1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
(* *)
(************************************************************************)
Require Import OrderedRing.
Require Import RingMicromega.
Require Import ZCoeff.
Require Import Refl.
Require Import ZArith.
Require Import List.
Require Import Bool.
(*Declare ML Module "micromega_plugin".*)
Ltac flatten_bool :=
repeat match goal with
[ id : (_ && _)%bool = true |- _ ] => destruct (andb_prop _ _ id); clear id
| [ id : (_ || _)%bool = true |- _ ] => destruct (orb_prop _ _ id); clear id
end.
Ltac inv H := inversion H ; try subst ; clear H.
Require Import EnvRing.
Open Scope Z_scope.
Lemma Zsor : SOR 0 1 Zplus Zmult Zminus Zopp (@eq Z) Zle Zlt.
Proof.
constructor ; intros ; subst ; try (intuition (auto with zarith)).
apply Zsth.
apply Zth.
destruct (Ztrichotomy n m) ; intuition (auto with zarith).
apply Zmult_lt_0_compat ; auto.
Qed.
Lemma ZSORaddon :
SORaddon 0 1 Zplus Zmult Zminus Zopp (@eq Z) Zle (* ring elements *)
0%Z 1%Z Zplus Zmult Zminus Zopp (* coefficients *)
Zeq_bool Zle_bool
(fun x => x) (fun x => x) (pow_N 1 Zmult).
Proof.
constructor.
constructor ; intros ; try reflexivity.
apply Zeq_bool_eq ; auto.
constructor.
reflexivity.
intros x y.
apply Zeq_bool_neq ; auto.
apply Zle_bool_imp_le.
Qed.
Fixpoint Zeval_expr (env : PolEnv Z) (e: PExpr Z) : Z :=
match e with
| PEc c => c
| PEX x => env x
| PEadd e1 e2 => Zeval_expr env e1 + Zeval_expr env e2
| PEmul e1 e2 => Zeval_expr env e1 * Zeval_expr env e2
| PEpow e1 n => Zpower (Zeval_expr env e1) (Z_of_N n)
| PEsub e1 e2 => (Zeval_expr env e1) - (Zeval_expr env e2)
| PEopp e => Zopp (Zeval_expr env e)
end.
Definition eval_expr := eval_pexpr Zplus Zmult Zminus Zopp (fun x => x) (fun x => x) (pow_N 1 Zmult).
Lemma ZNpower : forall r n, r ^ Z_of_N n = pow_N 1 Zmult r n.
Proof.
destruct n.
reflexivity.
simpl.
unfold Zpower_pos.
replace (pow_pos Zmult r p) with (1 * (pow_pos Zmult r p)) by ring.
generalize 1.
induction p; simpl ; intros ; repeat rewrite IHp ; ring.
Qed.
Lemma Zeval_expr_compat : forall env e, Zeval_expr env e = eval_expr env e.
Proof.
induction e ; simpl ; try congruence.
reflexivity.
rewrite ZNpower. congruence.
Qed.
Definition Zeval_op2 (o : Op2) : Z -> Z -> Prop :=
match o with
| OpEq => @eq Z
| OpNEq => fun x y => ~ x = y
| OpLe => Zle
| OpGe => Zge
| OpLt => Zlt
| OpGt => Zgt
end.
Definition Zeval_formula (env : PolEnv Z) (f : Formula Z):=
let (lhs, op, rhs) := f in
(Zeval_op2 op) (Zeval_expr env lhs) (Zeval_expr env rhs).
Definition Zeval_formula' :=
eval_formula Zplus Zmult Zminus Zopp (@eq Z) Zle Zlt (fun x => x) (fun x => x) (pow_N 1 Zmult).
Lemma Zeval_formula_compat : forall env f, Zeval_formula env f <-> Zeval_formula' env f.
Proof.
destruct f ; simpl.
rewrite Zeval_expr_compat. rewrite Zeval_expr_compat.
unfold eval_expr.
generalize (eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
(fun x : N => x) (pow_N 1 Zmult) env Flhs).
generalize ((eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
(fun x : N => x) (pow_N 1 Zmult) env Frhs)).
destruct Fop ; simpl; intros ; intuition (auto with zarith).
Qed.
Definition eval_nformula :=
eval_nformula 0 Zplus Zmult (@eq Z) Zle Zlt (fun x => x) .
Definition Zeval_op1 (o : Op1) : Z -> Prop :=
match o with
| Equal => fun x : Z => x = 0
| NonEqual => fun x : Z => x <> 0
| Strict => fun x : Z => 0 < x
| NonStrict => fun x : Z => 0 <= x
end.
Lemma Zeval_nformula_dec : forall env d, (eval_nformula env d) \/ ~ (eval_nformula env d).
Proof.
intros.
apply (eval_nformula_dec Zsor).
Qed.
Definition ZWitness := Psatz Z.
Definition ZWeakChecker := check_normalised_formulas 0 1 Zplus Zmult Zeq_bool Zle_bool.
Lemma ZWeakChecker_sound : forall (l : list (NFormula Z)) (cm : ZWitness),
ZWeakChecker l cm = true ->
forall env, make_impl (eval_nformula env) l False.
Proof.
intros l cm H.
intro.
unfold eval_nformula.
apply (checker_nf_sound Zsor ZSORaddon l cm).
unfold ZWeakChecker in H.
exact H.
Qed.
Definition psub := psub Z0 Zplus Zminus Zopp Zeq_bool.
Definition padd := padd Z0 Zplus Zeq_bool.
Definition norm := norm 0 1 Zplus Zmult Zminus Zopp Zeq_bool.
Definition eval_pol := eval_pol 0 Zplus Zmult (fun x => x).
Lemma eval_pol_sub : forall env lhs rhs, eval_pol env (psub lhs rhs) = eval_pol env lhs - eval_pol env rhs.
Proof.
intros.
apply (eval_pol_sub Zsor ZSORaddon).
Qed.
Lemma eval_pol_add : forall env lhs rhs, eval_pol env (padd lhs rhs) = eval_pol env lhs + eval_pol env rhs.
Proof.
intros.
apply (eval_pol_add Zsor ZSORaddon).
Qed.
Lemma eval_pol_norm : forall env e, eval_expr env e = eval_pol env (norm e) .
Proof.
intros.
apply (eval_pol_norm Zsor ZSORaddon).
Qed.
Definition xnormalise (t:Formula Z) : list (NFormula Z) :=
let (lhs,o,rhs) := t in
let lhs := norm lhs in
let rhs := norm rhs in
match o with
| OpEq =>
((psub lhs (padd rhs (Pc 1))),NonStrict)::((psub rhs (padd lhs (Pc 1))),NonStrict)::nil
| OpNEq => (psub lhs rhs,Equal) :: nil
| OpGt => (psub rhs lhs,NonStrict) :: nil
| OpLt => (psub lhs rhs,NonStrict) :: nil
| OpGe => (psub rhs (padd lhs (Pc 1)),NonStrict) :: nil
| OpLe => (psub lhs (padd rhs (Pc 1)),NonStrict) :: nil
end.
Require Import Tauto BinNums.
Definition normalise (t:Formula Z) : cnf (NFormula Z) :=
List.map (fun x => x::nil) (xnormalise t).
Lemma normalise_correct : forall env t, eval_cnf (eval_nformula env) (normalise t) <-> Zeval_formula env t.
Proof.
Opaque padd.
unfold normalise, xnormalise ; simpl; intros env t.
rewrite Zeval_formula_compat.
unfold eval_cnf.
destruct t as [lhs o rhs]; case_eq o; simpl;
repeat rewrite eval_pol_sub;
repeat rewrite eval_pol_add;
repeat rewrite <- eval_pol_norm ; simpl in *;
unfold eval_expr;
generalize ( eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
(fun x : N => x) (pow_N 1 Zmult) env lhs);
generalize (eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
(fun x : N => x) (pow_N 1 Zmult) env rhs) ; intros z1 z2 ; intros ; subst;
intuition (auto with zarith).
Transparent padd.
Qed.
Definition xnegate (t:RingMicromega.Formula Z) : list (NFormula Z) :=
let (lhs,o,rhs) := t in
let lhs := norm lhs in
let rhs := norm rhs in
match o with
| OpEq => (psub lhs rhs,Equal) :: nil
| OpNEq => ((psub lhs (padd rhs (Pc 1))),NonStrict)::((psub rhs (padd lhs (Pc 1))),NonStrict)::nil
| OpGt => (psub lhs (padd rhs (Pc 1)),NonStrict) :: nil
| OpLt => (psub rhs (padd lhs (Pc 1)),NonStrict) :: nil
| OpGe => (psub lhs rhs,NonStrict) :: nil
| OpLe => (psub rhs lhs,NonStrict) :: nil
end.
Definition negate (t:RingMicromega.Formula Z) : cnf (NFormula Z) :=
List.map (fun x => x::nil) (xnegate t).
Lemma negate_correct : forall env t, eval_cnf (eval_nformula env) (negate t) <-> ~ Zeval_formula env t.
Proof.
Proof.
Opaque padd.
intros env t.
rewrite Zeval_formula_compat.
unfold negate, xnegate ; simpl.
unfold eval_cnf.
destruct t as [lhs o rhs]; case_eq o; simpl;
repeat rewrite eval_pol_sub;
repeat rewrite eval_pol_add;
repeat rewrite <- eval_pol_norm ; simpl in *;
unfold eval_expr;
generalize ( eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
(fun x : N => x) (pow_N 1 Zmult) env lhs);
generalize (eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
(fun x : N => x) (pow_N 1 Zmult) env rhs) ; intros z1 z2 ; intros ; subst;
intuition (auto with zarith).
Transparent padd.
Qed.
Definition ZweakTautoChecker (w: list ZWitness) (f : BFormula (Formula Z)) : bool :=
@tauto_checker (Formula Z) (NFormula Z) normalise negate ZWitness ZWeakChecker f w.
(* To get a complete checker, the proof format has to be enriched *)
Require Import Zdiv.
Open Scope Z_scope.
Definition ceiling (a b:Z) : Z :=
let (q,r) := Zdiv_eucl a b in
match r with
| Z0 => q
| _ => q + 1
end.
Lemma narrow_interval_lower_bound : forall a b x, a > 0 -> a * x >= b -> x >= ceiling b a.
Proof.
unfold ceiling.
intros.
generalize (Z_div_mod b a H).
destruct (Zdiv_eucl b a).
intros.
destruct H1.
destruct H2.
subst.
destruct (Ztrichotomy z0 0) as [ HH1 | [HH2 | HH3]]; destruct z0 ; try auto with zarith ; try discriminate.
assert (HH :x >= z \/ x < z) by (destruct (Ztrichotomy x z) ; auto with zarith).
destruct HH ;auto.
generalize (Zmult_lt_compat_l _ _ _ H3 H1).
auto with zarith.
clear H2.
assert (HH :x >= z +1 \/ x <= z) by (destruct (Ztrichotomy x z) ; intuition (auto with zarith)).
destruct HH ;auto.
assert (0 < a) by auto with zarith.
generalize (Zmult_lt_0_le_compat_r _ _ _ H2 H1).
intros.
rewrite Zmult_comm in H4.
rewrite (Zmult_comm z) in H4.
auto with zarith.
Qed.
(** NB: narrow_interval_upper_bound is Zdiv.Zdiv_le_lower_bound *)
Require Import QArith.
Inductive ZArithProof : Type :=
| DoneProof
| RatProof : ZWitness -> ZArithProof -> ZArithProof
| CutProof : ZWitness -> ZArithProof -> ZArithProof
| EnumProof : ZWitness -> ZWitness -> list ZArithProof -> ZArithProof.
(* n/d <= x -> d*x - n >= 0 *)
(*
Definition makeLb (v:PExpr Z) (q:Q) : NFormula Z :=
let (n,d) := q in (PEsub (PEmul (PEc (Zpos d)) v) (PEc n),NonStrict).
(* x <= n/d -> d * x <= d *)
Definition makeUb (v:PExpr Z) (q:Q) : NFormula Z :=
let (n,d) := q in
(PEsub (PEc n) (PEmul (PEc (Zpos d)) v), NonStrict).
Definition qceiling (q:Q) : Z :=
let (n,d) := q in ceiling n (Zpos d).
Definition qfloor (q:Q) : Z :=
let (n,d) := q in Zdiv n (Zpos d).
Definition makeLbCut (v:PExprC Z) (q:Q) : NFormula Z :=
(PEsub v (PEc (qceiling q)), NonStrict).
Definition neg_nformula (f : NFormula Z) :=
let (e,o) := f in
(PEopp (PEadd e (PEc 1%Z)), o).
Lemma neg_nformula_sound : forall env f, snd f = NonStrict ->( ~ (Zeval_nformula env (neg_nformula f)) <-> Zeval_nformula env f).
Proof.
unfold neg_nformula.
destruct f.
simpl.
intros ; subst ; simpl in *.
split; auto with zarith.
Qed.
*)
(* In order to compute the 'cut', we need to express a polynomial P as a * Q + b.
- b is the constant
- a is the gcd of the other coefficient.
*)
Require Import Znumtheory.
Definition isZ0 (x:Z) :=
match x with
| Z0 => true
| _ => false
end.
Lemma isZ0_0 : forall x, isZ0 x = true <-> x = 0.
Proof.
destruct x ; simpl ; intuition congruence.
Qed.
Lemma isZ0_n0 : forall x, isZ0 x = false <-> x <> 0.
Proof.
destruct x ; simpl ; intuition congruence.
Qed.
Definition ZgcdM (x y : Z) := Zmax (Zgcd x y) 1.
Fixpoint Zgcd_pol (p : PolC Z) : (Z * Z) :=
match p with
| Pc c => (0,c)
| Pinj _ p => Zgcd_pol p
| PX p _ q =>
let (g1,c1) := Zgcd_pol p in
let (g2,c2) := Zgcd_pol q in
(ZgcdM (ZgcdM g1 c1) g2 , c2)
end.
(*Eval compute in (Zgcd_pol ((PX (Pc (-2)) 1 (Pc 4)))).*)
Fixpoint Zdiv_pol (p:PolC Z) (x:Z) : PolC Z :=
match p with
| Pc c => Pc (Zdiv c x)
| Pinj j p => Pinj j (Zdiv_pol p x)
| PX p j q => PX (Zdiv_pol p x) j (Zdiv_pol q x)
end.
Inductive Zdivide_pol (x:Z): PolC Z -> Prop :=
| Zdiv_Pc : forall c, (x | c) -> Zdivide_pol x (Pc c)
| Zdiv_Pinj : forall p, Zdivide_pol x p -> forall j, Zdivide_pol x (Pinj j p)
| Zdiv_PX : forall p q, Zdivide_pol x p -> Zdivide_pol x q -> forall j, Zdivide_pol x (PX p j q).
Lemma Zdiv_pol_correct : forall a p, 0 < a -> Zdivide_pol a p ->
forall env, eval_pol env p = a * eval_pol env (Zdiv_pol p a).
Proof.
intros until 2.
induction H0.
(* Pc *)
simpl.
intros.
apply Zdivide_Zdiv_eq ; auto.
(* Pinj *)
simpl.
intros.
apply IHZdivide_pol.
(* PX *)
simpl.
intros.
rewrite IHZdivide_pol1.
rewrite IHZdivide_pol2.
ring.
Qed.
Lemma Zgcd_pol_ge : forall p, fst (Zgcd_pol p) >= 0.
Proof.
induction p.
simpl. auto with zarith.
simpl. auto.
simpl.
case_eq (Zgcd_pol p1).
case_eq (Zgcd_pol p3).
intros.
simpl.
unfold ZgcdM.
generalize (Zgcd_is_pos z1 z2).
generalize (Zmax_spec (Zgcd z1 z2) 1).
generalize (Zgcd_is_pos (Zmax (Zgcd z1 z2) 1) z).
generalize (Zmax_spec (Zgcd (Zmax (Zgcd z1 z2) 1) z) 1).
auto with zarith.
Qed.
Lemma Zdivide_pol_Zdivide : forall p x y, Zdivide_pol x p -> (y | x) -> Zdivide_pol y p.
Proof.
intros.
induction H.
constructor.
apply Zdivide_trans with (1:= H0) ; assumption.
constructor. auto.
constructor ; auto.
Qed.
Lemma Zdivide_pol_one : forall p, Zdivide_pol 1 p.
Proof.
induction p ; constructor ; auto.
exists c. ring.
Qed.
Lemma Zgcd_minus : forall a b c, (a | c - b ) -> (Zgcd a b | c).
Proof.
intros a b c (q,Hq).
destruct (Zgcd_is_gcd a b) as [(a',Ha) (b',Hb) _].
set (g:=Zgcd a b) in *; clearbody g.
exists (q * a' + b').
symmetry in Hq. rewrite <- Zeq_plus_swap in Hq.
rewrite <- Hq, Hb, Ha. ring.
Qed.
Lemma Zdivide_pol_sub : forall p a b,
0 < Zgcd a b ->
Zdivide_pol a (PsubC Zminus p b) ->
Zdivide_pol (Zgcd a b) p.
Proof.
induction p.
simpl.
intros. inversion H0.
constructor.
apply Zgcd_minus ; auto.
intros.
constructor.
simpl in H0. inversion H0 ; subst; clear H0.
apply IHp ; auto.
simpl. intros.
inv H0.
constructor.
apply Zdivide_pol_Zdivide with (1:= H3).
destruct (Zgcd_is_gcd a b) ; assumption.
apply IHp2 ; assumption.
Qed.
Lemma Zdivide_pol_sub_0 : forall p a,
Zdivide_pol a (PsubC Zminus p 0) ->
Zdivide_pol a p.
Proof.
induction p.
simpl.
intros. inversion H.
constructor. replace (c - 0) with c in H1 ; auto with zarith.
intros.
constructor.
simpl in H. inversion H ; subst; clear H.
apply IHp ; auto.
simpl. intros.
inv H.
constructor. auto.
apply IHp2 ; assumption.
Qed.
Lemma Zgcd_pol_div : forall p g c,
Zgcd_pol p = (g, c) -> Zdivide_pol g (PsubC Zminus p c).
Proof.
induction p ; simpl.
(* Pc *)
intros. inv H.
constructor.
exists 0. now ring.
(* Pinj *)
intros.
constructor. apply IHp ; auto.
(* PX *)
intros g c.
case_eq (Zgcd_pol p1) ; case_eq (Zgcd_pol p3) ; intros.
inv H1.
unfold ZgcdM at 1.
destruct (Zmax_spec (Zgcd (ZgcdM z1 z2) z) 1) as [HH1 | HH1];
destruct HH1 as [HH1 HH1'] ; rewrite HH1'.
constructor.
apply Zdivide_pol_Zdivide with (x:= ZgcdM z1 z2).
unfold ZgcdM.
destruct (Zmax_spec (Zgcd z1 z2) 1) as [HH2 | HH2].
destruct HH2.
rewrite H2.
apply Zdivide_pol_sub ; auto.
auto with zarith.
destruct HH2. rewrite H2.
apply Zdivide_pol_one.
unfold ZgcdM in HH1. unfold ZgcdM.
destruct (Zmax_spec (Zgcd z1 z2) 1) as [HH2 | HH2].
destruct HH2. rewrite H2 in *.
destruct (Zgcd_is_gcd (Zgcd z1 z2) z); auto.
destruct HH2. rewrite H2.
destruct (Zgcd_is_gcd 1 z); auto.
apply Zdivide_pol_Zdivide with (x:= z).
apply (IHp2 _ _ H); auto.
destruct (Zgcd_is_gcd (ZgcdM z1 z2) z); auto.
constructor. apply Zdivide_pol_one.
apply Zdivide_pol_one.
Qed.
Lemma Zgcd_pol_correct_lt : forall p env g c, Zgcd_pol p = (g,c) -> 0 < g -> eval_pol env p = g * (eval_pol env (Zdiv_pol (PsubC Zminus p c) g)) + c.
Proof.
intros.
rewrite <- Zdiv_pol_correct ; auto.
rewrite (RingMicromega.PsubC_ok Zsor ZSORaddon).
unfold eval_pol. ring.
(**)
apply Zgcd_pol_div ; auto.
Qed.
Definition makeCuttingPlane (p : PolC Z) : PolC Z * Z :=
let (g,c) := Zgcd_pol p in
if Zgt_bool g Z0
then (Zdiv_pol (PsubC Zminus p c) g , Zopp (ceiling (Zopp c) g))
else (p,Z0).
Definition genCuttingPlane (f : NFormula Z) : option (PolC Z * Z * Op1) :=
let (e,op) := f in
match op with
| Equal => let (g,c) := Zgcd_pol e in
if andb (Zgt_bool g Z0) (andb (Zgt_bool c Z0) (negb (Zeq_bool (Zgcd g c) g)))
then None (* inconsistent *)
else Some (e, Z0,op) (* It could still be inconsistent -- but not a cut *)
| NonEqual => Some (e,Z0,op)
| Strict => let (p,c) := makeCuttingPlane (PsubC Zminus e 1) in
Some (p,c,NonStrict)
| NonStrict => let (p,c) := makeCuttingPlane e in
Some (p,c,NonStrict)
end.
Definition nformula_of_cutting_plane (t : PolC Z * Z * Op1) : NFormula Z :=
let (e_z, o) := t in
let (e,z) := e_z in
(padd e (Pc z) , o).
Definition is_pol_Z0 (p : PolC Z) : bool :=
match p with
| Pc Z0 => true
| _ => false
end.
Lemma is_pol_Z0_eval_pol : forall p, is_pol_Z0 p = true -> forall env, eval_pol env p = 0.
Proof.
unfold is_pol_Z0.
destruct p ; try discriminate.
destruct z ; try discriminate.
reflexivity.
Qed.
Definition eval_Psatz : list (NFormula Z) -> ZWitness -> option (NFormula Z) :=
eval_Psatz 0 1 Zplus Zmult Zeq_bool Zle_bool.
Definition check_inconsistent := check_inconsistent 0 Zeq_bool Zle_bool.
Fixpoint ZChecker (l:list (NFormula Z)) (pf : ZArithProof) {struct pf} : bool :=
match pf with
| DoneProof => false
| RatProof w pf =>
match eval_Psatz l w with
| None => false
| Some f =>
if check_inconsistent f then true
else ZChecker (f::l) pf
end
| CutProof w pf =>
match eval_Psatz l w with
| None => false
| Some f =>
match genCuttingPlane f with
| None => true
| Some cp => ZChecker (nformula_of_cutting_plane cp::l) pf
end
end
| EnumProof w1 w2 pf =>
match eval_Psatz l w1 , eval_Psatz l w2 with
| Some f1 , Some f2 =>
match genCuttingPlane f1 , genCuttingPlane f2 with
|Some (e1,z1,op1) , Some (e2,z2,op2) =>
match op1 , op2 with
| NonStrict , NonStrict =>
if is_pol_Z0 (padd e1 e2)
then
(fix label (pfs:list ZArithProof) :=
fun lb ub =>
match pfs with
| nil => if Zgt_bool lb ub then true else false
| pf::rsr => andb (ZChecker ((psub e1 (Pc lb), Equal) :: l) pf) (label rsr (Zplus lb 1%Z) ub)
end)
pf (Zopp z1) z2
else false
| _ , _ => false
end
| _ , _ => false
end
| _ , _ => false
end
end.
Fixpoint bdepth (pf : ZArithProof) : nat :=
match pf with
| DoneProof => O
| RatProof _ p => S (bdepth p)
| CutProof _ p => S (bdepth p)
| EnumProof _ _ l => S (List.fold_right (fun pf x => Max.max (bdepth pf) x) O l)
end.
Require Import Wf_nat.
Lemma in_bdepth : forall l a b y, In y l -> ltof ZArithProof bdepth y (EnumProof a b l).
Proof.
induction l.
(* nil *)
simpl.
tauto.
(* cons *)
simpl.
intros.
destruct H.
subst.
unfold ltof.
simpl.
generalize ( (fold_right
(fun (pf : ZArithProof) (x : nat) => Max.max (bdepth pf) x) 0%nat l)).
intros.
generalize (bdepth y) ; intros.
generalize (Max.max_l n0 n) (Max.max_r n0 n).
auto with zarith.
generalize (IHl a0 b y H).
unfold ltof.
simpl.
generalize ( (fold_right (fun (pf : ZArithProof) (x : nat) => Max.max (bdepth pf) x) 0%nat
l)).
intros.
generalize (Max.max_l (bdepth a) n) (Max.max_r (bdepth a) n).
auto with zarith.
Qed.
Lemma eval_Psatz_sound : forall env w l f',
make_conj (eval_nformula env) l ->
eval_Psatz l w = Some f' -> eval_nformula env f'.
Proof.
intros.
apply (eval_Psatz_Sound Zsor ZSORaddon) with (l:=l) (e:= w) ; auto.
apply make_conj_in ; auto.
Qed.
Lemma makeCuttingPlane_sound : forall env e e' c,
eval_nformula env (e, NonStrict) ->
makeCuttingPlane e = (e',c) ->
eval_nformula env (nformula_of_cutting_plane (e', c, NonStrict)).
Proof.
unfold nformula_of_cutting_plane.
unfold eval_nformula. unfold RingMicromega.eval_nformula.
unfold eval_op1.
intros.
rewrite (RingMicromega.eval_pol_add Zsor ZSORaddon).
simpl.
(**)
unfold makeCuttingPlane in H0.
revert H0.
case_eq (Zgcd_pol e) ; intros g c0.
generalize (Zgt_cases g 0) ; destruct (Zgt_bool g 0).
intros.
inv H2.
change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in *.
apply Zgcd_pol_correct_lt with (env:=env) in H1.
generalize (narrow_interval_lower_bound g (- c0) (eval_pol env (Zdiv_pol (PsubC Zminus e c0) g)) H0).
auto with zarith.
auto with zarith.
(* g <= 0 *)
intros. inv H2. auto with zarith.
Qed.
Lemma cutting_plane_sound : forall env f p,
eval_nformula env f ->
genCuttingPlane f = Some p ->
eval_nformula env (nformula_of_cutting_plane p).
Proof.
unfold genCuttingPlane.
destruct f as [e op].
destruct op.
(* Equal *)
destruct p as [[e' z] op].
case_eq (Zgcd_pol e) ; intros g c.
destruct (Zgt_bool g 0 && (Zgt_bool c 0 && negb (Zeq_bool (Zgcd g c) g))) ; [discriminate|].
intros. inv H1. unfold nformula_of_cutting_plane.
unfold eval_nformula in *.
unfold RingMicromega.eval_nformula in *.
unfold eval_op1 in *.
rewrite (RingMicromega.eval_pol_add Zsor ZSORaddon).
simpl. rewrite H0. reflexivity.
(* NonEqual *)
intros.
inv H0.
unfold eval_nformula in *.
unfold RingMicromega.eval_nformula in *.
unfold nformula_of_cutting_plane.
unfold eval_op1 in *.
rewrite (RingMicromega.eval_pol_add Zsor ZSORaddon).
simpl. auto with zarith.
(* Strict *)
destruct p as [[e' z] op].
case_eq (makeCuttingPlane (PsubC Zminus e 1)).
intros.
inv H1.
apply makeCuttingPlane_sound with (env:=env) (2:= H).
simpl in *.
rewrite (RingMicromega.PsubC_ok Zsor ZSORaddon).
auto with zarith.
(* NonStrict *)
destruct p as [[e' z] op].
case_eq (makeCuttingPlane e).
intros.
inv H1.
apply makeCuttingPlane_sound with (env:=env) (2:= H).
assumption.
Qed.
Lemma genCuttingPlaneNone : forall env f,
genCuttingPlane f = None ->
eval_nformula env f -> False.
Proof.
unfold genCuttingPlane.
destruct f.
destruct o.
case_eq (Zgcd_pol p) ; intros g c.
case_eq (Zgt_bool g 0 && (Zgt_bool c 0 && negb (Zeq_bool (Zgcd g c) g))).
intros.
flatten_bool.
rewrite negb_true_iff in H5.
apply Zeq_bool_neq in H5.
contradict H5.
rewrite <- Zgt_is_gt_bool in H3.
rewrite <- Zgt_is_gt_bool in H.
apply Zis_gcd_gcd; auto with zarith.
constructor; auto with zarith.
change (eval_pol env p = 0) in H2.
rewrite Zgcd_pol_correct_lt with (1:= H0) in H2; auto with zarith.
set (x:=eval_pol env (Zdiv_pol (PsubC Zminus p c) g)) in *; clearbody x.
exists (-x).
rewrite <- Zopp_mult_distr_l, Zmult_comm; auto with zarith.
(**)
discriminate.
discriminate.
destruct (makeCuttingPlane (PsubC Zminus p 1)) ; discriminate.
destruct (makeCuttingPlane p) ; discriminate.
Qed.
Lemma ZChecker_sound : forall w l, ZChecker l w = true -> forall env, make_impl (eval_nformula env) l False.
Proof.
induction w using (well_founded_ind (well_founded_ltof _ bdepth)).
destruct w as [ | w pf | w pf | w1 w2 pf].
(* DoneProof *)
simpl. discriminate.
(* RatProof *)
simpl.
intro l. case_eq (eval_Psatz l w) ; [| discriminate].
intros f Hf.
case_eq (check_inconsistent f).
intros.
apply (checker_nf_sound Zsor ZSORaddon l w).
unfold check_normalised_formulas. unfold eval_Psatz in Hf. rewrite Hf.
unfold check_inconsistent in H0. assumption.
intros.
assert (make_impl (eval_nformula env) (f::l) False).
apply H with (2:= H1).
unfold ltof.
simpl.
auto with arith.
destruct f.
rewrite <- make_conj_impl in H2.
rewrite make_conj_cons in H2.
rewrite <- make_conj_impl.
intro.
apply H2.
split ; auto.
apply eval_Psatz_sound with (2:= Hf) ; assumption.
(* CutProof *)
simpl.
intro l.
case_eq (eval_Psatz l w) ; [ | discriminate].
intros f' Hlc.
case_eq (genCuttingPlane f').
intros.
assert (make_impl (eval_nformula env) (nformula_of_cutting_plane p::l) False).
eapply (H pf) ; auto.
unfold ltof.
simpl.
auto with arith.
rewrite <- make_conj_impl in H2.
rewrite make_conj_cons in H2.
rewrite <- make_conj_impl.
intro.
apply H2.
split ; auto.
apply eval_Psatz_sound with (env:=env) in Hlc.
apply cutting_plane_sound with (1:= Hlc) (2:= H0).
auto.
(* genCuttingPlane = None *)
intros.
rewrite <- make_conj_impl.
intros.
apply eval_Psatz_sound with (2:= Hlc) in H2.
apply genCuttingPlaneNone with (2:= H2) ; auto.
(* EnumProof *)
intro.
simpl.
case_eq (eval_Psatz l w1) ; [ | discriminate].
case_eq (eval_Psatz l w2) ; [ | discriminate].
intros f1 Hf1 f2 Hf2.
case_eq (genCuttingPlane f2) ; [ | discriminate].
destruct p as [ [p1 z1] op1].
case_eq (genCuttingPlane f1) ; [ | discriminate].
destruct p as [ [p2 z2] op2].
case_eq op1 ; case_eq op2 ; try discriminate.
case_eq (is_pol_Z0 (padd p1 p2)) ; try discriminate.
intros.
(* get the bounds of the enum *)
rewrite <- make_conj_impl.
intro.
assert (-z1 <= eval_pol env p1 <= z2).
split.
apply eval_Psatz_sound with (env:=env) in Hf2 ; auto.
apply cutting_plane_sound with (1:= Hf2) in H4.
unfold nformula_of_cutting_plane in H4.
unfold eval_nformula in H4.
unfold RingMicromega.eval_nformula in H4.
change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in H4.
unfold eval_op1 in H4.
rewrite eval_pol_add in H4. simpl in H4.
auto with zarith.
(**)
apply is_pol_Z0_eval_pol with (env := env) in H0.
rewrite eval_pol_add in H0.
replace (eval_pol env p1) with (- eval_pol env p2) by omega.
apply eval_Psatz_sound with (env:=env) in Hf1 ; auto.
apply cutting_plane_sound with (1:= Hf1) in H3.
unfold nformula_of_cutting_plane in H3.
unfold eval_nformula in H3.
unfold RingMicromega.eval_nformula in H3.
change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in H3.
unfold eval_op1 in H3.
rewrite eval_pol_add in H3. simpl in H3.
omega.
revert H5.
set (FF := (fix label (pfs : list ZArithProof) (lb ub : Z) {struct pfs} : bool :=
match pfs with
| nil => if Z_gt_dec lb ub then true else false
| pf :: rsr =>
(ZChecker ((PsubC Zminus p1 lb, Equal) :: l) pf &&
label rsr (lb + 1)%Z ub)%bool
end)).
intros.
assert (HH :forall x, -z1 <= x <= z2 -> exists pr,
(In pr pf /\
ZChecker ((PsubC Zminus p1 x,Equal) :: l) pr = true)%Z).
clear H.
clear H0 H1 H2 H3 H4 H7.
revert H5.
generalize (-z1). clear z1. intro z1.
revert z1 z2.
induction pf;simpl ;intros.
generalize (Zgt_cases z1 z2).
destruct (Zgt_bool z1 z2).
intros.
apply False_ind ; omega.
discriminate.
flatten_bool.
assert (HH:(x = z1 \/ z1 +1 <=x)%Z) by omega.
destruct HH.
subst.
exists a ; auto.
assert (z1 + 1 <= x <= z2)%Z by omega.
destruct (IHpf _ _ H1 _ H3).
destruct H4.
exists x0 ; split;auto.
(*/asser *)
destruct (HH _ H7) as [pr [Hin Hcheker]].
assert (make_impl (eval_nformula env) ((PsubC Zminus p1 (eval_pol env p1),Equal) :: l) False).
apply (H pr);auto.
apply in_bdepth ; auto.
rewrite <- make_conj_impl in H8.
apply H8.
rewrite make_conj_cons.
split ;auto.
unfold eval_nformula.
unfold RingMicromega.eval_nformula.
simpl.
rewrite (RingMicromega.PsubC_ok Zsor ZSORaddon).
unfold eval_pol. ring.
Qed.
Definition ZTautoChecker (f : BFormula (Formula Z)) (w: list ZArithProof): bool :=
@tauto_checker (Formula Z) (NFormula Z) normalise negate ZArithProof ZChecker f w.
Lemma ZTautoChecker_sound : forall f w, ZTautoChecker f w = true -> forall env, eval_f (Zeval_formula env) f.
Proof.
intros f w.
unfold ZTautoChecker.
apply (tauto_checker_sound Zeval_formula eval_nformula).
apply Zeval_nformula_dec.
intros env t.
rewrite normalise_correct ; auto.
intros env t.
rewrite negate_correct ; auto.
intros t w0.
apply ZChecker_sound.
Qed.
Fixpoint xhyps_of_pt (base:nat) (acc : list nat) (pt:ZArithProof) : list nat :=
match pt with
| DoneProof => acc
| RatProof c pt => xhyps_of_pt (S base ) (xhyps_of_psatz base acc c) pt
| CutProof c pt => xhyps_of_pt (S base ) (xhyps_of_psatz base acc c) pt
| EnumProof c1 c2 l =>
let acc := xhyps_of_psatz base (xhyps_of_psatz base acc c2) c1 in
List.fold_left (xhyps_of_pt (S base)) l acc
end.
Definition hyps_of_pt (pt : ZArithProof) : list nat := xhyps_of_pt 0 nil pt.
(*Lemma hyps_of_pt_correct : forall pt l, *)
Open Scope Z_scope.
(** To ease bindings from ml code **)
(*Definition varmap := Quote.varmap.*)
Definition make_impl := Refl.make_impl.
Definition make_conj := Refl.make_conj.
Require VarMap.
(*Definition varmap_type := VarMap.t Z. *)
Definition env := PolEnv Z.
Definition node := @VarMap.Node Z.
Definition empty := @VarMap.Empty Z.
Definition leaf := @VarMap.Leaf Z.
Definition coneMember := ZWitness.
Definition eval := eval_formula.
Definition prod_pos_nat := prod positive nat.
Definition n_of_Z (z:Z) : N :=
match z with
| Z0 => N0
| Zpos p => Npos p
| Zneg p => N0
end.
(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
|