]" pp_z z
| Mc.Node(l,z,r) -> Printf.fprintf o "[%a, %a, %a]" pp_varmap l pp_z z pp_varmap r
let rec dump_proof_term = function
| Micromega.DoneProof -> Lazy.force coq_doneProof
| Micromega.RatProof(cone,rst) ->
EConstr.mkApp(Lazy.force coq_ratProof, [| dump_psatz coq_Z dump_z cone; dump_proof_term rst|])
| Micromega.CutProof(cone,prf) ->
EConstr.mkApp(Lazy.force coq_cutProof,
[| dump_psatz coq_Z dump_z cone ;
dump_proof_term prf|])
| Micromega.EnumProof(c1,c2,prfs) ->
EConstr.mkApp (Lazy.force coq_enumProof,
[| dump_psatz coq_Z dump_z c1 ; dump_psatz coq_Z dump_z c2 ;
dump_list (Lazy.force coq_proofTerm) dump_proof_term prfs |])
let rec size_of_psatz = function
| Micromega.PsatzIn _ -> 1
| Micromega.PsatzSquare _ -> 1
| Micromega.PsatzMulC(_,p) -> 1 + (size_of_psatz p)
| Micromega.PsatzMulE(p1,p2) | Micromega.PsatzAdd(p1,p2) -> size_of_psatz p1 + size_of_psatz p2
| Micromega.PsatzC _ -> 1
| Micromega.PsatzZ -> 1
let rec size_of_pf = function
| Micromega.DoneProof -> 1
| Micromega.RatProof(p,a) -> (size_of_pf a) + (size_of_psatz p)
| Micromega.CutProof(p,a) -> (size_of_pf a) + (size_of_psatz p)
| Micromega.EnumProof(p1,p2,l) -> (size_of_psatz p1) + (size_of_psatz p2) + (List.fold_left (fun acc p -> size_of_pf p + acc) 0 l)
let dump_proof_term t =
if debug then Printf.printf "dump_proof_term %i\n" (size_of_pf t) ;
dump_proof_term t
let pp_q o q = Printf.fprintf o "%a/%a" pp_z q.Micromega.qnum pp_positive q.Micromega.qden
let rec pp_proof_term o = function
| Micromega.DoneProof -> Printf.fprintf o "D"
| Micromega.RatProof(cone,rst) -> Printf.fprintf o "R[%a,%a]" (pp_psatz pp_z) cone pp_proof_term rst
| Micromega.CutProof(cone,rst) -> Printf.fprintf o "C[%a,%a]" (pp_psatz pp_z) cone pp_proof_term rst
| Micromega.EnumProof(c1,c2,rst) ->
Printf.fprintf o "EP[%a,%a,%a]"
(pp_psatz pp_z) c1 (pp_psatz pp_z) c2
(pp_list "[" "]" pp_proof_term) rst
let rec parse_hyps gl parse_arith env tg hyps =
match hyps with
| [] -> ([],env,tg)
| (i,t)::l ->
let (lhyps,env,tg) = parse_hyps gl parse_arith env tg l in
try
let (c,env,tg) = parse_formula gl parse_arith env tg t in
((i,c)::lhyps, env,tg)
with e when CErrors.noncritical e -> (lhyps,env,tg)
(*(if debug then Printf.printf "parse_arith : %s\n" x);*)
(*exception ParseError*)
let parse_goal gl parse_arith env hyps term =
(* try*)
let (f,env,tg) = parse_formula gl parse_arith env (Tag.from 0) term in
let (lhyps,env,tg) = parse_hyps gl parse_arith env tg hyps in
(lhyps,f,env)
(* with Failure x -> raise ParseError*)
(**
* The datastructures that aggregate theory-dependent proof values.
*)
type ('synt_c, 'prf) domain_spec = {
typ : EConstr.constr; (* is the type of the interpretation domain - Z, Q, R*)
coeff : EConstr.constr ; (* is the type of the syntactic coeffs - Z , Q , Rcst *)
dump_coeff : 'synt_c -> EConstr.constr ;
proof_typ : EConstr.constr ;
dump_proof : 'prf -> EConstr.constr
}
let zz_domain_spec = lazy {
typ = Lazy.force coq_Z;
coeff = Lazy.force coq_Z;
dump_coeff = dump_z ;
proof_typ = Lazy.force coq_proofTerm ;
dump_proof = dump_proof_term
}
let qq_domain_spec = lazy {
typ = Lazy.force coq_Q;
coeff = Lazy.force coq_Q;
dump_coeff = dump_q ;
proof_typ = Lazy.force coq_QWitness ;
dump_proof = dump_psatz coq_Q dump_q
}
let rcst_domain_spec = lazy {
typ = Lazy.force coq_R;
coeff = Lazy.force coq_Rcst;
dump_coeff = dump_Rcst;
proof_typ = Lazy.force coq_QWitness ;
dump_proof = dump_psatz coq_Q dump_q
}
(** Naive topological sort of constr according to the subterm-ordering *)
(* An element is minimal x is minimal w.r.t y if
x <= y or (x and y are incomparable) *)
let is_min le x y =
if le x y then true
else if le y x then false else true
let is_minimal le l c = List.for_all (is_min le c) l
let find_rem p l =
let rec xfind_rem acc l =
match l with
| [] -> (None, acc)
| x :: l -> if p x then (Some x, acc @ l)
else xfind_rem (x::acc) l in
xfind_rem [] l
let find_minimal le l = find_rem (is_minimal le l) l
let rec mk_topo_order le l =
match find_minimal le l with
| (None , _) -> []
| (Some v,l') -> v :: (mk_topo_order le l')
let topo_sort_constr l =
mk_topo_order (fun c t -> Termops.dependent Evd.empty (** FIXME *) (EConstr.of_constr c) (EConstr.of_constr t)) l
(**
* Instanciate the current Coq goal with a Micromega formula, a varmap, and a
* witness.
*)
let micromega_order_change spec cert cert_typ env ff (*: unit Proofview.tactic*) =
(* let ids = Util.List.map_i (fun i _ -> (Names.Id.of_string ("__v"^(string_of_int i)))) 0 env in *)
let formula_typ = (EConstr.mkApp (Lazy.force coq_Cstr,[|spec.coeff|])) in
let ff = dump_formula formula_typ (dump_cstr spec.coeff spec.dump_coeff) ff in
let vm = dump_varmap (spec.typ) (vm_of_list env) in
(* todo : directly generate the proof term - or generalize before conversion? *)
Proofview.Goal.nf_enter begin fun gl ->
Tacticals.New.tclTHENLIST
[
Tactics.change_concl
(set
[
("__ff", ff, EConstr.mkApp(Lazy.force coq_Formula, [|formula_typ |]));
("__varmap", vm, EConstr.mkApp(Lazy.force coq_VarMap, [|spec.typ|]));
("__wit", cert, cert_typ)
]
(Tacmach.New.pf_concl gl))
]
end
(**
* The datastructures that aggregate prover attributes.
*)
type ('option,'a,'prf) prover = {
name : string ; (* name of the prover *)
get_option : unit ->'option ; (* find the options of the prover *)
prover : 'option * 'a list -> 'prf option ; (* the prover itself *)
hyps : 'prf -> ISet.t ; (* extract the indexes of the hypotheses really used in the proof *)
compact : 'prf -> (int -> int) -> 'prf ; (* remap the hyp indexes according to function *)
pp_prf : out_channel -> 'prf -> unit ;(* pretting printing of proof *)
pp_f : out_channel -> 'a -> unit (* pretty printing of the formulas (polynomials)*)
}
(**
* Given a list of provers and a disjunction of atoms, find a proof of any of
* the atoms. Returns an (optional) pair of a proof and a prover
* datastructure.
*)
let find_witness provers polys1 =
let provers = List.map (fun p ->
(fun l ->
match p.prover (p.get_option (),l) with
| None -> None
| Some prf -> Some(prf,p)) , p.name) provers in
try_any provers (List.map fst polys1)
(**
* Given a list of provers and a CNF, find a proof for each of the clauses.
* Return the proofs as a list.
*)
let witness_list prover l =
let rec xwitness_list l =
match l with
| [] -> Some []
| e :: l ->
match find_witness prover e with
| None -> None
| Some w ->
(match xwitness_list l with
| None -> None
| Some l -> Some (w :: l)
) in
xwitness_list l
let witness_list_tags = witness_list
(* *Deprecated* let is_singleton = function [] -> true | [e] -> true | _ -> false *)
let pp_ml_list pp_elt o l =
output_string o "[" ;
List.iter (fun x -> Printf.fprintf o "%a ;" pp_elt x) l ;
output_string o "]"
(**
* Prune the proof object, according to the 'diff' between two cnf formulas.
*)
let compact_proofs (cnf_ff: 'cst cnf) res (cnf_ff': 'cst cnf) =
let compact_proof (old_cl:'cst clause) (prf,prover) (new_cl:'cst clause) =
let new_cl = Mutils.mapi (fun (f,_) i -> (f,i)) new_cl in
let remap i =
let formula = try fst (List.nth old_cl i) with Failure _ -> failwith "bad old index" in
List.assoc formula new_cl in
(* if debug then
begin
Printf.printf "\ncompact_proof : %a %a %a"
(pp_ml_list prover.pp_f) (List.map fst old_cl)
prover.pp_prf prf
(pp_ml_list prover.pp_f) (List.map fst new_cl) ;
flush stdout
end ; *)
let res = try prover.compact prf remap with x when CErrors.noncritical x ->
if debug then Printf.fprintf stdout "Proof compaction %s" (Printexc.to_string x) ;
(* This should not happen -- this is the recovery plan... *)
match prover.prover (prover.get_option () ,List.map fst new_cl) with
| None -> failwith "proof compaction error"
| Some p -> p
in
if debug then
begin
Printf.printf " -> %a\n"
prover.pp_prf res ;
flush stdout
end ;
res in
let is_proof_compatible (old_cl:'cst clause) (prf,prover) (new_cl:'cst clause) =
let hyps_idx = prover.hyps prf in
let hyps = selecti hyps_idx old_cl in
is_sublist Pervasives.(=) hyps new_cl in
let cnf_res = List.combine cnf_ff res in (* we get pairs clause * proof *)
List.map (fun x ->
let (o,p) = List.find (fun (l,p) -> is_proof_compatible l p x) cnf_res
in compact_proof o p x) cnf_ff'
(**
* "Hide out" tagged atoms of a formula by transforming them into generic
* variables. See the Tag module in mutils.ml for more.
*)
let abstract_formula hyps f =
let rec xabs f =
match f with
| X c -> X c
| A(a,t,term) -> if TagSet.mem t hyps then A(a,t,term) else X(term)
| C(f1,f2) ->
(match xabs f1 , xabs f2 with
| X a1 , X a2 -> X (EConstr.mkApp(Lazy.force coq_and, [|a1;a2|]))
| f1 , f2 -> C(f1,f2) )
| D(f1,f2) ->
(match xabs f1 , xabs f2 with
| X a1 , X a2 -> X (EConstr.mkApp(Lazy.force coq_or, [|a1;a2|]))
| f1 , f2 -> D(f1,f2) )
| N(f) ->
(match xabs f with
| X a -> X (EConstr.mkApp(Lazy.force coq_not, [|a|]))
| f -> N f)
| I(f1,hyp,f2) ->
(match xabs f1 , hyp, xabs f2 with
| X a1 , Some _ , af2 -> af2
| X a1 , None , X a2 -> X (EConstr.mkArrow a1 a2)
| af1 , _ , af2 -> I(af1,hyp,af2)
)
| FF -> FF
| TT -> TT
in xabs f
(* [abstract_wrt_formula] is used in contexts whre f1 is already an abstraction of f2 *)
let rec abstract_wrt_formula f1 f2 =
match f1 , f2 with
| X c , _ -> X c
| A _ , A _ -> f2
| C(a,b) , C(a',b') -> C(abstract_wrt_formula a a', abstract_wrt_formula b b')
| D(a,b) , D(a',b') -> D(abstract_wrt_formula a a', abstract_wrt_formula b b')
| I(a,_,b) , I(a',x,b') -> I(abstract_wrt_formula a a',x, abstract_wrt_formula b b')
| FF , FF -> FF
| TT , TT -> TT
| N x , N y -> N(abstract_wrt_formula x y)
| _ -> failwith "abstract_wrt_formula"
(**
* This exception is raised by really_call_csdpcert if Coq's configure didn't
* find a CSDP executable.
*)
exception CsdpNotFound
(**
* This is the core of Micromega: apply the prover, analyze the result and
* prune unused fomulas, and finally modify the proof state.
*)
let formula_hyps_concl hyps concl =
List.fold_right
(fun (id,f) (cc,ids) ->
match f with
X _ -> (cc,ids)
| _ -> (I(f,Some id,cc), id::ids))
hyps (concl,[])
let micromega_tauto negate normalise unsat deduce spec prover env polys1 polys2 gl =
(* Express the goal as one big implication *)
let (ff,ids) = formula_hyps_concl polys1 polys2 in
(* Convert the aplpication into a (mc_)cnf (a list of lists of formulas) *)
let cnf_ff,cnf_ff_tags = cnf negate normalise unsat deduce ff in
if debug then
begin
Feedback.msg_notice (Pp.str "Formula....\n") ;
let formula_typ = (EConstr.mkApp(Lazy.force coq_Cstr, [|spec.coeff|])) in
let ff = dump_formula formula_typ
(dump_cstr spec.typ spec.dump_coeff) ff in
Feedback.msg_notice (Printer.pr_leconstr_env gl.env gl.sigma ff);
Printf.fprintf stdout "cnf : %a\n" (pp_cnf (fun o _ -> ())) cnf_ff
end;
match witness_list_tags prover cnf_ff with
| None -> None
| Some res -> (*Printf.printf "\nList %i" (List.length `res); *)
let hyps = List.fold_left (fun s (cl,(prf,p)) ->
let tags = ISet.fold (fun i s -> let t = snd (List.nth cl i) in
if debug then (Printf.fprintf stdout "T : %i -> %a" i Tag.pp t) ;
(*try*) TagSet.add t s (* with Invalid_argument _ -> s*)) (p.hyps prf) TagSet.empty in
TagSet.union s tags) (List.fold_left (fun s i -> TagSet.add i s) TagSet.empty cnf_ff_tags) (List.combine cnf_ff res) in
if debug then (Printf.printf "TForm : %a\n" pp_formula ff ; flush stdout;
Printf.printf "Hyps : %a\n" (fun o s -> TagSet.fold (fun i _ -> Printf.fprintf o "%a " Tag.pp i) s ()) hyps) ;
let ff' = abstract_formula hyps ff in
let cnf_ff',_ = cnf negate normalise unsat deduce ff' in
if debug then
begin
Feedback.msg_notice (Pp.str "\nAFormula\n") ;
let formula_typ = (EConstr.mkApp( Lazy.force coq_Cstr,[| spec.coeff|])) in
let ff' = dump_formula formula_typ
(dump_cstr spec.typ spec.dump_coeff) ff' in
Feedback.msg_notice (Printer.pr_leconstr_env gl.env gl.sigma ff');
Printf.fprintf stdout "cnf : %a\n" (pp_cnf (fun o _ -> ())) cnf_ff'
end;
(* Even if it does not work, this does not mean it is not provable
-- the prover is REALLY incomplete *)
(* if debug then
begin
(* recompute the proofs *)
match witness_list_tags prover cnf_ff' with
| None -> failwith "abstraction is wrong"
| Some res -> ()
end ; *)
let res' = compact_proofs cnf_ff res cnf_ff' in
let (ff',res',ids) = (ff',res', ids_of_formula ff') in
let res' = dump_list (spec.proof_typ) spec.dump_proof res' in
Some (ids,ff',res')
(**
* Parse the proof environment, and call micromega_tauto
*)
let fresh_id avoid id gl =
Tactics.fresh_id_in_env avoid id (Proofview.Goal.env gl)
let micromega_gen
parse_arith
(negate:'cst atom -> 'cst mc_cnf)
(normalise:'cst atom -> 'cst mc_cnf)
unsat deduce
spec dumpexpr prover tac =
Proofview.Goal.nf_enter begin fun gl ->
let sigma = Tacmach.New.project gl in
let concl = Tacmach.New.pf_concl gl in
let hyps = Tacmach.New.pf_hyps_types gl in
try
let gl0 = { env = Tacmach.New.pf_env gl; sigma } in
let (hyps,concl,env) = parse_goal gl0 parse_arith Env.empty hyps concl in
let env = Env.elements env in
let spec = Lazy.force spec in
let dumpexpr = Lazy.force dumpexpr in
match micromega_tauto negate normalise unsat deduce spec prover env hyps concl gl0 with
| None -> Tacticals.New.tclFAIL 0 (Pp.str " Cannot find witness")
| Some (ids,ff',res') ->
let (arith_goal,props,vars,ff_arith) = make_goal_of_formula sigma dumpexpr ff' in
let intro (id,_) = Tactics.introduction id in
let intro_vars = Tacticals.New.tclTHENLIST (List.map intro vars) in
let intro_props = Tacticals.New.tclTHENLIST (List.map intro props) in
let ipat_of_name id = Some (Loc.tag @@ Misctypes.IntroNaming (Misctypes.IntroIdentifier id)) in
let goal_name = fresh_id Id.Set.empty (Names.Id.of_string "__arith") gl in
let env' = List.map (fun (id,i) -> EConstr.mkVar id,i) vars in
let tac_arith = Tacticals.New.tclTHENLIST [ intro_props ; intro_vars ;
micromega_order_change spec res'
(EConstr.mkApp(Lazy.force coq_list, [|spec.proof_typ|])) env' ff_arith ] in
let goal_props = List.rev (prop_env_of_formula sigma ff') in
let goal_vars = List.map (fun (_,i) -> List.nth env (i-1)) vars in
let arith_args = goal_props @ goal_vars in
let kill_arith =
Tacticals.New.tclTHEN
(Tactics.keep [])
((*Tactics.tclABSTRACT None*)
(Tacticals.New.tclTHEN tac_arith tac)) in
Tacticals.New.tclTHENS
(Tactics.forward true (Some None) (ipat_of_name goal_name) arith_goal)
[
kill_arith;
(Tacticals.New.tclTHENLIST
[(Tactics.generalize (List.map EConstr.mkVar ids));
Tactics.exact_check (EConstr.applist (EConstr.mkVar goal_name, arith_args))
] )
]
with
| ParseError -> Tacticals.New.tclFAIL 0 (Pp.str "Bad logical fragment")
| Mfourier.TimeOut -> Tacticals.New.tclFAIL 0 (Pp.str "Timeout")
| CsdpNotFound -> flush stdout ;
Tacticals.New.tclFAIL 0 (Pp.str
(" Skipping what remains of this tactic: the complexity of the goal requires "
^ "the use of a specialized external tool called csdp. \n\n"
^ "Unfortunately Coq isn't aware of the presence of any \"csdp\" executable in the path. \n\n"
^ "Csdp packages are provided by some OS distributions; binaries and source code can be downloaded from https://projects.coin-or.org/Csdp"))
end
let micromega_gen parse_arith
(negate:'cst atom -> 'cst mc_cnf)
(normalise:'cst atom -> 'cst mc_cnf)
unsat deduce
spec prover =
(micromega_gen parse_arith negate normalise unsat deduce spec prover)
let micromega_order_changer cert env ff =
(*let ids = Util.List.map_i (fun i _ -> (Names.Id.of_string ("__v"^(string_of_int i)))) 0 env in *)
let coeff = Lazy.force coq_Rcst in
let dump_coeff = dump_Rcst in
let typ = Lazy.force coq_R in
let cert_typ = (EConstr.mkApp(Lazy.force coq_list, [|Lazy.force coq_QWitness |])) in
let formula_typ = (EConstr.mkApp (Lazy.force coq_Cstr,[| coeff|])) in
let ff = dump_formula formula_typ (dump_cstr coeff dump_coeff) ff in
let vm = dump_varmap (typ) (vm_of_list env) in
Proofview.Goal.nf_enter begin fun gl ->
Tacticals.New.tclTHENLIST
[
(Tactics.change_concl
(set
[
("__ff", ff, EConstr.mkApp(Lazy.force coq_Formula, [|formula_typ |]));
("__varmap", vm, EConstr.mkApp
(gen_constant_in_modules "VarMap"
[["Coq" ; "micromega" ; "VarMap"] ; ["VarMap"]] "t", [|typ|]));
("__wit", cert, cert_typ)
]
(Tacmach.New.pf_concl gl)));
(* Tacticals.New.tclTHENLIST (List.map (fun id -> (Tactics.introduction id)) ids)*)
]
end
let micromega_genr prover tac =
let parse_arith = parse_rarith in
let negate = Mc.rnegate in
let normalise = Mc.rnormalise in
let unsat = Mc.runsat in
let deduce = Mc.rdeduce in
let spec = lazy {
typ = Lazy.force coq_R;
coeff = Lazy.force coq_Rcst;
dump_coeff = dump_q;
proof_typ = Lazy.force coq_QWitness ;
dump_proof = dump_psatz coq_Q dump_q
} in
Proofview.Goal.nf_enter begin fun gl ->
let sigma = Tacmach.New.project gl in
let concl = Tacmach.New.pf_concl gl in
let hyps = Tacmach.New.pf_hyps_types gl in
try
let gl0 = { env = Tacmach.New.pf_env gl; sigma } in
let (hyps,concl,env) = parse_goal gl0 parse_arith Env.empty hyps concl in
let env = Env.elements env in
let spec = Lazy.force spec in
let hyps' = List.map (fun (n,f) -> (n, map_atoms (Micromega.map_Formula Micromega.q_of_Rcst) f)) hyps in
let concl' = map_atoms (Micromega.map_Formula Micromega.q_of_Rcst) concl in
match micromega_tauto negate normalise unsat deduce spec prover env hyps' concl' gl0 with
| None -> Tacticals.New.tclFAIL 0 (Pp.str " Cannot find witness")
| Some (ids,ff',res') ->
let (ff,ids) = formula_hyps_concl
(List.filter (fun (n,_) -> List.mem n ids) hyps) concl in
let ff' = abstract_wrt_formula ff' ff in
let (arith_goal,props,vars,ff_arith) = make_goal_of_formula sigma (Lazy.force dump_rexpr) ff' in
let intro (id,_) = Tactics.introduction id in
let intro_vars = Tacticals.New.tclTHENLIST (List.map intro vars) in
let intro_props = Tacticals.New.tclTHENLIST (List.map intro props) in
let ipat_of_name id = Some (Loc.tag @@ Misctypes.IntroNaming (Misctypes.IntroIdentifier id)) in
let goal_name = fresh_id Id.Set.empty (Names.Id.of_string "__arith") gl in
let env' = List.map (fun (id,i) -> EConstr.mkVar id,i) vars in
let tac_arith = Tacticals.New.tclTHENLIST [ intro_props ; intro_vars ;
micromega_order_changer res' env' ff_arith ] in
let goal_props = List.rev (prop_env_of_formula sigma ff') in
let goal_vars = List.map (fun (_,i) -> List.nth env (i-1)) vars in
let arith_args = goal_props @ goal_vars in
let kill_arith =
Tacticals.New.tclTHEN
(Tactics.keep [])
((*Tactics.tclABSTRACT None*)
(Tacticals.New.tclTHEN tac_arith tac)) in
Tacticals.New.tclTHENS
(Tactics.forward true (Some None) (ipat_of_name goal_name) arith_goal)
[
kill_arith;
(Tacticals.New.tclTHENLIST
[(Tactics.generalize (List.map EConstr.mkVar ids));
Tactics.exact_check (EConstr.applist (EConstr.mkVar goal_name, arith_args))
] )
]
with
| ParseError -> Tacticals.New.tclFAIL 0 (Pp.str "Bad logical fragment")
| Mfourier.TimeOut -> Tacticals.New.tclFAIL 0 (Pp.str "Timeout")
| CsdpNotFound -> flush stdout ;
Tacticals.New.tclFAIL 0 (Pp.str
(" Skipping what remains of this tactic: the complexity of the goal requires "
^ "the use of a specialized external tool called csdp. \n\n"
^ "Unfortunately Coq isn't aware of the presence of any \"csdp\" executable in the path. \n\n"
^ "Csdp packages are provided by some OS distributions; binaries and source code can be downloaded from https://projects.coin-or.org/Csdp"))
end
let micromega_genr prover = (micromega_genr prover)
let lift_ratproof prover l =
match prover l with
| None -> None
| Some c -> Some (Mc.RatProof( c,Mc.DoneProof))
type micromega_polys = (Micromega.q Mc.pol * Mc.op1) list
type csdp_certificate = S of Sos_types.positivstellensatz option | F of string
type provername = string * int option
(**
* The caching mechanism.
*)
open Persistent_cache
module Cache = PHashtable(struct
type t = (provername * micromega_polys)
let equal = Pervasives.(=)
let hash = Hashtbl.hash
end)
let csdp_cache = ".csdp.cache"
(**
* Build the command to call csdpcert, and launch it. This in turn will call
* the sos driver to the csdp executable.
* Throw CsdpNotFound if Coq isn't aware of any csdp executable.
*)
let require_csdp =
if System.is_in_system_path "csdp"
then lazy ()
else lazy (raise CsdpNotFound)
let really_call_csdpcert : provername -> micromega_polys -> Sos_types.positivstellensatz option =
fun provername poly ->
Lazy.force require_csdp;
let cmdname =
List.fold_left Filename.concat (Envars.coqlib ())
["plugins"; "micromega"; "csdpcert" ^ Coq_config.exec_extension] in
match ((command cmdname [|cmdname|] (provername,poly)) : csdp_certificate) with
| F str -> failwith str
| S res -> res
(**
* Check the cache before calling the prover.
*)
let xcall_csdpcert =
Cache.memo csdp_cache (fun (prover,pb) -> really_call_csdpcert prover pb)
(**
* Prover callback functions.
*)
let call_csdpcert prover pb = xcall_csdpcert (prover,pb)
let rec z_to_q_pol e =
match e with
| Mc.Pc z -> Mc.Pc {Mc.qnum = z ; Mc.qden = Mc.XH}
| Mc.Pinj(p,pol) -> Mc.Pinj(p,z_to_q_pol pol)
| Mc.PX(pol1,p,pol2) -> Mc.PX(z_to_q_pol pol1, p, z_to_q_pol pol2)
let call_csdpcert_q provername poly =
match call_csdpcert provername poly with
| None -> None
| Some cert ->
let cert = Certificate.q_cert_of_pos cert in
if Mc.qWeakChecker poly cert
then Some cert
else ((print_string "buggy certificate") ;None)
let call_csdpcert_z provername poly =
let l = List.map (fun (e,o) -> (z_to_q_pol e,o)) poly in
match call_csdpcert provername l with
| None -> None
| Some cert ->
let cert = Certificate.z_cert_of_pos cert in
if Mc.zWeakChecker poly cert
then Some cert
else ((print_string "buggy certificate" ; flush stdout) ;None)
let xhyps_of_cone base acc prf =
let rec xtract e acc =
match e with
| Mc.PsatzC _ | Mc.PsatzZ | Mc.PsatzSquare _ -> acc
| Mc.PsatzIn n -> let n = (CoqToCaml.nat n) in
if n >= base
then ISet.add (n-base) acc
else acc
| Mc.PsatzMulC(_,c) -> xtract c acc
| Mc.PsatzAdd(e1,e2) | Mc.PsatzMulE(e1,e2) -> xtract e1 (xtract e2 acc) in
xtract prf acc
let hyps_of_cone prf = xhyps_of_cone 0 ISet.empty prf
let compact_cone prf f =
let np n = CamlToCoq.nat (f (CoqToCaml.nat n)) in
let rec xinterp prf =
match prf with
| Mc.PsatzC _ | Mc.PsatzZ | Mc.PsatzSquare _ -> prf
| Mc.PsatzIn n -> Mc.PsatzIn (np n)
| Mc.PsatzMulC(e,c) -> Mc.PsatzMulC(e,xinterp c)
| Mc.PsatzAdd(e1,e2) -> Mc.PsatzAdd(xinterp e1,xinterp e2)
| Mc.PsatzMulE(e1,e2) -> Mc.PsatzMulE(xinterp e1,xinterp e2) in
xinterp prf
let hyps_of_pt pt =
let rec xhyps base pt acc =
match pt with
| Mc.DoneProof -> acc
| Mc.RatProof(c,pt) -> xhyps (base+1) pt (xhyps_of_cone base acc c)
| Mc.CutProof(c,pt) -> xhyps (base+1) pt (xhyps_of_cone base acc c)
| Mc.EnumProof(c1,c2,l) ->
let s = xhyps_of_cone base (xhyps_of_cone base acc c2) c1 in
List.fold_left (fun s x -> xhyps (base + 1) x s) s l in
xhyps 0 pt ISet.empty
let hyps_of_pt pt =
let res = hyps_of_pt pt in
if debug
then (Printf.fprintf stdout "\nhyps_of_pt : %a -> " pp_proof_term pt ; ISet.iter (fun i -> Printf.printf "%i " i) res);
res
let compact_pt pt f =
let translate ofset x =
if x < ofset then x
else (f (x-ofset) + ofset) in
let rec compact_pt ofset pt =
match pt with
| Mc.DoneProof -> Mc.DoneProof
| Mc.RatProof(c,pt) -> Mc.RatProof(compact_cone c (translate (ofset)), compact_pt (ofset+1) pt )
| Mc.CutProof(c,pt) -> Mc.CutProof(compact_cone c (translate (ofset)), compact_pt (ofset+1) pt )
| Mc.EnumProof(c1,c2,l) -> Mc.EnumProof(compact_cone c1 (translate (ofset)), compact_cone c2 (translate (ofset)),
Mc.map (fun x -> compact_pt (ofset+1) x) l) in
compact_pt 0 pt
(**
* Definition of provers.
* Instantiates the type ('a,'prf) prover defined above.
*)
let lift_pexpr_prover p l = p (List.map (fun (e,o) -> Mc.denorm e , o) l)
module CacheZ = PHashtable(struct
type prover_option = bool * int
type t = prover_option * ((Mc.z Mc.pol * Mc.op1) list)
let equal = (=)
let hash = Hashtbl.hash
end)
module CacheQ = PHashtable(struct
type t = int * ((Mc.q Mc.pol * Mc.op1) list)
let equal = (=)
let hash = Hashtbl.hash
end)
let memo_zlinear_prover = CacheZ.memo ".lia.cache" (fun ((ce,b),s) -> lift_pexpr_prover (Certificate.lia ce b) s)
let memo_nlia = CacheZ.memo ".nia.cache" (fun ((ce,b),s) -> lift_pexpr_prover (Certificate.nlia ce b) s)
let memo_nra = CacheQ.memo ".nra.cache" (fun (o,s) -> lift_pexpr_prover (Certificate.nlinear_prover o) s)
let linear_prover_Q = {
name = "linear prover";
get_option = get_lra_option ;
prover = (fun (o,l) -> lift_pexpr_prover (Certificate.linear_prover_with_cert o Certificate.q_spec) l) ;
hyps = hyps_of_cone ;
compact = compact_cone ;
pp_prf = pp_psatz pp_q ;
pp_f = fun o x -> pp_pol pp_q o (fst x)
}
let linear_prover_R = {
name = "linear prover";
get_option = get_lra_option ;
prover = (fun (o,l) -> lift_pexpr_prover (Certificate.linear_prover_with_cert o Certificate.q_spec) l) ;
hyps = hyps_of_cone ;
compact = compact_cone ;
pp_prf = pp_psatz pp_q ;
pp_f = fun o x -> pp_pol pp_q o (fst x)
}
let nlinear_prover_R = {
name = "nra";
get_option = get_lra_option;
prover = memo_nra ;
hyps = hyps_of_cone ;
compact = compact_cone ;
pp_prf = pp_psatz pp_q ;
pp_f = fun o x -> pp_pol pp_q o (fst x)
}
let non_linear_prover_Q str o = {
name = "real nonlinear prover";
get_option = (fun () -> (str,o));
prover = (fun (o,l) -> call_csdpcert_q o l);
hyps = hyps_of_cone;
compact = compact_cone ;
pp_prf = pp_psatz pp_q ;
pp_f = fun o x -> pp_pol pp_q o (fst x)
}
let non_linear_prover_R str o = {
name = "real nonlinear prover";
get_option = (fun () -> (str,o));
prover = (fun (o,l) -> call_csdpcert_q o l);
hyps = hyps_of_cone;
compact = compact_cone;
pp_prf = pp_psatz pp_q;
pp_f = fun o x -> pp_pol pp_q o (fst x)
}
let non_linear_prover_Z str o = {
name = "real nonlinear prover";
get_option = (fun () -> (str,o));
prover = (fun (o,l) -> lift_ratproof (call_csdpcert_z o) l);
hyps = hyps_of_pt;
compact = compact_pt;
pp_prf = pp_proof_term;
pp_f = fun o x -> pp_pol pp_z o (fst x)
}
let linear_Z = {
name = "lia";
get_option = get_lia_option;
prover = memo_zlinear_prover ;
hyps = hyps_of_pt;
compact = compact_pt;
pp_prf = pp_proof_term;
pp_f = fun o x -> pp_pol pp_z o (fst x)
}
let nlinear_Z = {
name = "nlia";
get_option = get_lia_option;
prover = memo_nlia ;
hyps = hyps_of_pt;
compact = compact_pt;
pp_prf = pp_proof_term;
pp_f = fun o x -> pp_pol pp_z o (fst x)
}
let tauto_lia ff =
let prover = linear_Z in
let cnf_ff,_ = cnf Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce ff in
match witness_list_tags [prover] cnf_ff with
| None -> None
| Some l -> Some (List.map fst l)
(**
* Functions instantiating micromega_gen with the appropriate theories and
* solvers
*)
let lra_Q =
micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec dump_qexpr
[ linear_prover_Q ]
let psatz_Q i =
micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec dump_qexpr
[ non_linear_prover_Q "real_nonlinear_prover" (Some i) ]
let lra_R =
micromega_genr [ linear_prover_R ]
let psatz_R i =
micromega_genr [ non_linear_prover_R "real_nonlinear_prover" (Some i) ]
let psatz_Z i =
micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec dump_zexpr
[ non_linear_prover_Z "real_nonlinear_prover" (Some i) ]
let sos_Z =
micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec dump_zexpr
[ non_linear_prover_Z "pure_sos" None ]
let sos_Q =
micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec dump_qexpr
[ non_linear_prover_Q "pure_sos" None ]
let sos_R =
micromega_genr [ non_linear_prover_R "pure_sos" None ]
let xlia = micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec dump_zexpr
[ linear_Z ]
let xnlia =
micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec dump_zexpr
[ nlinear_Z ]
let nra =
micromega_genr [ nlinear_prover_R ]
let nqa =
micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec dump_qexpr
[ nlinear_prover_R ]
(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
|