aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins/micromega/certificate.ml
blob: 459c72f9f69bf5e589911e4c2e87bc92118c5897 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                                                                      *)
(* Micromega: A reflexive tactic using the Positivstellensatz           *)
(*                                                                      *)
(*  Frédéric Besson (Irisa/Inria) 2006-2008                             *)
(*                                                                      *)
(************************************************************************)

(* We take as input a list of polynomials [p1...pn] and return an unfeasibility
   certificate polynomial. *)

type var = int



open Big_int
open Num
open Polynomial

module Mc = Micromega
module Ml2C = Mutils.CamlToCoq
module C2Ml = Mutils.CoqToCaml


open Mutils
type 'a number_spec = {
 bigint_to_number : big_int -> 'a;
 number_to_num : 'a  -> num;
 zero : 'a;
 unit : 'a;
 mult : 'a -> 'a -> 'a;
 eqb  : 'a -> 'a -> bool
}

let z_spec = {
 bigint_to_number = Ml2C.bigint ;
 number_to_num = (fun x -> Big_int (C2Ml.z_big_int x));
 zero = Mc.Z0;
 unit = Mc.Zpos Mc.XH;
 mult = Mc.Z.mul;
 eqb  = Mc.zeq_bool
}
 

let q_spec = {
 bigint_to_number = (fun x -> {Mc.qnum = Ml2C.bigint x; Mc.qden = Mc.XH});
 number_to_num = C2Ml.q_to_num;
 zero = {Mc.qnum = Mc.Z0;Mc.qden = Mc.XH};
 unit = {Mc.qnum =  (Mc.Zpos Mc.XH) ; Mc.qden = Mc.XH};
 mult = Mc.qmult;
 eqb  = Mc.qeq_bool
}

let r_spec = z_spec


let dev_form n_spec  p =
 let rec dev_form p = 
  match p with
  | Mc.PEc z ->  Poly.constant (n_spec.number_to_num z)
  | Mc.PEX v ->  Poly.variable (C2Ml.positive v)
  | Mc.PEmul(p1,p2) -> 
   let p1 = dev_form p1 in
   let p2 = dev_form p2 in
   Poly.product p1 p2 
  | Mc.PEadd(p1,p2) -> Poly.addition (dev_form p1) (dev_form p2)
  | Mc.PEopp p ->  Poly.uminus (dev_form p)
  | Mc.PEsub(p1,p2) ->  Poly.addition (dev_form p1) (Poly.uminus (dev_form p2))
  | Mc.PEpow(p,n)   ->  
   let p = dev_form p in
   let n = C2Ml.n n in
   let rec pow n = 
    if Int.equal n 0 
    then Poly.constant (n_spec.number_to_num n_spec.unit)
    else Poly.product p (pow (n-1)) in
   pow n in
 dev_form p


let monomial_to_polynomial mn = 
 Monomial.fold 
  (fun v i acc -> 
   let v = Ml2C.positive v in
   let mn = if Int.equal i 1 then Mc.PEX v else Mc.PEpow (Mc.PEX v ,Ml2C.n i) in
   if Pervasives.(=) acc (Mc.PEc (Mc.Zpos Mc.XH)) (** FIXME *)
   then mn 
   else Mc.PEmul(mn,acc))
  mn 
  (Mc.PEc (Mc.Zpos Mc.XH))
  


let list_to_polynomial vars l = 
 assert (List.for_all (fun x -> ceiling_num x =/ x) l);
 let var x = monomial_to_polynomial (List.nth vars x)  in
 
 let rec xtopoly p i = function
  | [] -> p
  | c::l -> if c =/  (Int 0) then xtopoly p (i+1) l 
   else let c = Mc.PEc (Ml2C.bigint (numerator c)) in
        let mn = 
         if Pervasives.(=) c (Mc.PEc (Mc.Zpos Mc.XH))
         then var i
         else Mc.PEmul (c,var i) in
        let p' = if Pervasives.(=) p (Mc.PEc Mc.Z0) then mn else
          Mc.PEadd (mn, p) in
        xtopoly p' (i+1) l in
 
 xtopoly (Mc.PEc Mc.Z0) 0 l

let rec fixpoint f x =
 let y' = f x in
 if Pervasives.(=) y' x then y'
 else fixpoint f y'

let  rec_simpl_cone n_spec e = 
 let simpl_cone = 
  Mc.simpl_cone n_spec.zero n_spec.unit n_spec.mult n_spec.eqb in

 let rec rec_simpl_cone  = function
  | Mc.PsatzMulE(t1, t2) -> 
   simpl_cone  (Mc.PsatzMulE (rec_simpl_cone t1, rec_simpl_cone t2))
  | Mc.PsatzAdd(t1,t2)  -> 
   simpl_cone (Mc.PsatzAdd (rec_simpl_cone t1, rec_simpl_cone t2))
  |  x           -> simpl_cone x in
 rec_simpl_cone e
  
  
let simplify_cone n_spec c = fixpoint (rec_simpl_cone n_spec) c
 
type cone_prod = 
 Const of cone 
| Ideal of cone *cone 
| Mult of cone * cone 
| Other of cone
and cone =   Mc.zWitness



let factorise_linear_cone c =
 
 let rec cone_list  c l = 
  match c with
  | Mc.PsatzAdd (x,r) -> cone_list  r (x::l)
  |  _        ->  c :: l in
 
 let factorise c1 c2 =
  match c1 , c2 with
  | Mc.PsatzMulC(x,y) , Mc.PsatzMulC(x',y') -> 
   if Pervasives.(=) x x' then Some (Mc.PsatzMulC(x, Mc.PsatzAdd(y,y'))) else None
  | Mc.PsatzMulE(x,y) , Mc.PsatzMulE(x',y') -> 
   if Pervasives.(=) x x' then Some (Mc.PsatzMulE(x, Mc.PsatzAdd(y,y'))) else None
  |  _     -> None in
 
 let rec rebuild_cone l pending  =
  match l with
  | [] -> (match pending with
   | None -> Mc.PsatzZ
   | Some p -> p
  )
  | e::l -> 
   (match pending with
   | None -> rebuild_cone l (Some e) 
   | Some p -> (match factorise p e with
    | None -> Mc.PsatzAdd(p, rebuild_cone l (Some e))
    | Some f -> rebuild_cone l (Some f) )
   ) in

 (rebuild_cone (List.sort Pervasives.compare (cone_list c [])) None)



(* The binding with Fourier might be a bit obsolete 
   -- how does it handle equalities ? *)

(* Certificates are elements of the cone such that P = 0  *)

(* To begin with, we search for certificates of the form:
   a1.p1 + ... an.pn + b1.q1 +... + bn.qn + c = 0   
   where pi >= 0 qi > 0
   ai >= 0 
   bi >= 0
   Sum bi + c >= 1
   This is a linear problem: each monomial is considered as a variable.
   Hence, we can use fourier.

   The variable c is at index 0
*)

open Mfourier

(* fold_left followed by a rev ! *)

let constrain_monomial mn l  = 
 let coeffs = List.fold_left (fun acc p -> (Poly.get mn p)::acc) [] l in
 if Pervasives.(=) mn Monomial.const
 then  
  { coeffs = Vect.from_list ((Big_int unit_big_int):: (List.rev coeffs)) ; 
    op = Eq ; 
    cst = Big_int zero_big_int  }
 else
  { coeffs = Vect.from_list ((Big_int zero_big_int):: (List.rev coeffs)) ; 
    op = Eq ; 
    cst = Big_int zero_big_int  }

   
let positivity l = 
 let rec xpositivity i l = 
  match l with
  | [] -> []
  | (_,Mc.Equal)::l -> xpositivity (i+1) l
  | (_,_)::l -> 
   {coeffs = Vect.update (i+1) (fun _ -> Int 1) Vect.null ; 
    op = Ge ; 
    cst = Int 0 }  :: (xpositivity (i+1) l)
 in
 xpositivity 0 l


let string_of_op = function
 | Mc.Strict -> "> 0" 
 | Mc.NonStrict -> ">= 0" 
 | Mc.Equal -> "= 0"
 | Mc.NonEqual -> "<> 0"


module MonSet = Set.Make(Monomial)

(* If the certificate includes at least one strict inequality, 
   the obtained polynomial can also be 0 *)
let build_linear_system l =

 (* Gather the monomials:  HINT add up of the polynomials ==> This does not work anymore *)
 let l' = List.map fst l in

 let monomials = 
  List.fold_left (fun acc p -> 
   Poly.fold (fun m _ acc -> MonSet.add m acc) p acc) 
   (MonSet.singleton Monomial.const) l'
 in  (* For each monomial, compute a constraint *)
 let s0 = 
  MonSet.fold (fun mn  res -> (constrain_monomial mn l')::res) monomials [] in
 (* I need at least something strictly positive *)
 let strict = {
  coeffs = Vect.from_list ((Big_int unit_big_int)::
                            (List.map (fun (x,y) -> 
                             match y with Mc.Strict -> 
                              Big_int unit_big_int 
                             | _ -> Big_int zero_big_int) l));
  op = Ge ; cst = Big_int unit_big_int } in
  (* Add the positivity constraint *)
 {coeffs = Vect.from_list ([Big_int unit_big_int]) ; 
  op = Ge ; 
  cst = Big_int zero_big_int}::(strict::(positivity l)@s0)


let big_int_to_z = Ml2C.bigint
 
(* For Q, this is a pity that the certificate has been scaled 
   -- at a lower layer, certificates are using nums... *)
let make_certificate n_spec (cert,li) = 
 let bint_to_cst = n_spec.bigint_to_number in
 match cert with
 | [] -> failwith "empty_certificate"
 | e::cert' -> 
      (*      let cst = match compare_big_int e zero_big_int with
              | 0 -> Mc.PsatzZ
              | 1 ->  Mc.PsatzC (bint_to_cst e) 
              | _ -> failwith "positivity error" 
              in *)
  let rec scalar_product cert l =
   match cert with
   | [] -> Mc.PsatzZ
   | c::cert -> 
    match l with
    | [] -> failwith "make_certificate(1)"
    | i::l ->  
     let r = scalar_product cert l in
     match compare_big_int c  zero_big_int with
     | -1 -> Mc.PsatzAdd (
      Mc.PsatzMulC (Mc.Pc ( bint_to_cst c), Mc.PsatzIn (Ml2C.nat i)), 
      r)
     | 0  -> r
     | _ ->  Mc.PsatzAdd (
      Mc.PsatzMulE (Mc.PsatzC (bint_to_cst c), Mc.PsatzIn (Ml2C.nat i)),
      r) in
  (factorise_linear_cone 
    (simplify_cone n_spec (scalar_product cert' li)))


exception Found of Monomial.t

exception Strict

module MonMap = Map.Make(Monomial)

let primal l = 
 let vr = ref 0 in

 let vect_of_poly map p =
  Poly.fold (fun mn vl (map,vect) -> 
   if Pervasives.(=) mn Monomial.const 
   then (map,vect)
   else 
    let (mn,m) = try (MonMap.find mn map,map) with Not_found -> let res = (!vr, MonMap.add mn !vr map) in incr vr ; res in
    (m,if Int.equal (sign_num vl) 0 then vect else (mn,vl)::vect)) p (map,[]) in
 
 let op_op = function Mc.NonStrict -> Ge |Mc.Equal -> Eq | _ -> raise Strict in

 let cmp x y = Int.compare (fst x) (fst y) in

 snd (List.fold_right (fun  (p,op) (map,l) ->
  let (mp,vect) = vect_of_poly map p in  
  let cstr = {coeffs = List.sort cmp vect; op = op_op op ; cst = minus_num (Poly.get Monomial.const p)} in

  (mp,cstr::l)) l (MonMap.empty,[]))

let dual_raw_certificate (l:  (Poly.t * Mc.op1) list) = 
 (*  List.iter (fun (p,op) -> Printf.fprintf stdout "%a %s 0\n" Poly.pp p (string_of_op op) ) l ; *)
 
 let sys = build_linear_system l in

 try 
  match Fourier.find_point sys with
  | Inr _ -> None
  | Inl cert ->  Some (rats_to_ints (Vect.to_list cert)) 
  (* should not use rats_to_ints *)
 with x when CErrors.noncritical x ->
  if debug
  then (Printf.printf "raw certificate %s" (Printexc.to_string x);
        flush stdout) ;
  None


let raw_certificate l = 
 try 
  let p = primal l in
  match Fourier.find_point p with
  | Inr prf -> 
   if debug then Printf.printf "AProof : %a\n" pp_proof prf ; 
   let cert = List.map (fun (x,n) -> x+1,n) (fst (List.hd (Proof.mk_proof p prf))) in
   if debug then Printf.printf "CProof : %a" Vect.pp_vect cert ; 
   Some (rats_to_ints (Vect.to_list cert))
  | Inl _   -> None
 with Strict -> 
    (* Fourier elimination should handle > *)
  dual_raw_certificate l 


let simple_linear_prover  l =
 let (lc,li) = List.split l in
 match raw_certificate lc with
 |  None -> None (* No certificate *)
 | Some cert -> Some (cert,li)
  




let linear_prover n_spec l  =
 let build_system n_spec l = 
  let li = List.combine l (interval 0 (List.length l -1)) in
  let (l1,l') = List.partition 
   (fun (x,_) -> if Pervasives.(=) (snd x) Mc.NonEqual then true else false) li in
  List.map 
   (fun ((x,y),i) -> match y with
    Mc.NonEqual -> failwith "cannot happen"
   |  y -> ((dev_form n_spec x, y),i)) l' in
 let l' = build_system n_spec l in 
 simple_linear_prover (*n_spec*) l' 


let linear_prover n_spec l  =
 try linear_prover n_spec l
 with x when CErrors.noncritical x ->
  (print_string (Printexc.to_string x); None)

let compute_max_nb_cstr l d =
 let len = List.length l in
 max len (max d (len * d)) 

let linear_prover_with_cert prfdepth spec  l = 
 max_nb_cstr := compute_max_nb_cstr l prfdepth ;
 match linear_prover spec l with
 | None -> None
 | Some cert -> Some (make_certificate spec cert)

let nlinear_prover prfdepth (sys: (Mc.q Mc.pExpr * Mc.op1) list) = 
 LinPoly.MonT.clear ();
 max_nb_cstr := compute_max_nb_cstr sys prfdepth ;
 (* Assign a proof to the initial hypotheses *)
 let sys  = mapi (fun c i -> (c,Mc.PsatzIn (Ml2C.nat i))) sys in


 (* Add all the product of hypotheses *)
 let prod = all_pairs (fun ((c,o),p) ((c',o'),p') -> 
  ((Mc.PEmul(c,c') , Mc.opMult o o') , Mc.PsatzMulE(p,p'))) sys in

 (* Only filter those have a meaning *)
 let prod = List.fold_left (fun l ((c,o),p) -> 
  match o with
  | None -> l
  | Some o -> ((c,o),p) :: l) [] prod in

 let sys = sys @ prod in

 let square = 
  (* Collect the squares and state that they are positive *)
  let pols = List.map (fun ((p,_),_) -> dev_form q_spec p) sys in
  let square = 
   List.fold_left (fun acc p -> 
    Poly.fold 
     (fun m _ acc -> 
      match Monomial.sqrt m with
      | None -> acc
      | Some s -> MonMap.add  s m acc)  p acc) MonMap.empty pols in

  let pol_of_mon m =
   Monomial.fold (fun x v p -> Mc.PEmul(Mc.PEpow(Mc.PEX(Ml2C.positive x),Ml2C.n v),p)) m (Mc.PEc q_spec.unit) in

  let norm0 =
   Mc.norm q_spec.zero q_spec.unit Mc.qplus Mc.qmult Mc.qminus Mc.qopp Mc.qeq_bool in
  
  
  MonMap.fold (fun s m acc -> ((pol_of_mon m , Mc.NonStrict), Mc.PsatzSquare(norm0 (pol_of_mon s)))::acc) square [] in

 let sys = sys @ square in


 (* Call the linear prover without the proofs *)
 let sys_no_prf = List.map fst sys in

 match linear_prover q_spec sys_no_prf with
 | None -> None
 | Some cert -> 
  let cert = make_certificate q_spec cert in
  let rec map_psatz = function
   | Mc.PsatzIn n        -> snd (List.nth sys (C2Ml.nat n))
   | Mc.PsatzSquare c    -> Mc.PsatzSquare c
   | Mc.PsatzMulC(c,p)   -> Mc.PsatzMulC(c, map_psatz p)
   | Mc.PsatzMulE(p1,p2) -> Mc.PsatzMulE(map_psatz p1,map_psatz p2)
   | Mc.PsatzAdd(p1,p2)  -> Mc.PsatzAdd(map_psatz p1,map_psatz p2)
   | Mc.PsatzC c         -> Mc.PsatzC c
   | Mc.PsatzZ           -> Mc.PsatzZ in
  Some (map_psatz cert)



let make_linear_system l =
 let l' = List.map fst l in
 let monomials = List.fold_left (fun acc p -> Poly.addition p acc) 
  (Poly.constant (Int 0)) l' in
 let monomials = Poly.fold 
  (fun mn _ l -> if Pervasives.(=) mn Monomial.const then l else mn::l) monomials [] in
 (List.map (fun (c,op) -> 
  {coeffs = Vect.from_list (List.map (fun mn ->  (Poly.get mn c)) monomials) ; 
   op = op ; 
   cst = minus_num ( (Poly.get Monomial.const c))}) l
   ,monomials)


let pplus x y = Mc.PEadd(x,y)
let pmult x y = Mc.PEmul(x,y)
let pconst x = Mc.PEc x
let popp x = Mc.PEopp x

(* keep track of enumerated vectors *)
let rec mem p x  l = 
 match l with  [] -> false | e::l -> if p x e then true else mem p x l

let rec remove_assoc p x l = 
 match l with [] -> [] | e::l -> if p x (fst e) then
   remove_assoc p x l else e::(remove_assoc p x l) 

let eq x y = Int.equal (Vect.compare x y) 0

let  remove e  l  = List.fold_left (fun l x -> if eq x e then l else x::l) [] l


(* The prover is (probably) incomplete -- 
   only searching for naive cutting planes *)

let develop_constraint z_spec (e,k) = 
 match k with
 | Mc.NonStrict -> (dev_form z_spec e , Ge)
 | Mc.Equal     ->  (dev_form z_spec e , Eq)
 | _     -> assert false


let op_of_op_compat = function
 | Ge -> Mc.NonStrict
 | Eq -> Mc.Equal


let integer_vector coeffs = 
 let vars , coeffs = List.split coeffs in
 List.combine vars (List.map (fun x -> Big_int x) (rats_to_ints coeffs))

let integer_cstr {coeffs = coeffs ; op = op ; cst = cst } = 
 let vars , coeffs = List.split coeffs in
 match rats_to_ints (cst::coeffs) with
 | cst :: coeffs -> 
  {
   coeffs = List.combine vars (List.map (fun x -> Big_int x) coeffs) ;
   op = op ; cst = Big_int cst}
 |  _ -> assert false
  

let pexpr_of_cstr_compat var cstr  = 
 let {coeffs = coeffs ; op = op ; cst = cst } = integer_cstr cstr in
 try 
  let expr = list_to_polynomial var (Vect.to_list coeffs) in  
  let d = Ml2C.bigint (denominator cst) in
  let n = Ml2C.bigint (numerator cst) in
  (pplus (pmult (pconst d) expr) (popp (pconst n)), op_of_op_compat op)
 with Failure _ -> failwith "pexpr_of_cstr_compat"




open Sos_types

let rec scale_term t = 
 match t with
 | Zero    -> unit_big_int , Zero
 | Const n ->  (denominator n) , Const (Big_int (numerator n))
 | Var n   -> unit_big_int , Var n
 | Inv _   -> failwith "scale_term : not implemented"
 | Opp t   -> let s, t = scale_term t in s, Opp t
 | Add(t1,t2) -> let s1,y1 = scale_term t1 and s2,y2 = scale_term t2 in
                 let g = gcd_big_int s1 s2 in
                 let s1' = div_big_int s1 g in
                 let s2' = div_big_int s2 g in
                 let e = mult_big_int g (mult_big_int s1' s2') in
                 if Int.equal (compare_big_int e unit_big_int) 0
                 then (unit_big_int, Add (y1,y2))
                 else 	e, Add (Mul(Const (Big_int s2'), y1),
		                Mul (Const (Big_int s1'), y2))
 | Sub _ -> failwith "scale term: not implemented"
 | Mul(y,z) ->       let s1,y1 = scale_term y and s2,y2 = scale_term z in
		     mult_big_int s1 s2 , Mul (y1, y2)
 |  Pow(t,n) -> let s,t = scale_term t in
		power_big_int_positive_int s  n , Pow(t,n)
 |   _ -> failwith "scale_term : not implemented"

let scale_term t =
 let (s,t') = scale_term t in
 s,t'


let get_index_of_ith_match f i l  =
 let rec get j res l =
  match l with
  | [] -> failwith "bad index"
  | e::l -> if f e
   then 
    (if Int.equal j i then res else get (j+1) (res+1) l )
   else get j (res+1) l in
 get 0 0 l


let rec scale_certificate pos = match pos with
 | Axiom_eq i ->  unit_big_int , Axiom_eq i
 | Axiom_le i ->  unit_big_int , Axiom_le i
 | Axiom_lt i ->   unit_big_int , Axiom_lt i
 | Monoid l   -> unit_big_int , Monoid l
 | Rational_eq n ->  (denominator n) , Rational_eq (Big_int (numerator n))
 | Rational_le n ->  (denominator n) , Rational_le (Big_int (numerator n))
 | Rational_lt n ->  (denominator n) , Rational_lt (Big_int (numerator n))
 | Square t -> let s,t' =  scale_term t in 
	       mult_big_int s s , Square t'
 | Eqmul (t, y) -> let s1,y1 = scale_term t and s2,y2 = scale_certificate y in
		   mult_big_int s1 s2 , Eqmul (y1,y2)
 | Sum (y, z) -> let s1,y1 = scale_certificate y 
 and s2,y2 = scale_certificate z in
                 let g = gcd_big_int s1 s2 in
                 let s1' = div_big_int s1 g in
                 let s2' = div_big_int s2 g in
                 mult_big_int g (mult_big_int s1' s2'), 
                 Sum (Product(Rational_le (Big_int s2'), y1),
	              Product (Rational_le (Big_int s1'), y2))
 | Product (y, z) -> 
  let s1,y1 = scale_certificate y and s2,y2 = scale_certificate z in
  mult_big_int s1 s2 , Product (y1,y2)


open Micromega
let rec term_to_q_expr = function
 | Const n ->  PEc (Ml2C.q n)
 | Zero   ->  PEc ( Ml2C.q (Int 0))
 | Var s   ->  PEX (Ml2C.index 
		     (int_of_string (String.sub s 1 (String.length s - 1))))
 | Mul(p1,p2) ->  PEmul(term_to_q_expr p1, term_to_q_expr p2)
 | Add(p1,p2) ->   PEadd(term_to_q_expr p1, term_to_q_expr p2)
 | Opp p ->   PEopp (term_to_q_expr p)
 | Pow(t,n) ->  PEpow (term_to_q_expr t,Ml2C.n n)
 | Sub(t1,t2) ->  PEsub (term_to_q_expr t1,  term_to_q_expr t2)
 | _ -> failwith "term_to_q_expr: not implemented"

let term_to_q_pol e = Mc.norm_aux (Ml2C.q (Int 0)) (Ml2C.q (Int 1)) Mc.qplus  Mc.qmult Mc.qminus Mc.qopp Mc.qeq_bool (term_to_q_expr e)


let rec product l = 
 match l with
 | [] -> Mc.PsatzZ
 | [i] -> Mc.PsatzIn (Ml2C.nat i)
 | i ::l -> Mc.PsatzMulE(Mc.PsatzIn (Ml2C.nat i), product l)


let  q_cert_of_pos  pos = 
 let rec _cert_of_pos = function
 Axiom_eq i ->  Mc.PsatzIn (Ml2C.nat i)
  | Axiom_le i ->  Mc.PsatzIn (Ml2C.nat i)
  | Axiom_lt i ->  Mc.PsatzIn (Ml2C.nat i)
  | Monoid l  -> product l
  | Rational_eq n | Rational_le n | Rational_lt n -> 
   if Int.equal (compare_num n (Int 0)) 0 then Mc.PsatzZ else
    Mc.PsatzC (Ml2C.q   n)
  | Square t -> Mc.PsatzSquare (term_to_q_pol  t)
  | Eqmul (t, y) -> Mc.PsatzMulC(term_to_q_pol t, _cert_of_pos y)
  | Sum (y, z) -> Mc.PsatzAdd  (_cert_of_pos y, _cert_of_pos z)
  | Product (y, z) -> Mc.PsatzMulE (_cert_of_pos y, _cert_of_pos z) in
 simplify_cone q_spec (_cert_of_pos pos)


let rec term_to_z_expr = function
 | Const n ->  PEc (Ml2C.bigint (big_int_of_num n))
 | Zero   ->  PEc ( Z0)
 | Var s   ->  PEX (Ml2C.index 
		     (int_of_string (String.sub s 1 (String.length s - 1))))
 | Mul(p1,p2) ->  PEmul(term_to_z_expr p1, term_to_z_expr p2)
 | Add(p1,p2) ->   PEadd(term_to_z_expr p1, term_to_z_expr p2)
 | Opp p ->   PEopp (term_to_z_expr p)
 | Pow(t,n) ->  PEpow (term_to_z_expr t,Ml2C.n n)
 | Sub(t1,t2) ->  PEsub (term_to_z_expr t1,  term_to_z_expr t2)
 | _ -> failwith "term_to_z_expr: not implemented"

let term_to_z_pol e = Mc.norm_aux (Ml2C.z 0) (Ml2C.z 1) Mc.Z.add  Mc.Z.mul Mc.Z.sub Mc.Z.opp Mc.zeq_bool (term_to_z_expr e)

let  z_cert_of_pos  pos = 
 let s,pos = (scale_certificate pos) in
 let rec _cert_of_pos = function
 Axiom_eq i ->  Mc.PsatzIn (Ml2C.nat i)
  | Axiom_le i ->  Mc.PsatzIn (Ml2C.nat i)
  | Axiom_lt i ->  Mc.PsatzIn (Ml2C.nat i)
  | Monoid l  -> product l
  | Rational_eq n | Rational_le n | Rational_lt n -> 
   if Int.equal (compare_num n (Int 0)) 0 then Mc.PsatzZ else
    Mc.PsatzC (Ml2C.bigint (big_int_of_num  n))
  | Square t -> Mc.PsatzSquare (term_to_z_pol  t)
  | Eqmul (t, y) -> 
   let is_unit =
    match t with
    | Const n -> n =/ Int 1 
    |   _     -> false in
   if is_unit
   then _cert_of_pos y
   else Mc.PsatzMulC(term_to_z_pol t, _cert_of_pos y)
  | Sum (y, z) -> Mc.PsatzAdd  (_cert_of_pos y, _cert_of_pos z)
  | Product (y, z) -> Mc.PsatzMulE (_cert_of_pos y, _cert_of_pos z) in
 simplify_cone z_spec (_cert_of_pos pos)

(** All constraints (initial or derived) have an index and have a justification i.e., proof.
    Given a constraint, all the coefficients are always integers.
*)
open Mutils
open Mfourier
open Num
open Big_int
open Polynomial


module Env = 
struct

 type t = int list

 let id_of_hyp hyp l = 
  let rec xid_of_hyp i l = 
   match l with
   | [] -> failwith "id_of_hyp"
   | hyp'::l -> if Pervasives.(=) hyp hyp' then i else xid_of_hyp (i+1) l in
  xid_of_hyp 0 l

end


let  coq_poly_of_linpol (p,c) = 

 let pol_of_mon m =
  Monomial.fold (fun x v p -> Mc.PEmul(Mc.PEpow(Mc.PEX(Ml2C.positive x),Ml2C.n v),p)) m (Mc.PEc (Mc.Zpos Mc.XH)) in

 List.fold_left (fun acc (x,v) -> 
  let mn = LinPoly.MonT.retrieve x in
  Mc.PEadd(Mc.PEmul(Mc.PEc (Ml2C.bigint (numerator v)), pol_of_mon mn),acc)) (Mc.PEc (Ml2C.bigint (numerator c))) p
  



let rec cmpl_prf_rule env = function
 | Hyp i | Def i -> Mc.PsatzIn (Ml2C.nat (Env.id_of_hyp i env))
 | Cst i         -> Mc.PsatzC (Ml2C.bigint i)
 | Zero          -> Mc.PsatzZ
 | MulPrf(p1,p2)      -> Mc.PsatzMulE(cmpl_prf_rule env p1, cmpl_prf_rule env p2)
 | AddPrf(p1,p2)      -> Mc.PsatzAdd(cmpl_prf_rule env p1 , cmpl_prf_rule env p2)
 | MulC(lp,p)  -> let lp = Mc.norm0 (coq_poly_of_linpol lp) in
                  Mc.PsatzMulC(lp,cmpl_prf_rule env p)
 | Square lp      -> Mc.PsatzSquare (Mc.norm0 (coq_poly_of_linpol lp))
 | _                  -> failwith "Cuts should already be compiled"
  

let rec cmpl_proof env = function
 | Done ->  Mc.DoneProof
 | Step(i,p,prf) -> 
  begin
   match p with
   | CutPrf p' -> 
    Mc.CutProof(cmpl_prf_rule env p', cmpl_proof (i::env) prf)
   |   _       -> Mc.RatProof(cmpl_prf_rule env p,cmpl_proof (i::env) prf)
  end
 | Enum(i,p1,_,p2,l) -> 
  Mc.EnumProof(cmpl_prf_rule env p1,cmpl_prf_rule env p2,List.map (cmpl_proof (i::env)) l)


let compile_proof env prf = 
 let id = 1 + proof_max_id prf in
 let _,prf = normalise_proof id prf in
 if debug then Printf.fprintf stdout "compiled proof %a\n" output_proof prf;
 cmpl_proof env prf

type prf_sys = (cstr_compat * prf_rule) list


let xlinear_prover sys = 
 match Fourier.find_point sys with
 | Inr prf -> 
  if debug then Printf.printf "AProof : %a\n" pp_proof prf ; 
  let cert = (*List.map (fun (x,n) -> x+1,n)*) (fst (List.hd (Proof.mk_proof sys prf))) in
  if debug then Printf.printf "CProof : %a" Vect.pp_vect cert ; 
  Some (rats_to_ints (Vect.to_list cert))
 | Inl _   -> None


let output_num o n = output_string o (string_of_num n)
let output_bigint o n = output_string o (string_of_big_int n)

let proof_of_farkas prf cert = 
  (*  Printf.printf "\nproof_of_farkas  %a , %a \n" (pp_list output_prf_rule) prf (pp_list output_bigint) cert ;  *)
 let rec mk_farkas acc prf cert = 
  match prf, cert with
  |   _  , []   -> acc
  |  []  , _    -> failwith "proof_of_farkas : not enough hyps"
  |  p::prf,c::cert -> 
   mk_farkas (add_proof (mul_proof c p) acc) prf cert in
 let res =  mk_farkas Zero prf cert in
    (*Printf.printf "==> %a" output_prf_rule res ; *)
 res


let linear_prover sys =
 let (sysi,prfi) = List.split sys in
 match xlinear_prover sysi with
 | None -> None
 | Some cert -> Some (proof_of_farkas prfi cert)

let linear_prover  = 
 if debug 
 then 
  fun sys -> 
   Printf.printf "<linear_prover"; flush stdout ;
   let res = linear_prover sys in
   Printf.printf ">"; flush stdout ;
   res
 else linear_prover
  



(** A single constraint can be unsat for the following reasons:
    - 0 >= c for c a negative constant
    - 0 =  c for c a non-zero constant
    - e = c  when the coeffs of e are all integers and c is rational
*)

type checksat = 
| Tauto (* Tautology *)
| Unsat of prf_rule (* Unsatisfiable *)
| Cut of cstr_compat * prf_rule (* Cutting plane *)
| Normalise of cstr_compat * prf_rule (* coefficients are relatively prime *)
  

(** [check_sat] 
    - detects constraints that are not satisfiable;
    - normalises constraints and generate cuts.
*)

let check_sat (cstr,prf) = 
 let {coeffs=coeffs ; op=op ; cst=cst} = cstr in
 match coeffs with
 | [] -> 
  if eval_op op (Int 0) cst then Tauto else Unsat prf
 | _  -> 
  let gcdi =  (gcd_list (List.map snd coeffs)) in
  let gcd = Big_int gcdi in
  if eq_num gcd (Int 1)
  then Normalise(cstr,prf) 
  else
   if Int.equal (sign_num (mod_num cst gcd)) 0
   then (* We can really normalise *)
    begin
     assert (sign_num gcd >=1 ) ;
     let cstr = {
      coeffs = List.map (fun (x,v) -> (x, v // gcd)) coeffs; 
      op = op ; cst = cst // gcd
     } in 
     Normalise(cstr,Gcd(gcdi,prf))
	      (*		    Normalise(cstr,CutPrf prf)*)
    end
   else
    match op with
    | Eq -> Unsat (CutPrf prf)
    | Ge -> 
     let cstr = {
      coeffs = List.map (fun (x,v) -> (x, v // gcd)) coeffs; 
      op = op ; cst = ceiling_num (cst // gcd)
     } in Cut(cstr,CutPrf prf)


(** Proof generating pivoting over variable v *)
let pivot v (c1,p1) (c2,p2) = 
 let {coeffs = v1 ; op = op1 ; cst = n1} = c1
 and {coeffs = v2 ; op = op2 ; cst = n2} = c2 in



  (* Could factorise gcd... *)
 let xpivot cv1 cv2 =
  (
   {coeffs = Vect.add (Vect.mul cv1 v1) (Vect.mul cv2 v2) ;
    op = Proof.add_op op1 op2 ;
    cst = n1 */ cv1 +/ n2 */ cv2 },

   AddPrf(mul_proof (numerator cv1) p1,mul_proof (numerator cv2) p2)) in
 
 match Vect.get v v1 , Vect.get v v2 with
 | None , _ | _ , None -> None
 | Some a   , Some b   ->
  if Int.equal ((sign_num a) * (sign_num b)) (-1)
  then 
   let cv1 = abs_num b 
   and cv2 = abs_num a  in
   Some (xpivot cv1 cv2)
  else 
   if op1 == Eq
   then 
    let cv1 = minus_num (b */ (Int (sign_num a)))
    and cv2 = abs_num a in
    Some (xpivot cv1 cv2)
   else if op2 == Eq
   then
    let cv1 = abs_num b 
    and cv2 = minus_num (a */ (Int  (sign_num b))) in
    Some (xpivot cv1 cv2)
   else  None (* op2 could be Eq ... this might happen *)
    
exception FoundProof of  prf_rule

let simpl_sys sys = 
 List.fold_left (fun acc (c,p) -> 
  match check_sat (c,p) with
  | Tauto -> acc
  | Unsat prf -> raise (FoundProof prf)
  | Cut(c,p)  -> (c,p)::acc
  | Normalise (c,p) -> (c,p)::acc) [] sys


(** [ext_gcd a b] is the extended Euclid algorithm.
    [ext_gcd a b = (x,y,g)] iff [ax+by=g]
    Source: http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
*)
let rec ext_gcd a b = 
 if Int.equal (sign_big_int b) 0 
 then (unit_big_int,zero_big_int)
 else
  let (q,r) = quomod_big_int a b in
  let (s,t) = ext_gcd b r in
  (t, sub_big_int s (mult_big_int q t))


let pp_ext_gcd a b = 
 let a' = big_int_of_int a in
 let b' = big_int_of_int b in
 
 let (x,y) = ext_gcd a' b' in
 Printf.fprintf stdout "%s * %s + %s * %s = %s\n" 
  (string_of_big_int x) (string_of_big_int a')
  (string_of_big_int y) (string_of_big_int b')
  (string_of_big_int (add_big_int (mult_big_int x a') (mult_big_int y b')))

exception Result of (int * (proof * cstr_compat))

let split_equations psys = 
 List.partition (fun (c,p) -> c.op == Eq)


let extract_coprime (c1,p1) (c2,p2) = 
 let rec exist2 vect1 vect2 = 
  match vect1 , vect2 with
  | _ , [] | [], _ -> None
  | (v1,n1)::vect1' , (v2, n2) :: vect2' -> 
   if Pervasives.(=) v1 v2
   then 
    if Int.equal (compare_big_int (gcd_big_int (numerator n1) (numerator n2)) unit_big_int) 0
    then Some (v1,n1,n2)
    else 
     exist2 vect1' vect2'
   else
    if v1 < v2 
    then exist2 vect1' vect2
    else exist2 vect1 vect2' in
 
 if c1.op == Eq && c2.op == Eq 
 then exist2 c1.coeffs c2.coeffs
 else None

let extract2 pred l =
 let rec xextract2 rl l = 
  match l with
  | [] -> (None,rl) (* Did not find *)
  | e::l ->
   match extract (pred e) l with
   | None,_ -> xextract2 (e::rl) l
   | Some (r,e'),l' -> Some (r,e,e'), List.rev_append rl l' in
 
 xextract2 [] l


let extract_coprime_equation psys = 
 extract2 extract_coprime psys


let apply_and_normalise f psys =
 List.fold_left (fun acc pc' -> 
  match f pc' with
  | None -> pc'::acc
  | Some pc' -> 
   match check_sat pc' with
   | Tauto -> acc
   | Unsat prf -> raise (FoundProof prf)
   | Cut(c,p)  -> (c,p)::acc
   | Normalise (c,p) -> (c,p)::acc
 ) [] psys




let pivot_sys v pc psys = apply_and_normalise (pivot v pc) psys


let reduce_coprime psys = 
 let oeq,sys = extract_coprime_equation psys in
 match oeq with
 | None -> None (* Nothing to do *)
 | Some((v,n1,n2),(c1,p1),(c2,p2) ) -> 
  let (l1,l2) = ext_gcd (numerator n1) (numerator n2) in
  let l1' = Big_int l1 and l2' = Big_int l2 in
  let cstr = 
   {coeffs = Vect.add (Vect.mul l1' c1.coeffs) (Vect.mul l2' c2.coeffs);
    op = Eq ; 
    cst = (l1' */ c1.cst) +/ (l2' */ c2.cst) 
   } in
  let prf = add_proof (mul_proof (numerator l1') p1) (mul_proof (numerator l2') p2) in

  Some (pivot_sys v (cstr,prf) ((c1,p1)::sys))

(** If there is an equation [eq] of the form 1.x + e = c, do a pivot over x with equation [eq] *)
let reduce_unary psys = 
 let is_unary_equation (cstr,prf) = 
  if cstr.op == Eq 
  then 
   try 
    Some (fst (List.find (fun (_,n) -> n =/ (Int 1) || n=/ (Int (-1))) cstr.coeffs))
   with Not_found -> None
  else None in

 let (oeq,sys) =  extract is_unary_equation psys in
 match oeq with
 | None -> None (* Nothing to do *)
 | Some(v,pc) -> 
  Some(pivot_sys v pc sys)

let reduce_non_lin_unary psys = 

 let is_unary_equation (cstr,prf) = 
  if cstr.op == Eq 
  then 
   try 
    let x = fst (List.find (fun (x,n) ->  (n =/ (Int 1) || n=/ (Int (-1))) && Monomial.is_var (LinPoly.MonT.retrieve x) ) cstr.coeffs) in
    let x' = LinPoly.MonT.retrieve x in
    if List.for_all (fun (y,_) -> Pervasives.(=) y x  || Int.equal (snd (Monomial.div (LinPoly.MonT.retrieve y) x')) 0) cstr.coeffs 
    then Some x
    else None
   with Not_found -> None
  else None in


 let (oeq,sys) =   extract is_unary_equation psys in
 match oeq with
 | None -> None (* Nothing to do *)
 | Some(v,pc) -> 
  Some(apply_and_normalise (LinPoly.pivot_eq v pc) sys)

let reduce_var_change psys = 

 let rec rel_prime vect = 
  match vect with
  | [] -> None
  | (x,v)::vect -> 
   let v = numerator v in
   try 
    let (x',v') = List.find (fun (_,v') -> 
     let v' = numerator v' in 
     eq_big_int (gcd_big_int  v v') unit_big_int) vect in
    Some ((x,v),(x',numerator v'))
   with Not_found -> rel_prime vect in

 let rel_prime (cstr,prf) =  if cstr.op == Eq then rel_prime cstr.coeffs else None in

 let (oeq,sys) = extract rel_prime psys in
 
 match oeq with
 | None -> None
 | Some(((x,v),(x',v')),(c,p)) -> 
  let (l1,l2) = ext_gcd  v  v' in
  let l1,l2 = Big_int l1 , Big_int l2 in

  let get v vect = 
   match Vect.get v vect with
   | None -> Int 0
   | Some n -> n in

  let pivot_eq (c',p') = 
   let {coeffs = coeffs ; op = op ; cst = cst} = c' in
   let vx = get x coeffs in
   let vx' = get x' coeffs in
   let m = minus_num (vx */ l1 +/ vx' */ l2) in
   Some ({coeffs = 
     Vect.add (Vect.mul m c.coeffs) coeffs ; op = op ; cst = m */ c.cst +/ cst} , 
	 AddPrf(MulC(([], m),p),p')) in

  Some (apply_and_normalise pivot_eq sys)




let reduce_pivot psys = 
 let is_equation (cstr,prf) = 
  if cstr.op == Eq
  then
   try 
    Some (fst (List.hd cstr.coeffs))
   with Not_found -> None
  else None in
 let (oeq,sys) = extract is_equation psys in
 match oeq with
 | None -> None (* Nothing to do *)
 | Some(v,pc) -> 
  if debug then 
   Printf.printf "Bad news : loss of completeness %a=%s" Vect.pp_vect (fst pc).coeffs (string_of_num (fst pc).cst); 
  Some(pivot_sys v pc sys)





let iterate_until_stable f x = 
 let rec iter x = 
  match f x with
  | None -> x
  | Some x' -> iter x' in
 iter x

let rec app_funs l x = 
 match l with
 | [] -> None
 | f::fl -> 
  match f x with
  | None    -> app_funs fl x
  | Some x' -> Some x'

let reduction_equations psys =
 iterate_until_stable (app_funs 
			[reduce_unary ; reduce_coprime ; 
			 reduce_var_change (*; reduce_pivot*)]) psys 

let reduction_non_lin_equations psys =
 iterate_until_stable (app_funs 
			[reduce_non_lin_unary (*; reduce_coprime ; 
			                        reduce_var_change ; reduce_pivot *)]) psys 




  (** [get_bound sys] returns upon success an interval (lb,e,ub) with proofs *)
let get_bound sys = 
 let is_small (v,i) = 
  match Itv.range i with
  | None -> false
  | Some i -> i <=/ (Int 1) in
 
 let select_best (x1,i1) (x2,i2) = 
  if Itv.smaller_itv i1 i2
  then (x1,i1) else (x2,i2) in

    (* For lia, there are no equations => these precautions are not needed *)
    (* For nlia, there are equations => do not enumerate over equations! *)
 let all_planes sys = 
  let (eq,ineq) = List.partition (fun c -> c.op == Eq) sys in
  match eq with
  | [] -> List.rev_map (fun c -> c.coeffs) ineq
  | _  -> 
   List.fold_left (fun acc c -> 
    if List.exists (fun c' -> Vect.equal c.coeffs c'.coeffs) eq
    then acc else c.coeffs ::acc) [] ineq in

 let smallest_interval = 
  List.fold_left 
   (fun acc vect ->
    if is_small acc
    then acc
    else 
     match Fourier.optimise vect sys with
     | None -> acc
     | Some i -> 
      if debug then Printf.printf "Found a new bound %a" Vect.pp_vect vect ;
      select_best (vect,i) acc)  (Vect.null, (None,None)) (all_planes sys) in
 let smallest_interval =
  match smallest_interval
  with
  | (x,(Some i, Some j))  -> Some(i,x,j)
  |   x        ->   None (* This should not be possible *)
 in
 match smallest_interval with
 | Some (lb,e,ub) -> 
  let (lbn,lbd) = (sub_big_int (numerator lb)  unit_big_int, denominator lb) in
  let (ubn,ubd) = (add_big_int unit_big_int (numerator ub) , denominator ub) in
  (match
               (* x <= ub ->  x  > ub *)
    xlinear_prover   ({coeffs = Vect.mul (Big_int ubd)  e ; op = Ge ; cst = Big_int ubn} :: sys),
               (* lb <= x  -> lb > x *)
   xlinear_prover
    ({coeffs = Vect.mul (minus_num (Big_int lbd)) e ; op = Ge ; cst = minus_num (Big_int lbn)} :: sys)
   with
   | Some cub , Some clb  -> Some(List.tl clb,(lb,e,ub), List.tl cub)
   |         _            -> failwith "Interval without proof"
  )
 | None -> None


let check_sys sys = 
 List.for_all (fun (c,p) -> List.for_all (fun (_,n) -> sign_num n <> 0) c.coeffs) sys


let xlia (can_enum:bool)  reduction_equations  sys = 

 
 let rec enum_proof (id:int) (sys:prf_sys) : proof option = 
  if debug then (Printf.printf "enum_proof\n" ; flush stdout) ;
  assert (check_sys sys) ; 

  let nsys,prf = List.split sys in
  match get_bound nsys with
  | None -> None (* Is the systeme really unbounded ? *)
  | Some(prf1,(lb,e,ub),prf2) -> 
   if debug then Printf.printf "Found interval: %a in [%s;%s] -> " Vect.pp_vect e (string_of_num lb) (string_of_num ub) ; 
   (match start_enum  id  e  (ceiling_num lb)  (floor_num ub) sys
    with
    | Some prfl -> 
     Some(Enum(id,proof_of_farkas prf prf1,e, proof_of_farkas prf prf2,prfl))
    | None -> None
   )

 and start_enum id e clb cub sys = 
  if clb >/ cub
  then Some []
  else
   let eq = {coeffs = e ; op = Eq ; cst = clb} in
   match aux_lia (id+1) ((eq, Def id) :: sys) with
   | None -> None 
   | Some prf  -> 
    match start_enum id e (clb +/ (Int 1)) cub sys with
    | None -> None
    | Some l -> Some (prf::l)

 and aux_lia (id:int)  (sys:prf_sys) : proof option  = 
  assert (check_sys sys) ; 
  if debug then Printf.printf "xlia:  %a \n" (pp_list (fun o (c,_) -> output_cstr o c)) sys ; 
  try 
   let sys = reduction_equations sys in
   if debug then 
    Printf.printf "after reduction:  %a \n" (pp_list (fun o (c,_) -> output_cstr o c)) sys ; 	    	    
   match linear_prover sys with
   | Some prf -> Some (Step(id,prf,Done))
   | None ->  if can_enum then enum_proof id sys else None
  with FoundProof prf -> 
      (* [reduction_equations] can find a proof *)
   Some(Step(id,prf,Done)) in

  (*  let sys' = List.map (fun (p,o) -> Mc.norm0 p , o) sys in*)
 let id  = List.length sys in
 let orpf = 
  try 
   let sys = simpl_sys sys in
   aux_lia id sys
  with FoundProof pr -> Some(Step(id,pr,Done)) in
 match orpf with
 | None -> None
 | Some prf -> 
	 (*Printf.printf "direct proof %a\n" output_proof prf ; *)
  let env = mapi (fun _ i -> i) sys in
  let prf = compile_proof env prf in
	   (*try 
	     if Mc.zChecker sys' prf then Some prf else 
	     raise Certificate.BadCertificate
	     with Failure s -> (Printf.printf "%s" s ; Some prf)
	   *) Some prf
  

let cstr_compat_of_poly (p,o) = 
 let (v,c) = LinPoly.linpol_of_pol p in
 {coeffs = v ; op = o ; cst = minus_num c }


let lia (can_enum:bool) (prfdepth:int) sys = 
 LinPoly.MonT.clear ();
 max_nb_cstr := compute_max_nb_cstr sys prfdepth ;
 let sys = List.map (develop_constraint z_spec) sys in
 let (sys:cstr_compat list) = List.map cstr_compat_of_poly sys in
 let sys = mapi (fun c i -> (c,Hyp i)) sys in
 xlia can_enum reduction_equations sys


let nlia enum prfdepth sys = 
 LinPoly.MonT.clear ();
 max_nb_cstr := compute_max_nb_cstr sys prfdepth;
 let sys = List.map (develop_constraint z_spec) sys in
 let sys = mapi (fun c i -> (c,Hyp i)) sys in

 let is_linear =  List.for_all (fun ((p,_),_) -> Poly.is_linear p) sys in

 let collect_square = 
  List.fold_left (fun acc ((p,_),_) -> Poly.fold 
   (fun m _ acc -> 
    match Monomial.sqrt m with
    | None -> acc
    | Some s -> MonMap.add  s m acc)  p acc) MonMap.empty sys in
 let sys = MonMap.fold (fun s m acc -> 
  let s = LinPoly.linpol_of_pol (Poly.add s (Int 1) (Poly.constant (Int 0))) in
  let m = Poly.add m (Int 1) (Poly.constant (Int 0)) in
  ((m, Ge), (Square s))::acc) collect_square  sys in

    (*      List.iter (fun ((p,_),_) -> Printf.printf "square %a\n" Poly.pp p) gen_square*)

 let sys = 
  if is_linear then sys
  else sys @ (all_sym_pairs (fun ((c,o),p) ((c',o'),p') -> 
   ((Poly.product c c',opMult o o'), MulPrf(p,p'))) sys) in

 let sys = List.map (fun (c,p) -> cstr_compat_of_poly c,p) sys in
 assert (check_sys sys) ; 
 xlia enum (if is_linear then reduction_equations else reduction_non_lin_equations) sys



(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)