aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins/micromega/EnvRing.v
blob: 04e68272eecf3f72997d9c86c596396f3a3449b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
(************************************************************************)
(*  V      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(* F. Besson: to evaluate polynomials, the original code is using a list.
   For big polynomials, this is inefficient -- linear access.
   I have modified the code to use binary trees -- logarithmic access.  *)


Set Implicit Arguments.
Require Import Setoid.
Require Import BinList.
Require Import Env.
Require Import BinPos.
Require Import BinNat.
Require Import BinInt.
Require Export Ring_theory.

Open Local Scope positive_scope.
Import RingSyntax.

Section MakeRingPol.

 (* Ring elements *)
 Variable R:Type.
 Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R->R).
 Variable req : R -> R -> Prop.

 (* Ring properties *)
 Variable Rsth : Setoid_Theory R req.
 Variable Reqe : ring_eq_ext radd rmul ropp req.
 Variable ARth : almost_ring_theory rO rI radd rmul rsub ropp req.

 (* Coefficients *)
 Variable C: Type.
 Variable (cO cI: C) (cadd cmul csub : C->C->C) (copp : C->C).
 Variable ceqb : C->C->bool.
 Variable phi : C -> R.
 Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req
                                cO cI cadd cmul csub copp ceqb phi.

  (* Power coefficients *)
 Variable Cpow : Set.
 Variable Cp_phi : N -> Cpow.
 Variable rpow : R -> Cpow -> R.
 Variable pow_th : power_theory rI rmul req Cp_phi rpow.


 (* R notations *)
 Notation "0" := rO. Notation "1" := rI.
 Notation "x + y" := (radd x y).  Notation "x * y " := (rmul x y).
 Notation "x - y " := (rsub x y). Notation "- x" := (ropp x).
 Notation "x == y" := (req x y).

 (* C notations *)		
 Notation "x +! y" := (cadd x y). Notation "x *! y " := (cmul x y).
 Notation "x -! y " := (csub x y). Notation "-! x" := (copp x).
 Notation " x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x).

 (* Usefull tactics *)		
  Add Setoid R req Rsth as R_set1.
 Ltac rrefl := gen_reflexivity Rsth.
  Add Morphism radd : radd_ext.  exact (Radd_ext Reqe). Qed.
  Add Morphism rmul : rmul_ext.  exact (Rmul_ext Reqe). Qed.
  Add Morphism ropp : ropp_ext.  exact (Ropp_ext Reqe). Qed.
  Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed.
 Ltac rsimpl := gen_srewrite Rsth Reqe ARth.
 Ltac add_push := gen_add_push radd Rsth Reqe ARth.
 Ltac mul_push := gen_mul_push rmul Rsth Reqe ARth.

 (* Definition of multivariable polynomials with coefficients in C :
    Type [Pol] represents [X1 ... Xn].
    The representation is Horner's where a [n] variable polynomial
    (C[X1..Xn]) is seen as a polynomial on [X1] which coefficients
    are polynomials with [n-1] variables (C[X2..Xn]).
    There are several optimisations to make the repr compacter:
    - [Pc c] is the constant polynomial of value c
       == c*X1^0*..*Xn^0
    - [Pinj j Q] is a polynomial constant w.r.t the [j] first variables.
        variable indices are shifted of j in Q.
       == X1^0 *..* Xj^0 * Q{X1 <- Xj+1;..; Xn-j <- Xn}
    - [PX P i Q] is an optimised Horner form of P*X^i + Q
        with P not the null polynomial
       == P * X1^i + Q{X1 <- X2; ..; Xn-1 <- Xn}

    In addition:
    - polynomials of the form (PX (PX P i (Pc 0)) j Q) are forbidden
      since they can be represented by the simpler form (PX P (i+j) Q)
    - (Pinj i (Pinj j P)) is (Pinj (i+j) P)
    - (Pinj i (Pc c)) is (Pc c)
 *)

 Inductive Pol : Type :=
  | Pc : C -> Pol
  | Pinj : positive -> Pol -> Pol
  | PX : Pol -> positive -> Pol -> Pol.

 Definition P0 := Pc cO.
 Definition P1 := Pc cI.

 Fixpoint Peq (P P' : Pol) {struct P'} : bool :=
  match P, P' with
  | Pc c, Pc c' => c ?=! c'
  | Pinj j Q, Pinj j' Q' =>
    match Pcompare j j' Eq with
    | Eq => Peq Q Q'
    | _ => false
    end
  | PX P i Q, PX P' i' Q' =>
    match Pcompare i i' Eq with
    | Eq => if Peq P P' then Peq Q Q' else false
    | _ => false
    end
  | _, _ => false
  end.

 Notation " P ?== P' " := (Peq P P').

 Definition mkPinj j P :=
  match P with
  | Pc _ => P
  | Pinj j' Q => Pinj ((j + j'):positive) Q
  | _ => Pinj j P
  end.

 Definition mkPinj_pred j P:=
  match j with
  | xH => P
  | xO j => Pinj (Pdouble_minus_one j) P
  | xI j => Pinj (xO j) P
  end.

 Definition mkPX P i Q :=
  match P with
  | Pc c => if c ?=! cO then mkPinj xH Q else PX P i Q
  | Pinj _ _ => PX P i Q
  | PX P' i' Q' => if Q' ?== P0 then PX P' (i' + i) Q else PX P i Q
  end.

 Definition mkXi i := PX P1 i P0.

 Definition mkX := mkXi 1.

 (** Opposite of addition *)

 Fixpoint Popp (P:Pol) : Pol :=
  match P with
  | Pc c => Pc (-! c)
  | Pinj j Q => Pinj j (Popp Q)
  | PX P i Q => PX (Popp P) i (Popp Q)
  end.

 Notation "-- P" := (Popp P).

 (** Addition et subtraction *)

 Fixpoint PaddC (P:Pol) (c:C) {struct P} : Pol :=
  match P with
  | Pc c1 => Pc (c1 +! c)
  | Pinj j Q => Pinj j (PaddC Q c)
  | PX P i Q => PX P i (PaddC Q c)
  end.

 Fixpoint PsubC (P:Pol) (c:C) {struct P} : Pol :=
  match P with
  | Pc c1 => Pc (c1 -! c)
  | Pinj j Q => Pinj j (PsubC Q c)
  | PX P i Q => PX P i (PsubC Q c)
  end.

 Section PopI.

  Variable Pop : Pol -> Pol -> Pol.
  Variable Q : Pol.

  Fixpoint PaddI (j:positive) (P:Pol){struct P} : Pol :=
   match P with
   | Pc c => mkPinj j (PaddC Q c)
   | Pinj j' Q' =>
     match ZPminus j' j with
     | Zpos k =>  mkPinj j (Pop (Pinj k Q') Q)
     | Z0 => mkPinj j (Pop Q' Q)
     | Zneg k => mkPinj j' (PaddI k Q')
     end
   | PX P i Q' =>
     match j with
     | xH => PX P i (Pop Q' Q)
     | xO j => PX P i (PaddI (Pdouble_minus_one j) Q')
     | xI j => PX P i (PaddI (xO j) Q')
     end
   end.

  Fixpoint PsubI (j:positive) (P:Pol){struct P} : Pol :=
   match P with
   | Pc c => mkPinj j (PaddC (--Q) c)
   | Pinj j' Q' =>
     match ZPminus j' j with
     | Zpos k =>  mkPinj j (Pop (Pinj k Q') Q)
     | Z0 => mkPinj j (Pop Q' Q)
     | Zneg k => mkPinj j' (PsubI k Q')
     end
   | PX P i Q' =>
     match j with
     | xH => PX P i (Pop Q' Q)
     | xO j => PX P i (PsubI (Pdouble_minus_one j) Q')
     | xI j => PX P i (PsubI (xO j) Q')
     end
   end.

 Variable P' : Pol.

 Fixpoint PaddX (i':positive) (P:Pol) {struct P} : Pol :=
  match P with
  | Pc c => PX P' i' P
  | Pinj j Q' =>
    match j with
    | xH =>  PX P' i' Q'
    | xO j => PX P' i' (Pinj (Pdouble_minus_one j) Q')
    | xI j => PX P' i' (Pinj (xO j) Q')
    end
  | PX P i Q' =>
    match ZPminus i i' with
    | Zpos k => mkPX (Pop (PX P k P0) P') i' Q'
    | Z0 => mkPX (Pop P P') i Q'
    | Zneg k => mkPX (PaddX k P) i Q'
    end
  end.

 Fixpoint PsubX (i':positive) (P:Pol) {struct P} : Pol :=
  match P with
  | Pc c => PX (--P') i' P
  | Pinj j Q' =>
    match j with
    | xH =>  PX (--P') i' Q'
    | xO j => PX (--P') i' (Pinj (Pdouble_minus_one j) Q')
    | xI j => PX (--P') i' (Pinj (xO j) Q')
    end
  | PX P i Q' =>
    match ZPminus i i' with
    | Zpos k => mkPX (Pop (PX P k P0) P') i' Q'
    | Z0 => mkPX (Pop P P') i Q'
    | Zneg k => mkPX (PsubX k P) i Q'
    end
  end.


 End PopI.

 Fixpoint Padd (P P': Pol) {struct P'} : Pol :=
  match P' with
  | Pc c' => PaddC P c'
  | Pinj j' Q' => PaddI Padd Q' j' P
  | PX P' i' Q' =>
    match P with
    | Pc c => PX P' i' (PaddC Q' c)
    | Pinj j Q =>
      match j with
      | xH => PX P' i' (Padd Q Q')
      | xO j => PX P' i' (Padd (Pinj (Pdouble_minus_one j) Q) Q')
      | xI j => PX P' i' (Padd (Pinj (xO j) Q) Q')
      end
    | PX P i Q =>
      match ZPminus i i' with
      | Zpos k => mkPX (Padd (PX P k P0) P') i' (Padd Q Q')
      | Z0 => mkPX (Padd P P') i (Padd Q Q')
      | Zneg k => mkPX (PaddX Padd P' k P) i (Padd Q Q')
      end
    end
  end.
 Notation "P ++ P'" := (Padd P P').

 Fixpoint Psub (P P': Pol) {struct P'} : Pol :=
  match P' with
  | Pc c' => PsubC P c'
  | Pinj j' Q' => PsubI Psub Q' j' P
  | PX P' i' Q' =>
    match P with
    | Pc c => PX (--P') i' (*(--(PsubC Q' c))*) (PaddC (--Q') c)
    | Pinj j Q =>
      match j with
      | xH => PX (--P') i' (Psub Q Q')
      | xO j => PX (--P') i' (Psub (Pinj (Pdouble_minus_one j) Q) Q')
      | xI j => PX (--P') i' (Psub (Pinj (xO j) Q) Q')
      end
    | PX P i Q =>
      match ZPminus i i' with
      | Zpos k => mkPX (Psub (PX P k P0) P') i' (Psub Q Q')
      | Z0 => mkPX (Psub P P') i (Psub Q Q')
      | Zneg k => mkPX (PsubX Psub P' k P) i (Psub Q Q')
      end
    end
  end.
 Notation "P -- P'" := (Psub P P').

 (** Multiplication *)

 Fixpoint PmulC_aux (P:Pol) (c:C) {struct P} : Pol :=
  match P with
  | Pc c' => Pc (c' *! c)
  | Pinj j Q => mkPinj j (PmulC_aux Q c)
  | PX P i Q => mkPX (PmulC_aux P c) i (PmulC_aux Q c)
  end.

 Definition PmulC P c :=
  if c ?=! cO then P0 else
  if c ?=! cI then P else PmulC_aux P c.

 Section PmulI.
  Variable Pmul : Pol -> Pol -> Pol.
  Variable Q : Pol.
  Fixpoint PmulI (j:positive) (P:Pol) {struct P} : Pol :=
   match P with
   | Pc c => mkPinj j (PmulC Q c)
   | Pinj j' Q' =>
     match ZPminus j' j with
     | Zpos k => mkPinj j (Pmul (Pinj k Q') Q)
     | Z0 => mkPinj j (Pmul Q' Q)
     | Zneg k => mkPinj j' (PmulI k Q')
     end
   | PX P' i' Q' =>
     match j with
     | xH => mkPX (PmulI xH P') i' (Pmul Q' Q)
     | xO j' => mkPX (PmulI j P') i' (PmulI (Pdouble_minus_one j') Q')
     | xI j' => mkPX (PmulI j P') i' (PmulI (xO j') Q')
     end
   end.

 End PmulI.
(* A symmetric version of the multiplication *)

 Fixpoint Pmul (P P'' : Pol) {struct P''} : Pol :=
   match P'' with
   | Pc c => PmulC P c
   | Pinj j' Q' => PmulI Pmul Q' j' P
   | PX P' i' Q' =>
     match P with
     | Pc c => PmulC P'' c
     | Pinj j Q =>
       let QQ' :=
         match j with
         | xH => Pmul Q Q'
         | xO j => Pmul (Pinj (Pdouble_minus_one j) Q) Q'
         | xI j => Pmul (Pinj (xO j) Q) Q'
         end in
       mkPX (Pmul P P') i' QQ'
     | PX P i Q=>
       let QQ' := Pmul Q Q' in
       let PQ' := PmulI Pmul Q' xH P in
       let QP' := Pmul (mkPinj xH Q) P' in
       let PP' := Pmul P P' in
       (mkPX (mkPX PP' i P0 ++ QP') i' P0) ++ mkPX PQ' i QQ'
     end
  end.

(* Non symmetric *)
(*
 Fixpoint Pmul_aux (P P' : Pol) {struct P'} : Pol :=
  match P' with
  | Pc c' => PmulC P c'
  | Pinj j' Q' => PmulI Pmul_aux Q' j' P
  | PX P' i' Q' =>
     (mkPX (Pmul_aux P P') i' P0) ++ (PmulI Pmul_aux Q' xH P)
  end.

 Definition Pmul P P' :=
  match P with
  | Pc c => PmulC P' c
  | Pinj j Q => PmulI Pmul_aux Q j P'
  | PX P i Q =>
    (mkPX (Pmul_aux P P') i P0) ++ (PmulI Pmul_aux Q xH P')
  end.
*)
 Notation "P ** P'" := (Pmul P P').

 Fixpoint Psquare (P:Pol) : Pol :=
   match P with
   | Pc c => Pc (c *! c)
   | Pinj j Q => Pinj j (Psquare Q)
   | PX P i Q =>
     let twoPQ := Pmul P (mkPinj xH (PmulC Q (cI +! cI))) in
     let Q2 := Psquare Q in
     let P2 := Psquare P in
     mkPX (mkPX P2 i P0 ++ twoPQ) i Q2
   end.

 (** Monomial **)

  Inductive Mon: Set :=
    mon0: Mon
  | zmon: positive -> Mon -> Mon
  | vmon: positive -> Mon -> Mon.

 Fixpoint Mphi(l:Env R) (M: Mon) {struct M} : R :=
  match M with
     mon0 => rI
  | zmon j M1  => Mphi (jump j l) M1
  | vmon i M1 =>
     let x := hd 0 l in
     let xi := pow_pos rmul x i in
    (Mphi (tail l) M1) * xi
  end.

 Definition mkZmon j M :=
   match M with mon0 => mon0 | _ => zmon j M end.

 Definition zmon_pred j M :=
   match j with xH => M | _ => mkZmon (Ppred j) M end.

 Definition mkVmon i M :=
   match M with
   | mon0 => vmon i mon0
   | zmon j m => vmon i (zmon_pred j m)
   | vmon i' m => vmon (i+i') m
   end.

 Fixpoint MFactor (P: Pol) (M: Mon) {struct P}: Pol * Pol :=
   match P, M with
        _, mon0 => (Pc cO, P)
   | Pc _, _    => (P, Pc cO)
   | Pinj j1 P1, zmon j2 M1 =>
      match (j1 ?= j2) Eq with
        Eq => let (R,S) := MFactor P1 M1 in
                 (mkPinj j1 R, mkPinj j1 S)
      | Lt => let (R,S) := MFactor P1 (zmon (j2 - j1) M1) in
                 (mkPinj j1 R, mkPinj j1 S)
      | Gt => (P, Pc cO)
      end
  | Pinj _ _, vmon _ _ => (P, Pc cO)
  | PX P1 i Q1, zmon j M1 =>
             let M2 := zmon_pred j M1 in
             let (R1, S1) := MFactor P1 M in
             let (R2, S2) := MFactor Q1 M2 in
               (mkPX R1 i R2, mkPX S1 i S2)
  | PX P1 i Q1, vmon j M1 =>
      match (i ?= j) Eq with
        Eq => let (R1,S1) := MFactor P1 (mkZmon xH M1) in
                 (mkPX R1 i Q1, S1)
      | Lt => let (R1,S1) := MFactor P1 (vmon (j - i) M1) in
                 (mkPX R1 i Q1, S1)
      | Gt => let (R1,S1) := MFactor P1 (mkZmon xH M1) in
                 (mkPX R1 i Q1, mkPX S1 (i-j) (Pc cO))
      end
   end.

  Definition POneSubst (P1: Pol) (M1: Mon) (P2: Pol): option Pol :=
    let (Q1,R1) := MFactor P1 M1 in
    match R1 with
     (Pc c) => if c ?=! cO then None
               else Some (Padd Q1 (Pmul P2 R1))
    | _ => Some (Padd Q1 (Pmul P2 R1))
    end.

  Fixpoint PNSubst1 (P1: Pol) (M1: Mon) (P2: Pol) (n: nat) {struct n}: Pol :=
    match POneSubst P1 M1 P2 with
     Some P3 => match n with S n1 => PNSubst1 P3 M1 P2 n1 | _ => P3 end
    | _ => P1
    end.

  Definition PNSubst (P1: Pol) (M1: Mon) (P2: Pol) (n: nat): option Pol :=
    match POneSubst P1 M1 P2 with
     Some P3 => match n with S n1 => Some (PNSubst1 P3 M1 P2 n1) | _ => None end
    | _ => None
    end.

  Fixpoint PSubstL1 (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) {struct LM1}:
     Pol :=
    match LM1 with
     cons (M1,P2) LM2 => PSubstL1 (PNSubst1 P1 M1 P2 n) LM2 n
    | _ => P1
    end.

  Fixpoint PSubstL (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) {struct LM1}: option Pol :=
    match LM1 with
     cons (M1,P2) LM2 =>
      match PNSubst P1 M1 P2 n with
        Some P3 => Some (PSubstL1 P3 LM2 n)
     |  None => PSubstL P1 LM2 n
     end
    | _ => None
    end.

  Fixpoint PNSubstL (P1: Pol) (LM1: list (Mon * Pol)) (m n: nat) {struct m}: Pol :=
    match PSubstL P1 LM1 n with
     Some P3 => match m with S m1 => PNSubstL P3 LM1 m1 n | _ => P3 end
    | _ => P1
    end.

 (** Evaluation of a polynomial towards R *)

 Fixpoint Pphi(l:Env R) (P:Pol) {struct P} : R :=
  match P with
  | Pc c => [c]
  | Pinj j Q => Pphi (jump j l) Q
  | PX P i Q =>
     let x := hd 0 l in
     let xi := pow_pos rmul x i in
    (Pphi l P) * xi + (Pphi (tail l) Q)
  end.

 Reserved Notation "P @ l " (at level 10, no associativity).
 Notation "P @ l " := (Pphi l P).
 (** Proofs *)
 Lemma ZPminus_spec : forall x y,
  match ZPminus x y with
  | Z0 => x = y
  | Zpos k => x = (y + k)%positive
  | Zneg k => y = (x + k)%positive
  end.
 Proof.
  induction x;destruct y.
  replace (ZPminus (xI x) (xI y)) with (Zdouble (ZPminus x y));trivial.
  assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite H;trivial.
  replace (ZPminus (xI x) (xO y)) with (Zdouble_plus_one (ZPminus x y));trivial.
  assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble_plus_one;rewrite H;trivial.
  apply Pplus_xI_double_minus_one.
  simpl;trivial.
  replace (ZPminus (xO x) (xI y)) with (Zdouble_minus_one (ZPminus x y));trivial.
  assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble_minus_one;rewrite H;trivial.
  apply Pplus_xI_double_minus_one.
  replace (ZPminus (xO x) (xO y)) with (Zdouble (ZPminus x y));trivial.
  assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite H;trivial.
  replace (ZPminus (xO x) xH) with (Zpos (Pdouble_minus_one x));trivial.
  rewrite <- Pplus_one_succ_l.
  rewrite Psucc_o_double_minus_one_eq_xO;trivial.
  replace (ZPminus xH (xI y)) with (Zneg (xO y));trivial.
  replace (ZPminus xH (xO y)) with (Zneg (Pdouble_minus_one y));trivial.
  rewrite <- Pplus_one_succ_l.
  rewrite Psucc_o_double_minus_one_eq_xO;trivial.
  simpl;trivial.
 Qed.

 Lemma Peq_ok : forall P P',
    (P ?== P') = true -> forall l, P@l == P'@ l.
 Proof.
  induction P;destruct P';simpl;intros;try discriminate;trivial.
  apply (morph_eq CRmorph);trivial.
  assert (H1 := Pcompare_Eq_eq p p0); destruct ((p ?= p0)%positive Eq);
   try discriminate H.
  rewrite (IHP P' H); rewrite H1;trivial;rrefl.
  assert (H1 := Pcompare_Eq_eq p p0); destruct ((p ?= p0)%positive Eq);
   try discriminate H.
  rewrite H1;trivial. clear H1.
  assert (H1 := IHP1 P'1);assert (H2 := IHP2 P'2);
   destruct (P2 ?== P'1);[destruct (P3 ?== P'2); [idtac|discriminate H]
                         |discriminate H].
  rewrite (H1 H);rewrite (H2 H);rrefl.
 Qed.

 Lemma Pphi0 : forall l, P0@l == 0.
 Proof.
  intros;simpl;apply (morph0 CRmorph).
 Qed.

Lemma env_morph : forall p e1 e2, (forall x, e1 x = e2 x) -> 
 p @ e1 = p @ e2.
Proof.
  induction p ; simpl.
  reflexivity.
  intros.
  apply IHp.
  intros.
  unfold jump.
  apply H.
  intros.
  rewrite (IHp1 e1 e2) ; auto.
  rewrite (IHp2 (tail e1) (tail e2)) ; auto.
  unfold hd. unfold nth.  rewrite H.  reflexivity.
  unfold tail.  unfold jump. intros ; apply H.
Qed.

Lemma Pjump_Pplus : forall P i j l, P @ (jump (i + j) l ) = P @ (jump j (jump i l)).
Proof.
  intros. apply env_morph. intros. rewrite <- jump_Pplus.
  rewrite Pplus_comm.
  reflexivity.
Qed.

Lemma Pjump_xO_tail : forall P p l, 
  P @ (jump (xO p) (tail l)) = P @ (jump (xI p) l).
Proof.
  intros.
  apply env_morph.
  intros.
  rewrite (@jump_simpl R (xI p)).
  rewrite (@jump_simpl R (xO p)).
  reflexivity.
Qed.

Lemma Pjump_Pdouble_minus_one : forall P p l,
  P @ (jump (Pdouble_minus_one p) (tail l)) = P @ (jump (xO p) l).
Proof.
  intros.
  apply env_morph.
  intros.
  rewrite jump_Pdouble_minus_one.
  rewrite (@jump_simpl R (xO p)).
  reflexivity.
Qed.



 Lemma Pphi1 : forall l,  P1@l == 1.
 Proof.
  intros;simpl;apply (morph1 CRmorph).
 Qed.

 Lemma mkPinj_ok : forall j l P, (mkPinj j P)@l == P@(jump j l).
 Proof.
  intros j l p;destruct p;simpl;rsimpl.
  rewrite Pjump_Pplus.
  reflexivity.
 Qed.

 Let pow_pos_Pplus :=
    pow_pos_Pplus rmul Rsth Reqe.(Rmul_ext) ARth.(ARmul_comm) ARth.(ARmul_assoc).

 Lemma mkPX_ok : forall l P i Q,
  (mkPX P i Q)@l == P@l*(pow_pos rmul (hd 0 l) i) + Q@(tail l).
 Proof.
  intros l P i Q;unfold mkPX.
  destruct P;try (simpl;rrefl).
  assert (H := morph_eq CRmorph c cO);destruct (c ?=! cO);simpl;try rrefl.
  rewrite (H (refl_equal true));rewrite (morph0 CRmorph).
  rewrite mkPinj_ok;rsimpl;simpl;rrefl.
  assert (H := @Peq_ok P3 P0);destruct (P3 ?== P0);simpl;try rrefl.
  rewrite (H (refl_equal true));trivial.
  rewrite Pphi0.  rewrite pow_pos_Pplus;rsimpl.
 Qed.


 Ltac Esimpl :=
  repeat (progress (
   match goal with
   | |- context [P0@?l] => rewrite (Pphi0 l)
   | |- context [P1@?l] => rewrite (Pphi1 l)
   | |- context [(mkPinj ?j ?P)@?l] => rewrite (mkPinj_ok j l P)
   | |- context [(mkPX ?P ?i ?Q)@?l] => rewrite (mkPX_ok l P i Q)
   | |- context [[cO]] => rewrite (morph0 CRmorph)
   | |- context [[cI]] => rewrite (morph1 CRmorph)
   | |- context [[?x +! ?y]] => rewrite ((morph_add CRmorph) x y)
   | |- context [[?x *! ?y]] => rewrite ((morph_mul CRmorph) x y)
   | |- context [[?x -! ?y]] => rewrite ((morph_sub CRmorph) x y)
   | |- context [[-! ?x]] => rewrite ((morph_opp CRmorph) x)
   end));
  rsimpl; simpl.

 Lemma PaddC_ok : forall c P l, (PaddC P c)@l == P@l + [c].
 Proof.
  induction P;simpl;intros;Esimpl;trivial.
  rewrite IHP2;rsimpl.
 Qed.

 Lemma PsubC_ok : forall c P l, (PsubC P c)@l == P@l - [c].
 Proof.
  induction P;simpl;intros.
  Esimpl.
  rewrite IHP;rsimpl.
  rewrite IHP2;rsimpl.
 Qed.

 Lemma PmulC_aux_ok : forall c P l, (PmulC_aux P c)@l == P@l * [c].
 Proof.
  induction P;simpl;intros;Esimpl;trivial.
  rewrite IHP1;rewrite IHP2;rsimpl.
  mul_push ([c]);rrefl.
 Qed.

 Lemma PmulC_ok : forall c P l, (PmulC P c)@l == P@l * [c].
 Proof.
  intros c P l; unfold PmulC.
  assert (H:= morph_eq CRmorph c cO);destruct (c ?=! cO).
  rewrite (H (refl_equal true));Esimpl.
  assert (H1:= morph_eq CRmorph c cI);destruct (c ?=! cI).
  rewrite (H1 (refl_equal true));Esimpl.
  apply PmulC_aux_ok.
 Qed.

 Lemma Popp_ok : forall P l, (--P)@l == - P@l.
 Proof.
  induction P;simpl;intros.
  Esimpl.
  apply IHP.
  rewrite IHP1;rewrite IHP2;rsimpl.
 Qed.

 Ltac Esimpl2 :=
  Esimpl;
  repeat (progress (
   match goal with
   | |- context [(PaddC ?P ?c)@?l] => rewrite (PaddC_ok c P l)
   | |- context [(PsubC ?P ?c)@?l] => rewrite (PsubC_ok c P l)
   | |- context [(PmulC ?P ?c)@?l] => rewrite (PmulC_ok c P l)
   | |- context [(--?P)@?l] => rewrite (Popp_ok P l)
   end)); Esimpl.




 Lemma Padd_ok : forall P' P l, (P ++ P')@l == P@l + P'@l.
 Proof.
  induction P';simpl;intros;Esimpl2.
  generalize P p l;clear P p l.
  induction P;simpl;intros.
  Esimpl2;apply (ARadd_comm ARth).
  assert (H := ZPminus_spec p p0);destruct (ZPminus p p0).
  rewrite H;Esimpl. rewrite IHP';rrefl.
  rewrite H;Esimpl. rewrite IHP';Esimpl.
  rewrite Pjump_Pplus. rrefl.
  rewrite H;Esimpl. rewrite IHP.
  rewrite Pjump_Pplus. rrefl.
  destruct p0;simpl.
  rewrite IHP2;simpl. rsimpl.
  rewrite Pjump_xO_tail. Esimpl.
  rewrite IHP2;simpl.
  rewrite Pjump_Pdouble_minus_one.
  rsimpl.
  rewrite IHP'.
  rsimpl.
  destruct P;simpl.
  Esimpl2;add_push [c];rrefl.
  destruct p0;simpl;Esimpl2.
  rewrite IHP'2;simpl.
  rewrite Pjump_xO_tail.
  rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));rrefl.
  rewrite IHP'2;simpl.
  rewrite Pjump_Pdouble_minus_one. rsimpl.
  add_push (P'1@l * (pow_pos rmul (hd 0 l) p));rrefl.
  rewrite IHP'2;rsimpl.
  unfold tail.
  add_push (P @ (jump 1 l));rrefl.
  assert (H := ZPminus_spec p0 p);destruct (ZPminus p0 p);Esimpl2.
  rewrite IHP'1;rewrite IHP'2;rsimpl.
  add_push (P3 @ (tail l));rewrite H;rrefl.
  rewrite IHP'1;rewrite IHP'2;simpl;Esimpl.
  rewrite H;rewrite Pplus_comm.
  rewrite pow_pos_Pplus;rsimpl.
  add_push (P3 @ (tail l));rrefl.
  assert (forall P k l,
           (PaddX Padd P'1 k P) @ l == P@l + P'1@l * pow_pos rmul (hd 0 l) k).
   induction P;simpl;intros;try apply (ARadd_comm ARth).
   destruct p2; simpl; try apply (ARadd_comm ARth).
   rewrite Pjump_xO_tail.
   apply (ARadd_comm ARth).   
   rewrite Pjump_Pdouble_minus_one.
   apply (ARadd_comm ARth).   
    assert (H1 := ZPminus_spec p2 k);destruct (ZPminus p2 k);Esimpl2.
    rewrite IHP'1;rsimpl; rewrite H1;add_push (P5 @ (tail l0));rrefl.
    rewrite IHP'1;simpl;Esimpl.
    rewrite H1;rewrite Pplus_comm.
    rewrite pow_pos_Pplus;simpl;Esimpl.
    add_push (P5 @ (tail l0));rrefl.
    rewrite IHP1;rewrite H1;rewrite Pplus_comm.
    rewrite pow_pos_Pplus;simpl;rsimpl.
    add_push (P5 @ (tail l0));rrefl.
  rewrite H0;rsimpl.
  add_push (P3 @ (tail l)).
  rewrite H;rewrite Pplus_comm.
  rewrite IHP'2;rewrite pow_pos_Pplus;rsimpl.
  add_push (P3 @ (tail l));rrefl.
 Qed.

 Lemma Psub_ok : forall P' P l, (P -- P')@l == P@l - P'@l.
 Proof.
  induction P';simpl;intros;Esimpl2;trivial.
  generalize P p l;clear P p l.
  induction P;simpl;intros.
  Esimpl2;apply (ARadd_comm ARth).
  assert (H := ZPminus_spec p p0);destruct (ZPminus p p0).
  rewrite H;Esimpl. rewrite IHP';rsimpl.
  rewrite H;Esimpl. rewrite IHP';Esimpl.
  rewrite <- Pjump_Pplus;rewrite Pplus_comm;rrefl.
  rewrite H;Esimpl. rewrite IHP.
  rewrite <- Pjump_Pplus;rewrite Pplus_comm;rrefl.
  destruct p0;simpl.
  rewrite IHP2;simpl; try   rewrite Pjump_xO_tail ; rsimpl.
  rewrite IHP2;simpl.
  rewrite Pjump_Pdouble_minus_one;rsimpl.
  unfold tail ; rsimpl.
  rewrite IHP';rsimpl.
  destruct P;simpl.
  repeat rewrite Popp_ok;Esimpl2;rsimpl;add_push [c];try rrefl.
  destruct p0;simpl;Esimpl2.
  rewrite IHP'2;simpl;rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));trivial.
  rewrite Pjump_xO_tail.
  add_push (P @ ((jump (xI p0) l)));rrefl.  
  rewrite IHP'2;simpl;rewrite Pjump_Pdouble_minus_one;rsimpl.
  add_push (- (P'1 @ l * pow_pos  rmul (hd 0 l) p));rrefl.
  unfold tail.
  rewrite IHP'2;rsimpl;add_push (P @ (jump 1 l));rrefl.
  assert (H := ZPminus_spec p0 p);destruct (ZPminus p0 p);Esimpl2.
  rewrite IHP'1; rewrite IHP'2;rsimpl.
  add_push (P3 @ (tail l));rewrite H;rrefl.
   rewrite IHP'1; rewrite IHP'2;rsimpl;simpl;Esimpl.
  rewrite H;rewrite Pplus_comm.
  rewrite pow_pos_Pplus;rsimpl.
  add_push (P3 @ (tail l));rrefl.
  assert (forall P k l,
           (PsubX Psub P'1 k P) @ l == P@l + - P'1@l * pow_pos rmul (hd 0 l) k).
   induction P;simpl;intros.
   rewrite Popp_ok;rsimpl;apply (ARadd_comm ARth);trivial.
   destruct p2;simpl; rewrite Popp_ok;rsimpl.
   rewrite Pjump_xO_tail.
   apply (ARadd_comm ARth);trivial.
   rewrite Pjump_Pdouble_minus_one.
   apply (ARadd_comm ARth);trivial.
   apply (ARadd_comm ARth);trivial.
    assert (H1 := ZPminus_spec p2 k);destruct (ZPminus p2 k);Esimpl2;rsimpl.
    rewrite IHP'1;rsimpl;add_push (P5 @ (tail l0));rewrite H1;rrefl.
    rewrite IHP'1;rewrite H1;rewrite Pplus_comm.
    rewrite pow_pos_Pplus;simpl;Esimpl.
    add_push (P5 @ (tail l0));rrefl.
    rewrite IHP1;rewrite H1;rewrite Pplus_comm.
    rewrite pow_pos_Pplus;simpl;rsimpl.
    add_push (P5 @ (tail l0));rrefl.
  rewrite H0;rsimpl.
  rewrite IHP'2;rsimpl;add_push (P3 @ (tail l)).
  rewrite H;rewrite Pplus_comm.
  rewrite pow_pos_Pplus;rsimpl.
 Qed.
(* Proof for the symmetric version *)

 Lemma PmulI_ok :
  forall P',
   (forall (P : Pol) (l : Env  R), (Pmul P P') @ l == P @ l * P' @ l) ->
   forall (P : Pol) (p : positive) (l : Env R),
    (PmulI Pmul P' p P) @ l == P @ l * P' @ (jump p l).
 Proof.
  induction P;simpl;intros.
  Esimpl2;apply (ARmul_comm ARth).
  assert (H1 := ZPminus_spec p p0);destruct (ZPminus p p0);Esimpl2.
  rewrite H1; rewrite H;rrefl.
  rewrite H1; rewrite H.
  rewrite Pjump_Pplus;simpl;rrefl.
  rewrite H1.
  rewrite Pjump_Pplus;rewrite IHP;rrefl.
  destruct p0;Esimpl2.
  rewrite IHP1;rewrite IHP2;rsimpl.
  rewrite Pjump_xO_tail.
  mul_push (pow_pos rmul (hd 0 l) p);rrefl.
  rewrite IHP1;rewrite IHP2;simpl;rsimpl.
  mul_push (pow_pos rmul (hd 0 l) p); rewrite Pjump_Pdouble_minus_one.
  rrefl.
  rewrite IHP1;simpl;rsimpl.
  mul_push (pow_pos rmul (hd 0 l) p).
  rewrite H;rrefl.
 Qed.

(*
 Lemma PmulI_ok :
  forall P',
   (forall (P : Pol) (l : list R), (Pmul_aux P P') @ l == P @ l * P' @ l) ->
   forall (P : Pol) (p : positive) (l : list R),
    (PmulI Pmul_aux P' p P) @ l == P @ l * P' @ (jump p l).
 Proof.
  induction P;simpl;intros.
  Esimpl2;apply (ARmul_comm ARth).
  assert (H1 := ZPminus_spec p p0);destruct (ZPminus p p0);Esimpl2.
  rewrite H1; rewrite H;rrefl.
  rewrite H1; rewrite H.
  rewrite Pplus_comm.
  rewrite jump_Pplus;simpl;rrefl.
  rewrite H1;rewrite Pplus_comm.
  rewrite jump_Pplus;rewrite IHP;rrefl.
  destruct p0;Esimpl2.
  rewrite IHP1;rewrite IHP2;simpl;rsimpl.
  mul_push (pow_pos rmul (hd 0 l) p);rrefl.
  rewrite IHP1;rewrite IHP2;simpl;rsimpl.
  mul_push (pow_pos rmul (hd 0 l) p); rewrite jump_Pdouble_minus_one;rrefl.
  rewrite IHP1;simpl;rsimpl.
  mul_push (pow_pos rmul (hd 0 l) p).
  rewrite H;rrefl.
 Qed.

 Lemma Pmul_aux_ok : forall P' P l,(Pmul_aux P P')@l == P@l * P'@l.
 Proof.
  induction P';simpl;intros.
  Esimpl2;trivial.
  apply PmulI_ok;trivial.
  rewrite Padd_ok;Esimpl2.
  rewrite (PmulI_ok P'2 IHP'2). rewrite IHP'1. rrefl.
 Qed.
*)

(* Proof for the symmetric version *)
 Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l.
 Proof.
  intros P P';generalize P;clear P;induction P';simpl;intros.
  apply PmulC_ok. apply PmulI_ok;trivial.
  destruct P.
  rewrite (ARmul_comm ARth);Esimpl2;Esimpl2.
  Esimpl2. rewrite IHP'1;Esimpl2.
   assert (match p0 with
           | xI j => Pinj (xO j) P ** P'2
           | xO j => Pinj (Pdouble_minus_one j) P ** P'2
           | 1 => P ** P'2
           end @ (tail l) == P @ (jump p0 l) * P'2 @ (tail l)).
   destruct p0;rewrite IHP'2;Esimpl.
   rewrite Pjump_xO_tail. reflexivity.
   rewrite Pjump_Pdouble_minus_one;Esimpl.
   rewrite H;Esimpl.
   rewrite Padd_ok; Esimpl2. rewrite Padd_ok; Esimpl2.
   repeat (rewrite IHP'1 || rewrite IHP'2);simpl.
   rewrite PmulI_ok;trivial.
   unfold tail.
   mul_push (P'1@l). simpl. mul_push (P'2 @ (jump 1 l)). Esimpl.
 Qed.

(*
Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l.
 Proof.
  destruct P;simpl;intros.
  Esimpl2;apply (ARmul_comm ARth).
  rewrite (PmulI_ok P (Pmul_aux_ok P)).
  apply (ARmul_comm ARth).
  rewrite Padd_ok; Esimpl2.
  rewrite (PmulI_ok P3 (Pmul_aux_ok P3));trivial.
  rewrite Pmul_aux_ok;mul_push (P' @ l).
  rewrite (ARmul_comm ARth (P' @ l));rrefl.
 Qed.
*)

 Lemma Psquare_ok : forall P l, (Psquare P)@l == P@l * P@l.
 Proof.
  induction P;simpl;intros;Esimpl2.
  apply IHP. rewrite Padd_ok. rewrite Pmul_ok;Esimpl2.
  rewrite IHP1;rewrite IHP2.
  mul_push (pow_pos rmul (hd 0 l) p). mul_push (P2@l).
  rrefl.
 Qed.

 Lemma Mphi_morph : forall P env env', (forall x, env x = env' x ) -> 
   Mphi env P = Mphi env' P.
 Proof.
   induction P ; simpl.
   reflexivity.
   intros.
   apply IHP.
   intros.
   unfold jump.
   apply H.
   (**)
   intros.
   replace (Mphi (tail env) P) with (Mphi (tail env') P).
   unfold hd. unfold nth.
   rewrite H.
   reflexivity.
   apply IHP.
   unfold tail,jump.
   intros. symmetry. apply H.
 Qed.

Lemma Mjump_xO_tail : forall M p l, 
  Mphi  (jump (xO p) (tail l)) M = Mphi (jump (xI p) l) M.
Proof.
  intros.
  apply Mphi_morph.
  intros.
  rewrite (@jump_simpl R (xI p)).
  rewrite (@jump_simpl R (xO p)).
  reflexivity.
Qed.

Lemma Mjump_Pdouble_minus_one : forall M p l,
  Mphi (jump (Pdouble_minus_one p) (tail l)) M = Mphi (jump (xO p) l) M.
Proof.
  intros.
  apply Mphi_morph.
  intros.
  rewrite jump_Pdouble_minus_one.
  rewrite (@jump_simpl R (xO p)).
  reflexivity.
Qed.

Lemma Mjump_Pplus : forall M i j l, Mphi (jump (i + j) l ) M = Mphi (jump j (jump i l)) M.
Proof.
  intros. apply Mphi_morph. intros. rewrite <- jump_Pplus.
  rewrite Pplus_comm.
  reflexivity.
Qed.



 Lemma mkZmon_ok: forall M j l,
   Mphi l (mkZmon j M) == Mphi l (zmon j M).
 intros M j l; case M; simpl; intros; rsimpl.
 Qed.

 Lemma zmon_pred_ok : forall M j l,
    Mphi (tail l) (zmon_pred j M) == Mphi l (zmon j M).
 Proof.
   destruct j; simpl;intros l; rsimpl.
   rewrite mkZmon_ok;rsimpl.
   simpl.
   rewrite Mjump_xO_tail.
   reflexivity.
   rewrite mkZmon_ok;simpl.
   rewrite Mjump_Pdouble_minus_one; rsimpl.
 Qed.

 Lemma mkVmon_ok : forall M i l, Mphi l (mkVmon i M) == Mphi l M*pow_pos rmul (hd 0 l) i.
 Proof.
  destruct M;simpl;intros;rsimpl.
   rewrite zmon_pred_ok;simpl;rsimpl.
  rewrite Pplus_comm;rewrite pow_pos_Pplus;rsimpl.
 Qed.


 Lemma Mphi_ok: forall P M l,
    let (Q,R) := MFactor P M in
      P@l == Q@l + (Mphi l M) * (R@l).
 Proof.
 intros P; elim P; simpl; auto; clear P.
   intros c M l; case M; simpl; auto; try intro p; try intro m;
   try rewrite (morph0 CRmorph); rsimpl.

   intros i P Hrec M l; case M; simpl; clear M.
     rewrite (morph0 CRmorph); rsimpl.
     intros j M.
     case_eq ((i ?= j) Eq); intros He; simpl.
       rewrite (Pcompare_Eq_eq _ _ He).
       generalize (Hrec M (jump j l)); case (MFactor P M);
        simpl; intros P2 Q2 H; repeat rewrite mkPinj_ok; auto.
       generalize (Hrec (zmon (j -i) M) (jump i l));
       case (MFactor P (zmon (j -i) M)); simpl.
       intros P2 Q2 H; repeat rewrite mkPinj_ok; auto.
       rewrite  <- (Pplus_minus _ _ (ZC2 _ _ He)).
       rewrite Mjump_Pplus; auto.
       rewrite (morph0 CRmorph); rsimpl.
       intros P2 m; rewrite (morph0 CRmorph); rsimpl.

   intros P2 Hrec1 i Q2 Hrec2 M l; case M; simpl; auto.
   rewrite (morph0 CRmorph); rsimpl.
   intros j M1.
     generalize (Hrec1 (zmon j M1) l);
     case (MFactor P2 (zmon j M1)).
     intros R1 S1 H1.
     generalize (Hrec2 (zmon_pred j M1) (tail l));
     case (MFactor Q2 (zmon_pred j M1)); simpl.
     intros R2 S2 H2; rewrite H1; rewrite H2.
     repeat rewrite mkPX_ok; simpl.
     rsimpl.
     apply radd_ext; rsimpl.
     rewrite (ARadd_comm ARth); rsimpl.
     apply radd_ext; rsimpl.
     rewrite (ARadd_comm ARth); rsimpl.
     rewrite zmon_pred_ok;rsimpl.
   intros j M1.
     case_eq ((i ?= j) Eq); intros He; simpl.
       rewrite (Pcompare_Eq_eq _ _ He).
       generalize (Hrec1 (mkZmon xH M1) l); case (MFactor P2 (mkZmon xH M1));
        simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto.
       rewrite H; rewrite mkPX_ok; rsimpl.
       repeat (rewrite <-(ARadd_assoc ARth)).
       apply radd_ext; rsimpl.
       rewrite (ARadd_comm ARth); rsimpl.
       apply radd_ext; rsimpl.
       repeat (rewrite <-(ARmul_assoc ARth)).
       rewrite mkZmon_ok.
       apply rmul_ext; rsimpl.
       rewrite (ARmul_comm ARth); rsimpl.
       generalize (Hrec1 (vmon (j - i) M1) l);
             case (MFactor P2 (vmon (j - i) M1));
        simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto.
       rewrite H; rsimpl; repeat rewrite mkPinj_ok; auto.
       rewrite mkPX_ok; rsimpl.
       repeat (rewrite <-(ARadd_assoc ARth)).
       apply radd_ext; rsimpl.
       rewrite (ARadd_comm ARth); rsimpl.
       apply radd_ext; rsimpl.
       repeat (rewrite <-(ARmul_assoc ARth)).
       apply rmul_ext; rsimpl.
       rewrite (ARmul_comm ARth); rsimpl.
       apply rmul_ext; rsimpl.
       rewrite <- pow_pos_Pplus.
       rewrite (Pplus_minus _ _ (ZC2 _ _ He)); rsimpl.
       generalize (Hrec1 (mkZmon 1 M1) l);
             case (MFactor P2 (mkZmon 1 M1));
        simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto.
       rewrite H; rsimpl.
       rewrite mkPX_ok; rsimpl.
       repeat (rewrite <-(ARadd_assoc ARth)).
       apply radd_ext; rsimpl.
       rewrite (ARadd_comm ARth); rsimpl.
       apply radd_ext; rsimpl.
       rewrite mkZmon_ok.
       repeat (rewrite <-(ARmul_assoc ARth)).
       apply rmul_ext; rsimpl.
       rewrite (ARmul_comm ARth); rsimpl.
       rewrite mkPX_ok; simpl; rsimpl.
       rewrite (morph0 CRmorph); rsimpl.
       repeat (rewrite <-(ARmul_assoc ARth)).
       rewrite (ARmul_comm ARth (Q3@l)); rsimpl.
       apply rmul_ext; rsimpl.
       rewrite <- pow_pos_Pplus.
       rewrite (Pplus_minus _ _ He); rsimpl.
 Qed.

(* Proof for the symmetric version *)

 Lemma POneSubst_ok: forall P1 M1 P2 P3 l,
    POneSubst P1 M1 P2 = Some P3 -> Mphi l M1 == P2@l -> P1@l == P3@l.
 Proof.
 intros P2 M1 P3 P4 l; unfold POneSubst.
 generalize (Mphi_ok P2 M1 l); case (MFactor P2 M1); simpl; auto.
 intros Q1 R1; case R1.
   intros c H; rewrite H.
   generalize (morph_eq CRmorph c cO);
        case (c ?=! cO); simpl; auto.
   intros H1 H2; rewrite H1; auto; rsimpl.
   discriminate.
   intros _ H1 H2; injection H1; intros; subst.
   rewrite H2; rsimpl.
 (* new version *)
   rewrite Padd_ok; rewrite PmulC_ok; rsimpl.
 intros i P5 H; rewrite H.
   intros HH H1; injection HH; intros; subst; rsimpl.
   rewrite Padd_ok; rewrite PmulI_ok by (intros;apply Pmul_ok). rewrite H1; rsimpl. 
 intros i P5 P6 H1 H2 H3; rewrite H1; rewrite H3.
   assert (P4 = Q1 ++ P3 ** PX i P5 P6).
   injection H2; intros; subst;trivial.
  rewrite H;rewrite Padd_ok;rewrite Pmul_ok;rsimpl.
Qed.
(*
  Lemma POneSubst_ok: forall P1 M1 P2 P3 l,
    POneSubst P1 M1 P2 = Some P3 -> Mphi l M1 == P2@l -> P1@l == P3@l.
Proof.
 intros P2 M1 P3 P4 l; unfold POneSubst.
 generalize (Mphi_ok P2 M1 l); case (MFactor P2 M1); simpl; auto.
 intros Q1 R1; case R1.
   intros c H; rewrite H.
   generalize (morph_eq CRmorph c cO);
        case (c ?=! cO); simpl; auto.
   intros H1 H2; rewrite H1; auto; rsimpl.
   discriminate.
   intros _ H1 H2; injection H1; intros; subst.
   rewrite H2; rsimpl.
  rewrite Padd_ok; rewrite Pmul_ok; rsimpl.
  intros i P5 H; rewrite H.
   intros HH H1; injection HH; intros; subst; rsimpl.
   rewrite Padd_ok; rewrite Pmul_ok. rewrite H1; rsimpl.
   intros i P5 P6 H1 H2 H3; rewrite H1; rewrite H3.
   injection H2; intros; subst; rsimpl.
   rewrite Padd_ok.
   rewrite Pmul_ok; rsimpl.
 Qed.
*)
 Lemma PNSubst1_ok: forall n P1 M1 P2 l,
    Mphi l M1 == P2@l -> P1@l == (PNSubst1 P1 M1 P2 n)@l.
 Proof.
 intros n; elim n; simpl; auto.
   intros P2 M1 P3 l H.
   generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l);
   case (POneSubst P2 M1 P3); [idtac | intros; rsimpl].
   intros P4 Hrec; rewrite (Hrec P4); auto; rsimpl.
 intros n1 Hrec P2 M1 P3 l H.
   generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l);
   case (POneSubst P2 M1 P3); [idtac | intros; rsimpl].
   intros P4 Hrec1; rewrite (Hrec1 P4); auto; rsimpl.
 Qed.

 Lemma PNSubst_ok: forall n P1 M1 P2 l P3,
    PNSubst P1 M1 P2 n = Some P3 -> Mphi l M1 == P2@l -> P1@l == P3@l.
 Proof.
 intros n P2 M1 P3 l P4; unfold PNSubst.
 generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l);
 case (POneSubst P2 M1 P3); [idtac | intros; discriminate].
 intros P5 H1; case n; try (intros; discriminate).
 intros n1 H2; injection H2; intros; subst.
 rewrite <- PNSubst1_ok; auto.
 Qed.

 Fixpoint MPcond (LM1: list (Mon * Pol)) (l: Env R) {struct LM1} : Prop :=
    match LM1 with
     cons (M1,P2) LM2 =>  (Mphi l M1 == P2@l) /\ (MPcond LM2 l)
    | _ => True
    end.

 Lemma PSubstL1_ok: forall n LM1 P1 l,
    MPcond LM1 l ->  P1@l == (PSubstL1 P1 LM1 n)@l.
 Proof.
 intros n LM1; elim LM1; simpl; auto.
   intros; rsimpl.
 intros (M2,P2) LM2 Hrec P3 l [H H1].
 rewrite <- Hrec; auto.
 apply PNSubst1_ok; auto.
 Qed.

 Lemma PSubstL_ok: forall n LM1 P1 P2 l,
   PSubstL P1 LM1 n = Some P2 -> MPcond LM1 l ->  P1@l == P2@l.
 Proof.
 intros n LM1; elim LM1; simpl; auto.
   intros; discriminate.
 intros (M2,P2) LM2 Hrec P3 P4 l.
 generalize (PNSubst_ok n P3 M2 P2); case (PNSubst P3 M2 P2 n).
   intros P5 H0 H1 [H2 H3]; injection H1; intros; subst.
   rewrite <- PSubstL1_ok; auto.
 intros l1 H [H1 H2]; auto.
 Qed.

 Lemma PNSubstL_ok: forall m n LM1 P1 l,
    MPcond LM1 l ->  P1@l == (PNSubstL P1 LM1 m n)@l.
 Proof.
 intros m; elim m; simpl; auto.
   intros n LM1 P2 l H; generalize (fun P3 => @PSubstL_ok n LM1 P2 P3 l);
     case (PSubstL P2 LM1 n); intros; rsimpl; auto.
 intros m1 Hrec n LM1 P2 l H.
 generalize (fun P3 => @PSubstL_ok n LM1 P2 P3 l);
     case (PSubstL P2 LM1 n); intros; rsimpl; auto.
 rewrite <- Hrec; auto.
 Qed.

 (** Definition of polynomial expressions *)

 Inductive PExpr : Type :=
  | PEc : C -> PExpr
  | PEX : positive -> PExpr
  | PEadd : PExpr -> PExpr -> PExpr
  | PEsub : PExpr -> PExpr -> PExpr
  | PEmul : PExpr -> PExpr -> PExpr
  | PEopp : PExpr -> PExpr
  | PEpow : PExpr -> N -> PExpr.

 (** evaluation of polynomial expressions towards R *)
 Definition mk_X j := mkPinj_pred j mkX.

 (** evaluation of polynomial expressions towards R *)

 Fixpoint PEeval (l:Env R) (pe:PExpr) {struct pe} : R :=
   match pe with
   | PEc c => phi c
   | PEX j => nth j l
   | PEadd pe1 pe2 => (PEeval l pe1) + (PEeval l pe2)
   | PEsub pe1 pe2 => (PEeval l pe1) - (PEeval l pe2)
   | PEmul pe1 pe2 => (PEeval l pe1) * (PEeval l pe2)
   | PEopp pe1 => - (PEeval l pe1)
   | PEpow pe1 n => rpow (PEeval l pe1) (Cp_phi n)
   end.

 (** Correctness proofs *)

 Lemma mkX_ok : forall p l, nth  p l == (mk_X p) @ l.
 Proof.
  destruct p;simpl;intros;Esimpl;trivial.
  rewrite nth_spec ; auto.
  unfold hd.
  rewrite <- nth_Pdouble_minus_one.
  rewrite (nth_jump (Pdouble_minus_one p) l 1).
  reflexivity.
 Qed.

 Ltac Esimpl3 :=
  repeat match goal with
  | |- context [(?P1 ++ ?P2)@?l] => rewrite (Padd_ok P2 P1 l)
  | |- context [(?P1 -- ?P2)@?l] => rewrite (Psub_ok P2 P1 l)
  end;Esimpl2;try rrefl;try apply (ARadd_comm ARth).

(* Power using the chinise algorithm *)
(*Section POWER.
  Variable subst_l : Pol -> Pol.
  Fixpoint Ppow_pos (P:Pol) (p:positive){struct p} : Pol :=
   match p with
   | xH => P
   | xO p => subst_l (Psquare (Ppow_pos P p))
   | xI p => subst_l (Pmul P (Psquare (Ppow_pos P p)))
   end.

  Definition Ppow_N P n :=
   match n with
   | N0 => P1
   | Npos p => Ppow_pos P p
   end.

  Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) ->
         forall P p, (Ppow_pos P p)@l == (pow_pos Pmul P p)@l.
  Proof.
   intros l subst_l_ok P.
   induction p;simpl;intros;try rrefl;try rewrite subst_l_ok.
   repeat rewrite Pmul_ok;rewrite Psquare_ok;rewrite IHp;rrefl.
   repeat rewrite Pmul_ok;rewrite Psquare_ok;rewrite IHp;rrefl.
  Qed.

  Lemma Ppow_N_ok : forall l,  (forall P, subst_l P@l == P@l) ->
         forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l.
  Proof.  destruct n;simpl. rrefl. apply Ppow_pos_ok. trivial.  Qed.

 End POWER. *)

Section POWER.
  Variable subst_l : Pol -> Pol.
  Fixpoint Ppow_pos (res P:Pol) (p:positive){struct p} : Pol :=
   match p with
   | xH => subst_l (Pmul res P)
   | xO p => Ppow_pos (Ppow_pos res P p) P p
   | xI p => subst_l (Pmul  (Ppow_pos (Ppow_pos res P p) P p) P)
   end.

  Definition Ppow_N P n :=
   match n with
   | N0 => P1
   | Npos p => Ppow_pos P1 P p
   end.

  Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) ->
         forall res P p, (Ppow_pos res P p)@l == res@l * (pow_pos Pmul P p)@l.
  Proof.
   intros l subst_l_ok res P p. generalize res;clear res.
   induction p;simpl;intros;try rewrite subst_l_ok; repeat rewrite Pmul_ok;repeat rewrite IHp.
   rsimpl. mul_push (P@l);rsimpl. rsimpl. rrefl.
  Qed.

  Lemma Ppow_N_ok : forall l,  (forall P, subst_l P@l == P@l) ->
         forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l.
  Proof.  destruct n;simpl. rrefl. rewrite Ppow_pos_ok. trivial. Esimpl.  auto. Qed.

 End POWER.

 (** Normalization and rewriting *)

 Section NORM_SUBST_REC.
  Variable n : nat.
  Variable lmp:list (Mon*Pol).
  Let subst_l P := PNSubstL P lmp n n.
  Let Pmul_subst P1 P2 := subst_l (Pmul P1 P2).
  Let Ppow_subst := Ppow_N subst_l.

  Fixpoint norm_aux (pe:PExpr) : Pol :=
   match pe with
   | PEc c => Pc c
   | PEX j => mk_X j
   | PEadd (PEopp pe1) pe2 => Psub (norm_aux pe2) (norm_aux pe1)
   | PEadd pe1 (PEopp pe2) =>
     Psub (norm_aux pe1) (norm_aux pe2)
   | PEadd pe1 pe2 => Padd (norm_aux  pe1) (norm_aux pe2)
   | PEsub pe1 pe2 => Psub (norm_aux pe1) (norm_aux pe2)
   | PEmul pe1 pe2 => Pmul (norm_aux pe1) (norm_aux pe2)
   | PEopp pe1 => Popp (norm_aux pe1)
   | PEpow pe1 n => Ppow_N (fun p => p) (norm_aux pe1) n
   end.

  Definition norm_subst pe := subst_l (norm_aux pe).

 (*
  Fixpoint norm_subst (pe:PExpr) : Pol :=
   match pe with
   | PEc c => Pc c
   | PEX j => subst_l (mk_X j)
   | PEadd (PEopp pe1) pe2 => Psub (norm_subst pe2) (norm_subst pe1)
   | PEadd pe1 (PEopp pe2) =>
     Psub (norm_subst pe1) (norm_subst pe2)
   | PEadd pe1 pe2 => Padd (norm_subst  pe1) (norm_subst pe2)
   | PEsub pe1 pe2 => Psub (norm_subst pe1) (norm_subst pe2)
   | PEmul pe1 pe2 => Pmul_subst (norm_subst pe1) (norm_subst pe2)
   | PEopp pe1 => Popp (norm_subst pe1)
   | PEpow pe1 n => Ppow_subst (norm_subst pe1) n
   end.

  Lemma norm_subst_spec :
     forall l pe, MPcond lmp l ->
       PEeval l pe == (norm_subst pe)@l.
  Proof.
   intros;assert (subst_l_ok:forall P, (subst_l P)@l == P@l).
      unfold subst_l;intros.
      rewrite <- PNSubstL_ok;trivial. rrefl.
   assert (Pms_ok:forall P1 P2, (Pmul_subst P1 P2)@l == P1@l*P2@l).
    intros;unfold Pmul_subst;rewrite subst_l_ok;rewrite Pmul_ok;rrefl.
   induction pe;simpl;Esimpl3.
   rewrite subst_l_ok;apply mkX_ok.
   rewrite IHpe1;rewrite IHpe2;destruct pe1;destruct pe2;Esimpl3.
   rewrite IHpe1;rewrite IHpe2;rrefl.
   rewrite Pms_ok;rewrite IHpe1;rewrite IHpe2;rrefl.
   rewrite IHpe;rrefl.
   unfold Ppow_subst. rewrite Ppow_N_ok. trivial.
   rewrite pow_th.(rpow_pow_N). destruct n0;Esimpl3.
   induction p;simpl;try rewrite IHp;try rewrite IHpe;repeat rewrite Pms_ok;
      repeat rewrite Pmul_ok;rrefl.
  Qed.
*)
 Lemma norm_aux_spec :
     forall l pe, (*MPcond lmp l ->*)
       PEeval l pe == (norm_aux pe)@l.
  Proof.
   intros.
   induction pe;simpl;Esimpl3.
   apply mkX_ok.
   rewrite IHpe1;rewrite IHpe2;destruct pe1;destruct pe2;Esimpl3. 
   rewrite IHpe1;rewrite IHpe2;rrefl.
   rewrite IHpe1;rewrite IHpe2. rewrite Pmul_ok. rrefl.
   rewrite IHpe;rrefl.
   rewrite Ppow_N_ok by reflexivity. 
   rewrite pow_th.(rpow_pow_N). destruct n0;Esimpl3.
   induction p;simpl;try rewrite IHp;try rewrite IHpe;repeat rewrite Pms_ok; 
      repeat rewrite Pmul_ok;rrefl.
  Qed.


 End NORM_SUBST_REC.


End MakeRingPol.