blob: a461b26a0ca8c3f74f7e87b09c33bacada6b7119 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
(* *)
(************************************************************************)
Require Import ZMicromega.
Require Import QMicromega.
Require Import RMicromega.
Require Import QArith.
Require Import ZArith.
Require Import Rdefinitions.
Require Import RingMicromega.
Require Import VarMap.
Require Tauto.
Declare ML Module "micromega_plugin".
Ltac preprocess :=
zify ; unfold Z.succ in * ; unfold Z.pred in *.
Ltac lia :=
preprocess;
xlia ;
abstract (
intros __wit __varmap __ff ;
change (Tauto.eval_f (Zeval_formula (@find Z Z0 __varmap)) __ff) ;
apply (ZTautoChecker_sound __ff __wit); vm_cast_no_check (eq_refl true)).
Ltac nia :=
preprocess;
xnlia ;
abstract (
intros __wit __varmap __ff ;
change (Tauto.eval_f (Zeval_formula (@find Z Z0 __varmap)) __ff) ;
apply (ZTautoChecker_sound __ff __wit); vm_cast_no_check (eq_refl true)).
Ltac xpsatz dom d :=
let tac := lazymatch dom with
| Z =>
(sos_Z || psatz_Z d) ;
abstract(
intros __wit __varmap __ff ;
change (Tauto.eval_f (Zeval_formula (@find Z Z0 __varmap)) __ff) ;
apply (ZTautoChecker_sound __ff __wit); vm_cast_no_check (eq_refl true))
| R =>
(sos_R || psatz_R d) ;
(* If csdp is not installed, the previous step might not produce any
progress: the rest of the tactical will then fail. Hence the 'try'. *)
try (abstract(intros __wit __varmap __ff ;
change (Tauto.eval_f (Reval_formula (@find R 0%R __varmap)) __ff) ;
apply (RTautoChecker_sound __ff __wit); vm_cast_no_check (eq_refl true)))
| Q =>
(sos_Q || psatz_Q d) ;
(* If csdp is not installed, the previous step might not produce any
progress: the rest of the tactical will then fail. Hence the 'try'. *)
try (abstract(intros __wit __varmap __ff ;
change (Tauto.eval_f (Qeval_formula (@find Q 0%Q __varmap)) __ff) ;
apply (QTautoChecker_sound __ff __wit); vm_cast_no_check (eq_refl true)))
| _ => fail "Unsupported domain"
end in tac.
Tactic Notation "psatz" constr(dom) int_or_var(n) := xpsatz dom n.
Tactic Notation "psatz" constr(dom) := xpsatz dom ltac:-1.
Ltac psatzl dom :=
let tac := lazymatch dom with
| Z => lia
| Q =>
psatzl_Q ;
(* If csdp is not installed, the previous step might not produce any
progress: the rest of the tactical will then fail. Hence the 'try'. *)
try (abstract(intros __wit __varmap __ff ;
change (Tauto.eval_f (Qeval_formula (@find Q 0%Q __varmap)) __ff) ;
apply (QTautoChecker_sound __ff __wit); vm_cast_no_check (eq_refl true)))
| R =>
unfold Rdiv in * ;
psatzl_R ;
(* If csdp is not installed, the previous step might not produce any
progress: the rest of the tactical will then fail. Hence the 'try'. *)
try abstract((intros __wit __varmap __ff ;
change (Tauto.eval_f (Reval_formula (@find R 0%R __varmap)) __ff) ;
apply (RTautoChecker_sound __ff __wit); vm_cast_no_check (eq_refl true)))
| _ => fail "Unsupported domain"
end in tac.
Ltac lra :=
first [ psatzl R | psatzl Q ].
(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
|