blob: 4ff483fbab03c5194a409a2588ecd9212784145c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
(* Frédéric Besson (Irisa/Inria) 2016 *)
(* *)
(************************************************************************)
Require Import RMicromega.
Require Import QMicromega.
Require Import Rdefinitions.
Require Import RingMicromega.
Require Import VarMap.
Require Coq.micromega.Tauto.
Declare ML Module "micromega_plugin".
Ltac rchange :=
intros __wit __varmap __ff ;
change (Tauto.eval_f (Reval_formula (@find R 0%R __varmap)) __ff) ;
apply (RTautoChecker_sound __ff __wit).
Ltac rchecker_no_abstract := rchange ; vm_compute ; reflexivity.
Ltac rchecker_abstract := rchange ; vm_cast_no_check (eq_refl true).
Ltac rchecker := rchecker_no_abstract.
(** Here, lra stands for linear real arithmetic *)
Ltac lra := unfold Rdiv in * ; lra_R rchecker.
(** Here, nra stands for non-linear real arithmetic *)
Ltac nra := unfold Rdiv in * ; xnra rchecker.
Ltac xpsatz dom d :=
let tac := lazymatch dom with
| R =>
(sos_R rchecker) || (psatz_R d rchecker)
| _ => fail "Unsupported domain"
end in tac.
Tactic Notation "psatz" constr(dom) int_or_var(n) := xpsatz dom n.
Tactic Notation "psatz" constr(dom) := xpsatz dom ltac:(-1).
(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
|