1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* F. Besson: to evaluate polynomials, the original code is using a list.
For big polynomials, this is inefficient -- linear access.
I have modified the code to use binary trees -- logarithmic access. *)
Set Implicit Arguments.
Require Import Setoid Morphisms Env BinPos BinNat BinInt.
Require Export Ring_theory.
Local Open Scope positive_scope.
Import RingSyntax.
Section MakeRingPol.
(* Ring elements *)
Variable R:Type.
Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R->R).
Variable req : R -> R -> Prop.
(* Ring properties *)
Variable Rsth : Equivalence req.
Variable Reqe : ring_eq_ext radd rmul ropp req.
Variable ARth : almost_ring_theory rO rI radd rmul rsub ropp req.
(* Coefficients *)
Variable C: Type.
Variable (cO cI: C) (cadd cmul csub : C->C->C) (copp : C->C).
Variable ceqb : C->C->bool.
Variable phi : C -> R.
Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req
cO cI cadd cmul csub copp ceqb phi.
(* Power coefficients *)
Variable Cpow : Type.
Variable Cp_phi : N -> Cpow.
Variable rpow : R -> Cpow -> R.
Variable pow_th : power_theory rI rmul req Cp_phi rpow.
(* R notations *)
Notation "0" := rO. Notation "1" := rI.
Infix "+" := radd. Infix "*" := rmul.
Infix "-" := rsub. Notation "- x" := (ropp x).
Infix "==" := req.
Infix "^" := (pow_pos rmul).
(* C notations *)
Infix "+!" := cadd. Infix "*!" := cmul.
Infix "-! " := csub. Notation "-! x" := (copp x).
Infix "?=!" := ceqb. Notation "[ x ]" := (phi x).
(* Useful tactics *)
Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed.
Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed.
Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed.
Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed.
Ltac rsimpl := gen_srewrite Rsth Reqe ARth.
Ltac add_push := gen_add_push radd Rsth Reqe ARth.
Ltac mul_push := gen_mul_push rmul Rsth Reqe ARth.
Ltac add_permut_rec t :=
match t with
| ?x + ?y => add_permut_rec y || add_permut_rec x
| _ => add_push t; apply (Radd_ext Reqe); [|reflexivity]
end.
Ltac add_permut :=
repeat (reflexivity ||
match goal with |- ?t == _ => add_permut_rec t end).
Ltac mul_permut_rec t :=
match t with
| ?x * ?y => mul_permut_rec y || mul_permut_rec x
| _ => mul_push t; apply (Rmul_ext Reqe); [|reflexivity]
end.
Ltac mul_permut :=
repeat (reflexivity ||
match goal with |- ?t == _ => mul_permut_rec t end).
(* Definition of multivariable polynomials with coefficients in C :
Type [Pol] represents [X1 ... Xn].
The representation is Horner's where a [n] variable polynomial
(C[X1..Xn]) is seen as a polynomial on [X1] which coefficients
are polynomials with [n-1] variables (C[X2..Xn]).
There are several optimisations to make the repr compacter:
- [Pc c] is the constant polynomial of value c
== c*X1^0*..*Xn^0
- [Pinj j Q] is a polynomial constant w.r.t the [j] first variables.
variable indices are shifted of j in Q.
== X1^0 *..* Xj^0 * Q{X1 <- Xj+1;..; Xn-j <- Xn}
- [PX P i Q] is an optimised Horner form of P*X^i + Q
with P not the null polynomial
== P * X1^i + Q{X1 <- X2; ..; Xn-1 <- Xn}
In addition:
- polynomials of the form (PX (PX P i (Pc 0)) j Q) are forbidden
since they can be represented by the simpler form (PX P (i+j) Q)
- (Pinj i (Pinj j P)) is (Pinj (i+j) P)
- (Pinj i (Pc c)) is (Pc c)
*)
Inductive Pol : Type :=
| Pc : C -> Pol
| Pinj : positive -> Pol -> Pol
| PX : Pol -> positive -> Pol -> Pol.
Definition P0 := Pc cO.
Definition P1 := Pc cI.
Fixpoint Peq (P P' : Pol) {struct P'} : bool :=
match P, P' with
| Pc c, Pc c' => c ?=! c'
| Pinj j Q, Pinj j' Q' =>
match j ?= j' with
| Eq => Peq Q Q'
| _ => false
end
| PX P i Q, PX P' i' Q' =>
match i ?= i' with
| Eq => if Peq P P' then Peq Q Q' else false
| _ => false
end
| _, _ => false
end.
Infix "?==" := Peq.
Definition mkPinj j P :=
match P with
| Pc _ => P
| Pinj j' Q => Pinj (j + j') Q
| _ => Pinj j P
end.
Definition mkPinj_pred j P:=
match j with
| xH => P
| xO j => Pinj (Pos.pred_double j) P
| xI j => Pinj (xO j) P
end.
Definition mkPX P i Q :=
match P with
| Pc c => if c ?=! cO then mkPinj xH Q else PX P i Q
| Pinj _ _ => PX P i Q
| PX P' i' Q' => if Q' ?== P0 then PX P' (i' + i) Q else PX P i Q
end.
Definition mkXi i := PX P1 i P0.
Definition mkX := mkXi 1.
(** Opposite of addition *)
Fixpoint Popp (P:Pol) : Pol :=
match P with
| Pc c => Pc (-! c)
| Pinj j Q => Pinj j (Popp Q)
| PX P i Q => PX (Popp P) i (Popp Q)
end.
Notation "-- P" := (Popp P).
(** Addition et subtraction *)
Fixpoint PaddC (P:Pol) (c:C) : Pol :=
match P with
| Pc c1 => Pc (c1 +! c)
| Pinj j Q => Pinj j (PaddC Q c)
| PX P i Q => PX P i (PaddC Q c)
end.
Fixpoint PsubC (P:Pol) (c:C) : Pol :=
match P with
| Pc c1 => Pc (c1 -! c)
| Pinj j Q => Pinj j (PsubC Q c)
| PX P i Q => PX P i (PsubC Q c)
end.
Section PopI.
Variable Pop : Pol -> Pol -> Pol.
Variable Q : Pol.
Fixpoint PaddI (j:positive) (P:Pol) : Pol :=
match P with
| Pc c => mkPinj j (PaddC Q c)
| Pinj j' Q' =>
match Z.pos_sub j' j with
| Zpos k => mkPinj j (Pop (Pinj k Q') Q)
| Z0 => mkPinj j (Pop Q' Q)
| Zneg k => mkPinj j' (PaddI k Q')
end
| PX P i Q' =>
match j with
| xH => PX P i (Pop Q' Q)
| xO j => PX P i (PaddI (Pos.pred_double j) Q')
| xI j => PX P i (PaddI (xO j) Q')
end
end.
Fixpoint PsubI (j:positive) (P:Pol) : Pol :=
match P with
| Pc c => mkPinj j (PaddC (--Q) c)
| Pinj j' Q' =>
match Z.pos_sub j' j with
| Zpos k => mkPinj j (Pop (Pinj k Q') Q)
| Z0 => mkPinj j (Pop Q' Q)
| Zneg k => mkPinj j' (PsubI k Q')
end
| PX P i Q' =>
match j with
| xH => PX P i (Pop Q' Q)
| xO j => PX P i (PsubI (Pos.pred_double j) Q')
| xI j => PX P i (PsubI (xO j) Q')
end
end.
Variable P' : Pol.
Fixpoint PaddX (i':positive) (P:Pol) : Pol :=
match P with
| Pc c => PX P' i' P
| Pinj j Q' =>
match j with
| xH => PX P' i' Q'
| xO j => PX P' i' (Pinj (Pos.pred_double j) Q')
| xI j => PX P' i' (Pinj (xO j) Q')
end
| PX P i Q' =>
match Z.pos_sub i i' with
| Zpos k => mkPX (Pop (PX P k P0) P') i' Q'
| Z0 => mkPX (Pop P P') i Q'
| Zneg k => mkPX (PaddX k P) i Q'
end
end.
Fixpoint PsubX (i':positive) (P:Pol) : Pol :=
match P with
| Pc c => PX (--P') i' P
| Pinj j Q' =>
match j with
| xH => PX (--P') i' Q'
| xO j => PX (--P') i' (Pinj (Pos.pred_double j) Q')
| xI j => PX (--P') i' (Pinj (xO j) Q')
end
| PX P i Q' =>
match Z.pos_sub i i' with
| Zpos k => mkPX (Pop (PX P k P0) P') i' Q'
| Z0 => mkPX (Pop P P') i Q'
| Zneg k => mkPX (PsubX k P) i Q'
end
end.
End PopI.
Fixpoint Padd (P P': Pol) {struct P'} : Pol :=
match P' with
| Pc c' => PaddC P c'
| Pinj j' Q' => PaddI Padd Q' j' P
| PX P' i' Q' =>
match P with
| Pc c => PX P' i' (PaddC Q' c)
| Pinj j Q =>
match j with
| xH => PX P' i' (Padd Q Q')
| xO j => PX P' i' (Padd (Pinj (Pos.pred_double j) Q) Q')
| xI j => PX P' i' (Padd (Pinj (xO j) Q) Q')
end
| PX P i Q =>
match Z.pos_sub i i' with
| Zpos k => mkPX (Padd (PX P k P0) P') i' (Padd Q Q')
| Z0 => mkPX (Padd P P') i (Padd Q Q')
| Zneg k => mkPX (PaddX Padd P' k P) i (Padd Q Q')
end
end
end.
Infix "++" := Padd.
Fixpoint Psub (P P': Pol) {struct P'} : Pol :=
match P' with
| Pc c' => PsubC P c'
| Pinj j' Q' => PsubI Psub Q' j' P
| PX P' i' Q' =>
match P with
| Pc c => PX (--P') i' (*(--(PsubC Q' c))*) (PaddC (--Q') c)
| Pinj j Q =>
match j with
| xH => PX (--P') i' (Psub Q Q')
| xO j => PX (--P') i' (Psub (Pinj (Pos.pred_double j) Q) Q')
| xI j => PX (--P') i' (Psub (Pinj (xO j) Q) Q')
end
| PX P i Q =>
match Z.pos_sub i i' with
| Zpos k => mkPX (Psub (PX P k P0) P') i' (Psub Q Q')
| Z0 => mkPX (Psub P P') i (Psub Q Q')
| Zneg k => mkPX (PsubX Psub P' k P) i (Psub Q Q')
end
end
end.
Infix "--" := Psub.
(** Multiplication *)
Fixpoint PmulC_aux (P:Pol) (c:C) : Pol :=
match P with
| Pc c' => Pc (c' *! c)
| Pinj j Q => mkPinj j (PmulC_aux Q c)
| PX P i Q => mkPX (PmulC_aux P c) i (PmulC_aux Q c)
end.
Definition PmulC P c :=
if c ?=! cO then P0 else
if c ?=! cI then P else PmulC_aux P c.
Section PmulI.
Variable Pmul : Pol -> Pol -> Pol.
Variable Q : Pol.
Fixpoint PmulI (j:positive) (P:Pol) : Pol :=
match P with
| Pc c => mkPinj j (PmulC Q c)
| Pinj j' Q' =>
match Z.pos_sub j' j with
| Zpos k => mkPinj j (Pmul (Pinj k Q') Q)
| Z0 => mkPinj j (Pmul Q' Q)
| Zneg k => mkPinj j' (PmulI k Q')
end
| PX P' i' Q' =>
match j with
| xH => mkPX (PmulI xH P') i' (Pmul Q' Q)
| xO j' => mkPX (PmulI j P') i' (PmulI (Pos.pred_double j') Q')
| xI j' => mkPX (PmulI j P') i' (PmulI (xO j') Q')
end
end.
End PmulI.
Fixpoint Pmul (P P'' : Pol) {struct P''} : Pol :=
match P'' with
| Pc c => PmulC P c
| Pinj j' Q' => PmulI Pmul Q' j' P
| PX P' i' Q' =>
match P with
| Pc c => PmulC P'' c
| Pinj j Q =>
let QQ' :=
match j with
| xH => Pmul Q Q'
| xO j => Pmul (Pinj (Pos.pred_double j) Q) Q'
| xI j => Pmul (Pinj (xO j) Q) Q'
end in
mkPX (Pmul P P') i' QQ'
| PX P i Q=>
let QQ' := Pmul Q Q' in
let PQ' := PmulI Pmul Q' xH P in
let QP' := Pmul (mkPinj xH Q) P' in
let PP' := Pmul P P' in
(mkPX (mkPX PP' i P0 ++ QP') i' P0) ++ mkPX PQ' i QQ'
end
end.
Infix "**" := Pmul.
Fixpoint Psquare (P:Pol) : Pol :=
match P with
| Pc c => Pc (c *! c)
| Pinj j Q => Pinj j (Psquare Q)
| PX P i Q =>
let twoPQ := Pmul P (mkPinj xH (PmulC Q (cI +! cI))) in
let Q2 := Psquare Q in
let P2 := Psquare P in
mkPX (mkPX P2 i P0 ++ twoPQ) i Q2
end.
(** Monomial **)
(** A monomial is X1^k1...Xi^ki. Its representation
is a simplified version of the polynomial representation:
- [mon0] correspond to the polynom [P1].
- [(zmon j M)] corresponds to [(Pinj j ...)],
i.e. skip j variable indices.
- [(vmon i M)] is X^i*M with X the current variable,
its corresponds to (PX P1 i ...)]
*)
Inductive Mon: Set :=
| mon0: Mon
| zmon: positive -> Mon -> Mon
| vmon: positive -> Mon -> Mon.
Definition mkZmon j M :=
match M with mon0 => mon0 | _ => zmon j M end.
Definition zmon_pred j M :=
match j with xH => M | _ => mkZmon (Pos.pred j) M end.
Definition mkVmon i M :=
match M with
| mon0 => vmon i mon0
| zmon j m => vmon i (zmon_pred j m)
| vmon i' m => vmon (i+i') m
end.
Fixpoint MFactor (P: Pol) (M: Mon) : Pol * Pol :=
match P, M with
_, mon0 => (Pc cO, P)
| Pc _, _ => (P, Pc cO)
| Pinj j1 P1, zmon j2 M1 =>
match (j1 ?= j2) with
Eq => let (R,S) := MFactor P1 M1 in
(mkPinj j1 R, mkPinj j1 S)
| Lt => let (R,S) := MFactor P1 (zmon (j2 - j1) M1) in
(mkPinj j1 R, mkPinj j1 S)
| Gt => (P, Pc cO)
end
| Pinj _ _, vmon _ _ => (P, Pc cO)
| PX P1 i Q1, zmon j M1 =>
let M2 := zmon_pred j M1 in
let (R1, S1) := MFactor P1 M in
let (R2, S2) := MFactor Q1 M2 in
(mkPX R1 i R2, mkPX S1 i S2)
| PX P1 i Q1, vmon j M1 =>
match (i ?= j) with
Eq => let (R1,S1) := MFactor P1 (mkZmon xH M1) in
(mkPX R1 i Q1, S1)
| Lt => let (R1,S1) := MFactor P1 (vmon (j - i) M1) in
(mkPX R1 i Q1, S1)
| Gt => let (R1,S1) := MFactor P1 (mkZmon xH M1) in
(mkPX R1 i Q1, mkPX S1 (i-j) (Pc cO))
end
end.
Definition POneSubst (P1: Pol) (M1: Mon) (P2: Pol): option Pol :=
let (Q1,R1) := MFactor P1 M1 in
match R1 with
(Pc c) => if c ?=! cO then None
else Some (Padd Q1 (Pmul P2 R1))
| _ => Some (Padd Q1 (Pmul P2 R1))
end.
Fixpoint PNSubst1 (P1: Pol) (M1: Mon) (P2: Pol) (n: nat) : Pol :=
match POneSubst P1 M1 P2 with
Some P3 => match n with S n1 => PNSubst1 P3 M1 P2 n1 | _ => P3 end
| _ => P1
end.
Definition PNSubst (P1: Pol) (M1: Mon) (P2: Pol) (n: nat): option Pol :=
match POneSubst P1 M1 P2 with
Some P3 => match n with S n1 => Some (PNSubst1 P3 M1 P2 n1) | _ => None end
| _ => None
end.
Fixpoint PSubstL1 (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) : Pol :=
match LM1 with
cons (M1,P2) LM2 => PSubstL1 (PNSubst1 P1 M1 P2 n) LM2 n
| _ => P1
end.
Fixpoint PSubstL (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) : option Pol :=
match LM1 with
cons (M1,P2) LM2 =>
match PNSubst P1 M1 P2 n with
Some P3 => Some (PSubstL1 P3 LM2 n)
| None => PSubstL P1 LM2 n
end
| _ => None
end.
Fixpoint PNSubstL (P1: Pol) (LM1: list (Mon * Pol)) (m n: nat) : Pol :=
match PSubstL P1 LM1 n with
Some P3 => match m with S m1 => PNSubstL P3 LM1 m1 n | _ => P3 end
| _ => P1
end.
(** Evaluation of a polynomial towards R *)
Fixpoint Pphi(l:Env R) (P:Pol) : R :=
match P with
| Pc c => [c]
| Pinj j Q => Pphi (jump j l) Q
| PX P i Q => Pphi l P * (hd l) ^ i + Pphi (tail l) Q
end.
Reserved Notation "P @ l " (at level 10, no associativity).
Notation "P @ l " := (Pphi l P).
(** Evaluation of a monomial towards R *)
Fixpoint Mphi(l:Env R) (M: Mon) : R :=
match M with
| mon0 => rI
| zmon j M1 => Mphi (jump j l) M1
| vmon i M1 => Mphi (tail l) M1 * (hd l) ^ i
end.
Notation "M @@ l" := (Mphi l M) (at level 10, no associativity).
(** Proofs *)
Ltac destr_pos_sub :=
match goal with |- context [Z.pos_sub ?x ?y] =>
generalize (Z.pos_sub_discr x y); destruct (Z.pos_sub x y)
end.
Lemma Peq_ok P P' : (P ?== P') = true -> forall l, P@l == P'@ l.
Proof.
revert P';induction P;destruct P';simpl; intros H l; try easy.
- now apply (morph_eq CRmorph).
- destruct (Pos.compare_spec p p0); [ subst | easy | easy ].
now rewrite IHP.
- specialize (IHP1 P'1); specialize (IHP2 P'2).
destruct (Pos.compare_spec p p0); [ subst | easy | easy ].
destruct (P2 ?== P'1); [|easy].
rewrite H in *.
now rewrite IHP1, IHP2.
Qed.
Lemma Peq_spec P P' :
BoolSpec (forall l, P@l == P'@l) True (P ?== P').
Proof.
generalize (Peq_ok P P'). destruct (P ?== P'); auto.
Qed.
Lemma Pphi0 l : P0@l == 0.
Proof.
simpl;apply (morph0 CRmorph).
Qed.
Lemma Pphi1 l : P1@l == 1.
Proof.
simpl;apply (morph1 CRmorph).
Qed.
Lemma env_morph p e1 e2 :
(forall x, e1 x = e2 x) -> p @ e1 = p @ e2.
Proof.
revert e1 e2. induction p ; simpl.
- reflexivity.
- intros e1 e2 EQ. apply IHp. intros. apply EQ.
- intros e1 e2 EQ. f_equal; [f_equal|].
+ now apply IHp1.
+ f_equal. apply EQ.
+ apply IHp2. intros; apply EQ.
Qed.
Lemma Pjump_add P i j l :
P @ (jump (i + j) l) = P @ (jump j (jump i l)).
Proof.
apply env_morph. intros. rewrite <- jump_add. f_equal.
apply Pos.add_comm.
Qed.
Lemma Pjump_xO_tail P p l :
P @ (jump (xO p) (tail l)) = P @ (jump (xI p) l).
Proof.
apply env_morph. intros. now jump_simpl.
Qed.
Lemma Pjump_pred_double P p l :
P @ (jump (Pos.pred_double p) (tail l)) = P @ (jump (xO p) l).
Proof.
apply env_morph. intros.
rewrite jump_pred_double. now jump_simpl.
Qed.
Lemma mkPinj_ok j l P : (mkPinj j P)@l == P@(jump j l).
Proof.
destruct P;simpl;rsimpl.
now rewrite Pjump_add.
Qed.
Lemma pow_pos_add x i j : x^(j + i) == x^i * x^j.
Proof.
rewrite Pos.add_comm.
apply (pow_pos_add Rsth Reqe.(Rmul_ext) ARth.(ARmul_assoc)).
Qed.
Lemma ceqb_spec c c' : BoolSpec ([c] == [c']) True (c ?=! c').
Proof.
generalize (morph_eq CRmorph c c').
destruct (c ?=! c'); auto.
Qed.
Lemma mkPX_ok l P i Q :
(mkPX P i Q)@l == P@l * (hd l)^i + Q@(tail l).
Proof.
unfold mkPX. destruct P.
- case ceqb_spec; intros H; simpl; try reflexivity.
rewrite H, (morph0 CRmorph), mkPinj_ok; rsimpl.
- reflexivity.
- case Peq_spec; intros H; simpl; try reflexivity.
rewrite H, Pphi0, Pos.add_comm, pow_pos_add; rsimpl.
Qed.
Hint Rewrite
Pphi0
Pphi1
mkPinj_ok
mkPX_ok
(morph0 CRmorph)
(morph1 CRmorph)
(morph0 CRmorph)
(morph_add CRmorph)
(morph_mul CRmorph)
(morph_sub CRmorph)
(morph_opp CRmorph)
: Esimpl.
(* Quicker than autorewrite with Esimpl :-) *)
Ltac Esimpl := try rewrite_db Esimpl; rsimpl; simpl.
Lemma PaddC_ok c P l : (PaddC P c)@l == P@l + [c].
Proof.
revert l;induction P;simpl;intros;Esimpl;trivial.
rewrite IHP2;rsimpl.
Qed.
Lemma PsubC_ok c P l : (PsubC P c)@l == P@l - [c].
Proof.
revert l;induction P;simpl;intros.
- Esimpl.
- rewrite IHP;rsimpl.
- rewrite IHP2;rsimpl.
Qed.
Lemma PmulC_aux_ok c P l : (PmulC_aux P c)@l == P@l * [c].
Proof.
revert l;induction P;simpl;intros;Esimpl;trivial.
rewrite IHP1, IHP2;rsimpl. add_permut. mul_permut.
Qed.
Lemma PmulC_ok c P l : (PmulC P c)@l == P@l * [c].
Proof.
unfold PmulC.
case ceqb_spec; intros H.
- rewrite H; Esimpl.
- case ceqb_spec; intros H'.
+ rewrite H'; Esimpl.
+ apply PmulC_aux_ok.
Qed.
Lemma Popp_ok P l : (--P)@l == - P@l.
Proof.
revert l;induction P;simpl;intros.
- Esimpl.
- apply IHP.
- rewrite IHP1, IHP2;rsimpl.
Qed.
Hint Rewrite PaddC_ok PsubC_ok PmulC_ok Popp_ok : Esimpl.
Lemma PaddX_ok P' P k l :
(forall P l, (P++P')@l == P@l + P'@l) ->
(PaddX Padd P' k P) @ l == P@l + P'@l * (hd l)^k.
Proof.
intros IHP'.
revert k l. induction P;simpl;intros.
- add_permut.
- destruct p; simpl;
rewrite ?Pjump_xO_tail, ?Pjump_pred_double; add_permut.
- destr_pos_sub; intros ->;Esimpl.
+ rewrite IHP';rsimpl. add_permut.
+ rewrite IHP', pow_pos_add;simpl;Esimpl. add_permut.
+ rewrite IHP1, pow_pos_add;rsimpl. add_permut.
Qed.
Lemma Padd_ok P' P l : (P ++ P')@l == P@l + P'@l.
Proof.
revert P l; induction P';simpl;intros;Esimpl.
- revert p l; induction P;simpl;intros.
+ Esimpl; add_permut.
+ destr_pos_sub; intros ->;Esimpl.
* now rewrite IHP'.
* rewrite IHP';Esimpl. now rewrite Pjump_add.
* rewrite IHP. now rewrite Pjump_add.
+ destruct p0;simpl.
* rewrite IHP2;simpl. rsimpl. rewrite Pjump_xO_tail. Esimpl.
* rewrite IHP2;simpl. rewrite Pjump_pred_double. rsimpl.
* rewrite IHP'. rsimpl.
- destruct P;simpl.
+ Esimpl. add_permut.
+ destruct p0;simpl;Esimpl; rewrite IHP'2; simpl.
* rewrite Pjump_xO_tail. rsimpl. add_permut.
* rewrite Pjump_pred_double. rsimpl. add_permut.
* rsimpl. unfold tail. add_permut.
+ destr_pos_sub; intros ->; Esimpl.
* rewrite IHP'1, IHP'2;rsimpl. add_permut.
* rewrite IHP'1, IHP'2;simpl;Esimpl.
rewrite pow_pos_add;rsimpl. add_permut.
* rewrite PaddX_ok by trivial; rsimpl.
rewrite IHP'2, pow_pos_add; rsimpl. add_permut.
Qed.
Lemma PsubX_ok P' P k l :
(forall P l, (P--P')@l == P@l - P'@l) ->
(PsubX Psub P' k P) @ l == P@l - P'@l * (hd l)^k.
Proof.
intros IHP'.
revert k l. induction P;simpl;intros.
- rewrite Popp_ok;rsimpl; add_permut.
- destruct p; simpl;
rewrite Popp_ok;rsimpl;
rewrite ?Pjump_xO_tail, ?Pjump_pred_double; add_permut.
- destr_pos_sub; intros ->; Esimpl.
+ rewrite IHP';rsimpl. add_permut.
+ rewrite IHP', pow_pos_add;simpl;Esimpl. add_permut.
+ rewrite IHP1, pow_pos_add;rsimpl. add_permut.
Qed.
Lemma Psub_ok P' P l : (P -- P')@l == P@l - P'@l.
Proof.
revert P l; induction P';simpl;intros;Esimpl.
- revert p l; induction P;simpl;intros.
+ Esimpl; add_permut.
+ destr_pos_sub; intros ->;Esimpl.
* rewrite IHP';rsimpl.
* rewrite IHP';Esimpl. now rewrite Pjump_add.
* rewrite IHP. now rewrite Pjump_add.
+ destruct p0;simpl.
* rewrite IHP2;simpl. rsimpl. rewrite Pjump_xO_tail. Esimpl.
* rewrite IHP2;simpl. rewrite Pjump_pred_double. rsimpl.
* rewrite IHP'. rsimpl.
- destruct P;simpl.
+ Esimpl; add_permut.
+ destruct p0;simpl;Esimpl; rewrite IHP'2; simpl.
* rewrite Pjump_xO_tail. rsimpl. add_permut.
* rewrite Pjump_pred_double. rsimpl. add_permut.
* rsimpl. unfold tail. add_permut.
+ destr_pos_sub; intros ->; Esimpl.
* rewrite IHP'1, IHP'2;rsimpl. add_permut.
* rewrite IHP'1, IHP'2;simpl;Esimpl.
rewrite pow_pos_add;rsimpl. add_permut.
* rewrite PsubX_ok by trivial;rsimpl.
rewrite IHP'2, pow_pos_add;rsimpl. add_permut.
Qed.
Lemma PmulI_ok P' :
(forall P l, (Pmul P P') @ l == P @ l * P' @ l) ->
forall P p l, (PmulI Pmul P' p P) @ l == P @ l * P' @ (jump p l).
Proof.
intros IHP'.
induction P;simpl;intros.
- Esimpl; mul_permut.
- destr_pos_sub; intros ->;Esimpl.
+ now rewrite IHP'.
+ now rewrite IHP', Pjump_add.
+ now rewrite IHP, Pjump_add.
- destruct p0;Esimpl; rewrite ?IHP1, ?IHP2; rsimpl.
+ rewrite Pjump_xO_tail. f_equiv. mul_permut.
+ rewrite Pjump_pred_double. f_equiv. mul_permut.
+ rewrite IHP'. f_equiv. mul_permut.
Qed.
Lemma Pmul_ok P P' l : (P**P')@l == P@l * P'@l.
Proof.
revert P l;induction P';simpl;intros.
- apply PmulC_ok.
- apply PmulI_ok;trivial.
- destruct P.
+ rewrite (ARmul_comm ARth). Esimpl.
+ Esimpl. rewrite IHP'1;Esimpl. f_equiv.
destruct p0;rewrite IHP'2;Esimpl.
* now rewrite Pjump_xO_tail.
* rewrite Pjump_pred_double; Esimpl.
+ rewrite Padd_ok, !mkPX_ok, Padd_ok, !mkPX_ok,
!IHP'1, !IHP'2, PmulI_ok; trivial. simpl. Esimpl.
unfold tail.
add_permut; f_equiv; mul_permut.
Qed.
Lemma Psquare_ok P l : (Psquare P)@l == P@l * P@l.
Proof.
revert l;induction P;simpl;intros;Esimpl.
- apply IHP.
- rewrite Padd_ok, Pmul_ok;Esimpl.
rewrite IHP1, IHP2.
mul_push ((hd l)^p). now mul_push (P2@l).
Qed.
Lemma Mphi_morph M e1 e2 :
(forall x, e1 x = e2 x) -> M @@ e1 = M @@ e2.
Proof.
revert e1 e2; induction M; simpl; intros e1 e2 EQ; trivial.
- apply IHM. intros; apply EQ.
- f_equal.
* apply IHM. intros; apply EQ.
* f_equal. apply EQ.
Qed.
Lemma Mjump_xO_tail M p l :
M @@ (jump (xO p) (tail l)) = M @@ (jump (xI p) l).
Proof.
apply Mphi_morph. intros. now jump_simpl.
Qed.
Lemma Mjump_pred_double M p l :
M @@ (jump (Pos.pred_double p) (tail l)) = M @@ (jump (xO p) l).
Proof.
apply Mphi_morph. intros.
rewrite jump_pred_double. now jump_simpl.
Qed.
Lemma Mjump_add M i j l :
M @@ (jump (i + j) l) = M @@ (jump j (jump i l)).
Proof.
apply Mphi_morph. intros. now rewrite <- jump_add, Pos.add_comm.
Qed.
Lemma mkZmon_ok M j l :
(mkZmon j M) @@ l == (zmon j M) @@ l.
Proof.
destruct M; simpl; rsimpl.
Qed.
Lemma zmon_pred_ok M j l :
(zmon_pred j M) @@ (tail l) == (zmon j M) @@ l.
Proof.
destruct j; simpl; rewrite ?mkZmon_ok; simpl; rsimpl.
- now rewrite Mjump_xO_tail.
- rewrite Mjump_pred_double; rsimpl.
Qed.
Lemma mkVmon_ok M i l :
(mkVmon i M)@@l == M@@l * (hd l)^i.
Proof.
destruct M;simpl;intros;rsimpl.
- rewrite zmon_pred_ok;simpl;rsimpl.
- rewrite pow_pos_add;rsimpl.
Qed.
Ltac destr_mfactor R S := match goal with
| H : context [MFactor ?P _] |- context [MFactor ?P ?M] =>
specialize (H M); destruct MFactor as (R,S)
end.
Lemma Mphi_ok P M l :
let (Q,R) := MFactor P M in
P@l == Q@l + M@@l * R@l.
Proof.
revert M l; induction P; destruct M; intros l; simpl; auto; Esimpl.
- case Pos.compare_spec; intros He; simpl.
* destr_mfactor R1 S1. now rewrite IHP, He, !mkPinj_ok.
* destr_mfactor R1 S1. rewrite IHP; simpl.
now rewrite !mkPinj_ok, <- Mjump_add, Pos.add_comm, Pos.sub_add.
* Esimpl.
- destr_mfactor R1 S1. destr_mfactor R2 S2.
rewrite IHP1, IHP2, !mkPX_ok, zmon_pred_ok; simpl; rsimpl.
add_permut.
- case Pos.compare_spec; intros He; simpl; destr_mfactor R1 S1;
rewrite ?He, IHP1, mkPX_ok, ?mkZmon_ok; simpl; rsimpl;
unfold tail; add_permut; mul_permut.
* rewrite <- pow_pos_add, Pos.add_comm, Pos.sub_add by trivial; rsimpl.
* rewrite mkPX_ok. simpl. Esimpl. mul_permut.
rewrite <- pow_pos_add, Pos.sub_add by trivial; rsimpl.
Qed.
Lemma POneSubst_ok P1 M1 P2 P3 l :
POneSubst P1 M1 P2 = Some P3 -> M1@@l == P2@l ->
P1@l == P3@l.
Proof.
unfold POneSubst.
assert (H := Mphi_ok P1). destr_mfactor R1 S1. rewrite H; clear H.
intros EQ EQ'. replace P3 with (R1 ++ P2 ** S1).
- rewrite EQ', Padd_ok, Pmul_ok; rsimpl.
- revert EQ. destruct S1; try now injection 1.
case ceqb_spec; now inversion 2.
Qed.
Lemma PNSubst1_ok n P1 M1 P2 l :
M1@@l == P2@l -> P1@l == (PNSubst1 P1 M1 P2 n)@l.
Proof.
revert P1. induction n; simpl; intros P1;
generalize (POneSubst_ok P1 M1 P2); destruct POneSubst;
intros; rewrite <- ?IHn; auto; reflexivity.
Qed.
Lemma PNSubst_ok n P1 M1 P2 l P3 :
PNSubst P1 M1 P2 n = Some P3 -> M1@@l == P2@l -> P1@l == P3@l.
Proof.
unfold PNSubst.
assert (H := POneSubst_ok P1 M1 P2); destruct POneSubst; try discriminate.
destruct n; inversion_clear 1.
intros. rewrite <- PNSubst1_ok; auto.
Qed.
Fixpoint MPcond (LM1: list (Mon * Pol)) (l: Env R) : Prop :=
match LM1 with
| cons (M1,P2) LM2 => (M1@@l == P2@l) /\ MPcond LM2 l
| _ => True
end.
Lemma PSubstL1_ok n LM1 P1 l :
MPcond LM1 l -> P1@l == (PSubstL1 P1 LM1 n)@l.
Proof.
revert P1; induction LM1 as [|(M2,P2) LM2 IH]; simpl; intros.
- reflexivity.
- rewrite <- IH by intuition. now apply PNSubst1_ok.
Qed.
Lemma PSubstL_ok n LM1 P1 P2 l :
PSubstL P1 LM1 n = Some P2 -> MPcond LM1 l -> P1@l == P2@l.
Proof.
revert P1. induction LM1 as [|(M2,P2') LM2 IH]; simpl; intros.
- discriminate.
- assert (H':=PNSubst_ok n P3 M2 P2'). destruct PNSubst.
* injection H; intros <-. rewrite <- PSubstL1_ok; intuition.
* now apply IH.
Qed.
Lemma PNSubstL_ok m n LM1 P1 l :
MPcond LM1 l -> P1@l == (PNSubstL P1 LM1 m n)@l.
Proof.
revert LM1 P1. induction m; simpl; intros;
assert (H' := PSubstL_ok n LM1 P2); destruct PSubstL;
auto; try reflexivity.
rewrite <- IHm; auto.
Qed.
(** Definition of polynomial expressions *)
Inductive PExpr : Type :=
| PEc : C -> PExpr
| PEX : positive -> PExpr
| PEadd : PExpr -> PExpr -> PExpr
| PEsub : PExpr -> PExpr -> PExpr
| PEmul : PExpr -> PExpr -> PExpr
| PEopp : PExpr -> PExpr
| PEpow : PExpr -> N -> PExpr.
(** evaluation of polynomial expressions towards R *)
Definition mk_X j := mkPinj_pred j mkX.
(** evaluation of polynomial expressions towards R *)
Fixpoint PEeval (l:Env R) (pe:PExpr) : R :=
match pe with
| PEc c => phi c
| PEX j => nth j l
| PEadd pe1 pe2 => (PEeval l pe1) + (PEeval l pe2)
| PEsub pe1 pe2 => (PEeval l pe1) - (PEeval l pe2)
| PEmul pe1 pe2 => (PEeval l pe1) * (PEeval l pe2)
| PEopp pe1 => - (PEeval l pe1)
| PEpow pe1 n => rpow (PEeval l pe1) (Cp_phi n)
end.
(** Correctness proofs *)
Lemma mkX_ok p l : nth p l == (mk_X p) @ l.
Proof.
destruct p;simpl;intros;Esimpl;trivial.
rewrite nth_spec ; auto.
unfold hd.
now rewrite <- nth_pred_double, nth_jump.
Qed.
Hint Rewrite Padd_ok Psub_ok : Esimpl.
Section POWER.
Variable subst_l : Pol -> Pol.
Fixpoint Ppow_pos (res P:Pol) (p:positive) : Pol :=
match p with
| xH => subst_l (res ** P)
| xO p => Ppow_pos (Ppow_pos res P p) P p
| xI p => subst_l ((Ppow_pos (Ppow_pos res P p) P p) ** P)
end.
Definition Ppow_N P n :=
match n with
| N0 => P1
| Npos p => Ppow_pos P1 P p
end.
Lemma Ppow_pos_ok l :
(forall P, subst_l P@l == P@l) ->
forall res P p, (Ppow_pos res P p)@l == res@l * (pow_pos Pmul P p)@l.
Proof.
intros subst_l_ok res P p. revert res.
induction p;simpl;intros; rewrite ?subst_l_ok, ?Pmul_ok, ?IHp;
mul_permut.
Qed.
Lemma Ppow_N_ok l :
(forall P, subst_l P@l == P@l) ->
forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l.
Proof.
destruct n;simpl.
- reflexivity.
- rewrite Ppow_pos_ok by trivial. Esimpl.
Qed.
End POWER.
(** Normalization and rewriting *)
Section NORM_SUBST_REC.
Variable n : nat.
Variable lmp:list (Mon*Pol).
Let subst_l P := PNSubstL P lmp n n.
Let Pmul_subst P1 P2 := subst_l (Pmul P1 P2).
Let Ppow_subst := Ppow_N subst_l.
Fixpoint norm_aux (pe:PExpr) : Pol :=
match pe with
| PEc c => Pc c
| PEX j => mk_X j
| PEadd (PEopp pe1) pe2 => Psub (norm_aux pe2) (norm_aux pe1)
| PEadd pe1 (PEopp pe2) =>
Psub (norm_aux pe1) (norm_aux pe2)
| PEadd pe1 pe2 => Padd (norm_aux pe1) (norm_aux pe2)
| PEsub pe1 pe2 => Psub (norm_aux pe1) (norm_aux pe2)
| PEmul pe1 pe2 => Pmul (norm_aux pe1) (norm_aux pe2)
| PEopp pe1 => Popp (norm_aux pe1)
| PEpow pe1 n => Ppow_N (fun p => p) (norm_aux pe1) n
end.
Definition norm_subst pe := subst_l (norm_aux pe).
(** Internally, [norm_aux] is expanded in a large number of cases.
To speed-up proofs, we use an alternative definition. *)
Definition get_PEopp pe :=
match pe with
| PEopp pe' => Some pe'
| _ => None
end.
Lemma norm_aux_PEadd pe1 pe2 :
norm_aux (PEadd pe1 pe2) =
match get_PEopp pe1, get_PEopp pe2 with
| Some pe1', _ => (norm_aux pe2) -- (norm_aux pe1')
| None, Some pe2' => (norm_aux pe1) -- (norm_aux pe2')
| None, None => (norm_aux pe1) ++ (norm_aux pe2)
end.
Proof.
simpl (norm_aux (PEadd _ _)).
destruct pe1; [ | | | | | reflexivity | ];
destruct pe2; simpl get_PEopp; reflexivity.
Qed.
Lemma norm_aux_PEopp pe :
match get_PEopp pe with
| Some pe' => norm_aux pe = -- (norm_aux pe')
| None => True
end.
Proof.
now destruct pe.
Qed.
Lemma norm_aux_spec l pe :
PEeval l pe == (norm_aux pe)@l.
Proof.
intros.
induction pe.
- reflexivity.
- apply mkX_ok.
- simpl PEeval. rewrite IHpe1, IHpe2.
assert (H1 := norm_aux_PEopp pe1).
assert (H2 := norm_aux_PEopp pe2).
rewrite norm_aux_PEadd.
do 2 destruct get_PEopp; rewrite ?H1, ?H2; Esimpl; add_permut.
- simpl. rewrite IHpe1, IHpe2. Esimpl.
- simpl. rewrite IHpe1, IHpe2. now rewrite Pmul_ok.
- simpl. rewrite IHpe. Esimpl.
- simpl. rewrite Ppow_N_ok by reflexivity.
rewrite pow_th.(rpow_pow_N). destruct n0; simpl; Esimpl.
induction p;simpl; now rewrite ?IHp, ?IHpe, ?Pms_ok, ?Pmul_ok.
Qed.
End NORM_SUBST_REC.
End MakeRingPol.
|