aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins/groebner/ideal.ml
blob: a87a9972bdc733642d25bbf648dec11826bbcced (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* 
   Nullstellensatz par calcul de base de Grobner

   On utilise une representation creuse des polynomes:
   un monome est un tableau d'exposants (un par variable), 
   avec son degre en tete.
   un polynome est une liste de (coefficient,monome).

   L'algorithme de Buchberger a proprement parler est tire du code caml 
   extrait du code Coq ecrit par L.Thery.

 *)

open Utile

(***********************************************************************
   Coefficients: polynomes recursifs
   on n'utilise pas les big_int car leur egalite n'est pas generique: on ne peut pas utiliser de tables de hash simplement.
 *)

type coef = Polynom.poly
let coef_of_int = Polynom.cf
let eq_coef = Polynom.eqP
let plus_coef =Polynom.plusP
let mult_coef = Polynom.multP
let sub_coef = Polynom.moinsP
let opp_coef = Polynom.oppP
let div_coef = Polynom.divP (* division exacte *)
let coef0 = Polynom.cf0
let coef1 = Polynom.cf1
let string_of_coef c = "["^(Polynom.string_of_P c)^"]"


let rec pgcd a b = Polynom.pgcdP a b

(*
let htblpgcd = Hashtbl.create 1000

let pgcd a b =
  try
    (let c = Hashtbl.find htblpgcd (a,b) in
    info "*";
    c)
  with _ ->
    (let c =  Polynom.pgcdP a b in
    info "-";
    Hashtbl.add htblpgcd (a,b) c;
    c)
*)

(***********************************************************************
   Monomes
   tableau d'entiers
   le premier coefficient est le degre
 *)

let hmon = Hashtbl.create 1000

type mon = int array

(* d représente le nb de variables du monome *)

(* Multiplication de monomes ayant le meme nb de variables = d *)
let mult_mon d m m' =
  let m'' = Array.create (d+1) 0 in
  for i=0 to d do
    m''.(i)<- (m.(i)+m'.(i));
  done;
  m''

(* Degré d'un monome *)
let deg m = m.(0)


(* Comparaison de monomes avec ordre du degre lexicographique = on commence par regarder la 1ere variable*)
(*let compare_mon d m m' =
  let res=ref 0 in
  let i=ref 1 in (* 1 si lexico pur 0 si degre*)
  while (!res=0) && (!i<=d) do
    res:= (compare m.(!i) m'.(!i));
    i:=!i+1;
  done;
  !res
*)

(* degre lexicographique inverse *)
let compare_mon d m m' =
  match compare m.(0) m'.(0) with
  | 0 -> (* meme degre total *)
      let res=ref 0 in
      let i=ref d in
      while (!res=0) && (!i>=1) do
	res:= - (compare m.(!i) m'.(!i));
	i:=!i-1;
      done;
      !res
  | x -> x


(* Division de monome ayant le meme nb de variables *)
let div_mon d m m' =
  let m'' = Array.create (d+1) 0 in
  for i=0 to d do
    m''.(i)<- (m.(i)-m'.(i));
  done;
  m''

let div_pol_coef p c =
  List.map (fun (a,m) -> (div_coef a c,m)) p

(* m' divise m  *)
let div_mon_test d m m' =
  let res=ref true in
  let i=ref 1 in
  while (!res) && (!i<=d) do
    res:= (m.(!i) >= m'.(!i));
    i:=succ !i;
  done;
  !res


(* Mise en place du degré total du monome *)
let set_deg d m =
  m.(0)<-0;
  for i=1 to d do
    m.(0)<-  m.(i)+m.(0);
  done;
  m


(* ppcm de monomes *)
let ppcm_mon d m m' =
  let m'' = Array.create (d+1) 0 in
  for i=1 to d do
    m''.(i)<- (max m.(i) m'.(i));
  done;
  set_deg d m''



(**********************************************************************

   Polynomes
   liste de couples (coefficient,monome) ordonnee en decroissant

 *)

type poly = (coef * mon) list

let eq_poly =
  Util.list_for_all2eq
    (fun (c1,m1) (c2,m2) -> eq_coef c1 c2 && m1=m2)

(*
   A pretty printer for polynomials, with Maple-like syntax.
 *)

open Format

let getvar lv i =
  try (List.nth lv i)
  with _ -> (List.fold_left (fun r x -> r^" "^x) "lv= " lv)
    ^" i="^(string_of_int i)

let string_of_pol zeroP hdP tlP coefterm monterm string_of_coef
    dimmon string_of_exp lvar p =

  let rec string_of_mon m coefone =
    let s=ref [] in
    for i=1 to (dimmon m) do
      (match (string_of_exp m i) with
        "0" -> ()
      | "1" -> s:= (!s) @ [(getvar !lvar (i-1))]
      | e -> s:= (!s) @ [((getvar !lvar (i-1)) ^ "^" ^ e)]);
    done;
    (match !s with
      [] -> if coefone 
      then  "1"
      else ""
    | l -> if coefone 
    then  (String.concat "*" l)
    else ( "*" ^
           (String.concat "*" l)))
  and string_of_term t start = let a = coefterm t and m = monterm t in
  match (string_of_coef a) with
    "0" -> ""
  | "1" ->(match start with
      true -> string_of_mon m true
    |false -> ( "+ "^
                (string_of_mon m true)))
  | "-1" ->( "-" ^" "^(string_of_mon m true))
  | c -> if (String.get c 0)='-'
  then ( "- "^
         (String.sub c 1 
            ((String.length c)-1))^
         (string_of_mon m false))
  else (match start with
    true -> ( c^(string_of_mon m false))
  |false -> ( "+ "^
              c^(string_of_mon m false)))
  and stringP p start = 
    if (zeroP p)
    then (if start 
    then ("0")
    else "")
    else ((string_of_term (hdP p) start)^
          " "^
          (stringP (tlP p) false))
  in 
  (stringP p true)



let print_pol zeroP hdP tlP coefterm monterm string_of_coef
    dimmon string_of_exp lvar p =

  let rec print_mon m coefone =
    let s=ref [] in
    for i=1 to (dimmon m) do
      (match (string_of_exp m i) with
        "0" -> ()
      | "1" -> s:= (!s) @ [(getvar !lvar (i-1))]
      | e -> s:= (!s) @ [((getvar !lvar (i-1)) ^ "^" ^ e)]);
    done;
    (match !s with
      [] -> if coefone 
      then print_string "1"
      else ()
    | l -> if coefone 
    then print_string (String.concat "*" l)
    else (print_string "*"; 
          print_string (String.concat "*" l)))
  and print_term t start = let a = coefterm t and m = monterm t in
  match (string_of_coef a) with
    "0" -> ()
  | "1" ->(match start with
      true -> print_mon m true
    |false -> (print_string "+ ";
               print_mon m true))
  | "-1" ->(print_string "-";print_space();print_mon m true)
  | c -> if (String.get c 0)='-'
  then (print_string "- ";
        print_string (String.sub c 1 
                        ((String.length c)-1));
        print_mon m false)
  else (match start with
    true -> (print_string c;print_mon m false)
  |false -> (print_string "+ ";
             print_string c;print_mon m false))
  and printP p start = 
    if (zeroP p)
    then (if start 
    then print_string("0")
    else ())
    else (print_term (hdP p) start;
          if start then open_hovbox 0;
          print_space();
          print_cut();
          printP (tlP p) false)
  in open_hovbox 3;
  printP p true;
  print_flush()


let name_var= ref []

let stringP = string_of_pol 
    (fun p -> match p with [] -> true | _ -> false)
    (fun p -> match p with (t::p) -> t |_ -> failwith "print_pol dans dansideal")
    (fun p -> match p with (t::p) -> p |_ -> failwith "print_pol dans dansideal")
    (fun (a,m) -> a)
    (fun (a,m) -> m)
    string_of_coef
    (fun m -> (Array.length m)-1)
    (fun m i -> (string_of_int (m.(i))))
    name_var


let stringPcut p =
  if (List.length p)>20
  then (stringP [List.hd p])^" + "^(string_of_int (List.length p))^" termes"
  else  stringP p

let rec lstringP l =
  match l with
    [] -> ""
  |p::l -> (stringP p)^("\n")^(lstringP l)

let printP = print_pol 
    (fun p -> match p with [] -> true | _ -> false)
    (fun p -> match p with (t::p) -> t |_ -> failwith "print_pol dans dansideal")
    (fun p -> match p with (t::p) -> p |_ -> failwith "print_pol dans dansideal")
    (fun (a,m) -> a)
    (fun (a,m) -> m)
    string_of_coef
    (fun m -> (Array.length m)-1)
    (fun m i -> (string_of_int (m.(i))))
    name_var


let rec lprintP l =
  match l with
    [] -> ()
  |p::l -> printP p;print_string "\n"; lprintP l


(* Operations
 *)

let zeroP = []

(* Retourne un polynome constant à d variables *)
let polconst d c =
  let m = Array.create (d+1) 0 in
  let m = set_deg d m in 
  [(c,m)]


    
(* somme de polynomes= liste de couples (int,monomes) *)
let plusP d p q =
  let rec plusP p q =
    match p with
      [] -> q
    |t::p' -> 
	match q with
	  [] -> p
	|t'::q' ->
            match compare_mon d (snd t) (snd t') with
              1 -> t::(plusP p' q)
            |(-1) -> t'::(plusP p q')
            |_ -> let c=plus_coef (fst t) (fst t') in
              match eq_coef c coef0 with
                true -> (plusP p' q')
              |false -> (c,(snd t))::(plusP p' q')
  in plusP p q


(* multiplication d'un polynome par (a,monome) *)
let mult_t_pol d a m p =
  let rec mult_t_pol p =
    match p with
      [] -> []
    |(b,m')::p -> ((mult_coef a b),(mult_mon d m m'))::(mult_t_pol p)
  in mult_t_pol p


(* Retourne un polynome de l dont le monome de tete divise m,  [] si rien *)
let rec selectdiv d m l =
  match l with
    [] -> []
  |q::r -> let m'= snd (List.hd q) in
    match (div_mon_test d m m') with
      true -> q
    |false -> selectdiv d m r


(* Retourne un polynome générateur 'i' à d variables *)
let gen d i =
  let m = Array.create (d+1) 0 in
  m.(i) <- 1;
  let m = set_deg d m in 
  [((coef_of_int 1),m)]



(* oppose d'un polynome *)
let oppP p =
  let rec oppP p =
    match p with
      [] -> []
    |(b,m')::p -> ((opp_coef b),m')::(oppP p)
  in oppP p


(* multiplication d'un polynome par un coefficient par 'a' *)
let emultP a p =
  let rec emultP p =
    match p with
      [] -> []
    |(b,m')::p -> ((mult_coef a b),m')::(emultP p)
  in emultP p


let multP d p q =
  let rec aux p =
    match p with
      [] -> []
    |(a,m)::p' -> plusP d (mult_t_pol d a m q) (aux p')
  in aux p


let puisP d p n=
  let rec puisP n =
    match n with
      0 -> [coef1, Array.create (d+1) 0]
    | 1 -> p
    |_ -> multP d p (puisP (n-1))
  in puisP n

let rec contentP p =
  match p with
  |[] -> coef1
  |[a,m] -> a
  |(a,m)::p1 -> pgcd a (contentP p1)

let contentPlist lp =
  match lp with
  |[] -> coef1
  |p::l1 -> List.fold_left (fun r q -> pgcd r (contentP q)) (contentP p) l1

(***********************************************************************
   Division de polynomes
 *)

let pgcdpos a b  = pgcd a b


let div_pol d p q a b m = 
(*  info ".";*)
  plusP d (emultP a p) (mult_t_pol d b m q)

(* si false on ne divise que le monome de tete *)
let reduire_les_queues = false

(* reste de la division de p par les polynomes de l
  rend le reste et le coefficient multiplicateur *)

let reduce2 d p l =
  let rec reduce p =
    match p with
      [] -> (coef1,[])
    |t::p' -> let (a,m)=t in
      let q = (try Hashtbl.find hmon m 
      with Not_found -> 
	let q = selectdiv d m l in
	match q with 
          t'::q' -> (Hashtbl.add hmon m q;q)
	|[] -> q) in
      match q with
	[] -> if reduire_les_queues
	then
	  let (c,r)=(reduce p') in
          (c,((mult_coef a c,m)::r))
	else (coef1,p)
      |(b,m')::q' -> 
          let c=(pgcdpos a b) in
          let a'= (div_coef b c) in
          let b'=(opp_coef (div_coef a c)) in
          let (e,r)=reduce (div_pol d p' q' a' b'
                              (div_mon d m m')) in
          (mult_coef a' e,r)
  in let (c,r) = reduce p in
  (c,r)

(* trace des divisions *)

(* liste des polynomes de depart *)
let poldep = ref [] 
let poldepcontent = ref []

(* table des coefficients des polynomes en fonction des polynomes de depart *)
let coefpoldep = Hashtbl.create 51

(* coefficient de q dans l expression de p = sum_i c_i*q_i *)
let coefpoldep_find p q =
  try (Hashtbl.find coefpoldep (p,q))
  with _ -> []

let coefpoldep_set p q c =
  Hashtbl.add coefpoldep (p,q) c

let initcoefpoldep d lp =
  poldep:=lp;
  poldepcontent:= List.map contentP (!poldep);
  List.iter
    (fun p -> coefpoldep_set p p (polconst d (coef_of_int 1)))
    lp

(* garde la trace dans coefpoldep 
   divise sans pseudodivisions *)

let reduce2_trace d p l lcp =
  (* rend (lq,r), ou r = p + sum(lq) *)
  let rec reduce p =
    match p with
      [] -> ([],[])
    |t::p' -> let (a,m)=t in
      let q =
	(try Hashtbl.find hmon m 
	with Not_found -> 
	  let q = selectdiv d m l in
	  match q with 
            t'::q' -> (Hashtbl.add hmon m q;q)
          |[] -> q) in
      match q with
	[] ->
	  if reduire_les_queues
	  then
	    let (lq,r)=(reduce p') in
            (lq,((a,m)::r))
	  else ([],p)
      |(b,m')::q' -> 
          let b'=(opp_coef (div_coef a b)) in
          let m''= div_mon d m m' in
          let p1=plusP d p' (mult_t_pol d b' m'' q') in
          let (lq,r)=reduce p1 in
          ((b',m'',q)::lq, r)
  in let (lq,r) = reduce p in
  (*info "reduce2_trace:\n";
     List.iter
     (fun (a,m,s) ->
     let x = mult_t_pol d a m s in
     info ((stringP x)^"\n"))
     lq;
     info "ok\n";*)
  (List.map2
     (fun c0 q ->
       let c =
	 List.fold_left
	   (fun x (a,m,s) ->
	     if eq_poly s q
	     then
	       plusP d x (mult_t_pol d a m (polconst d (coef_of_int 1)))
	     else x)
	   c0
	   lq in
       c)
     lcp
     !poldep,
   r)     

(***********************************************************************
   Completion
 *)
let homogeneous = ref false

let spol d p q=
  let m = snd (List.hd p) in
  let m'= snd (List.hd q) in
  let a = fst (List.hd p) in
  let b = fst (List.hd q) in
  let p'= List.tl p in
  let q'= List.tl q in
  let c=(pgcdpos a b) in
  let m''=(ppcm_mon d m m') in
  let fsp p' q' =
    plusP d
      (mult_t_pol d
	 (div_coef b c)
	 (div_mon d m'' m) p')
      (mult_t_pol d
	 (opp_coef (div_coef a c))
         (div_mon d m'' m') q') in
  let sp = fsp p' q' in
  coefpoldep_set sp p (fsp (polconst d (coef_of_int 1)) []);
  coefpoldep_set sp q (fsp [] (polconst d (coef_of_int 1)));
  sp

let etrangers d p p'=
  let m = snd (List.hd p) in
  let m'= snd (List.hd p') in
  let res=ref true in
  let i=ref 1 in
  while (!res) && (!i<=d) do
    res:= (m.(!i) = 0) || (m'.(!i)=0);
      i:=!i+1;
  done;
  !res


(* teste si le monome dominant de p'' 
   divise le ppcm des monomes dominants de p et p' *)

let div_ppcm d p p' p'' =
  let m = snd (List.hd p) in
  let m'= snd (List.hd p') in
  let m''= snd (List.hd p'') in
  let res=ref true in
  let i=ref 1 in
  while (!res) && (!i<=d) do
    res:= ((max m.(!i) m'.(!i)) >= m''.(!i));
    i:=!i+1;
  done;
  !res

(***********************************************************************
   Code extrait de la preuve de L.Thery en Coq
 *)
type 'poly cpRes =
    Keep of ('poly list)
  | DontKeep of ('poly list)

let list_rec f0 f1 =
  let rec f2 = function
      [] -> f0
    | a0::l0 -> f1 a0 l0 (f2 l0)
  in f2

let addRes i = function
    Keep h'0 -> Keep (i::h'0)
  | DontKeep h'0 -> DontKeep (i::h'0)

let slice d i a q =
  list_rec
    (match etrangers d i a with
      true -> DontKeep []
    | false -> Keep [])
    (fun b q1 rec_ren ->
      match div_ppcm d i a b with
	true ->  DontKeep (b::q1)
      | false ->
          (match div_ppcm d i b a with
            true -> rec_ren
          | false -> addRes b rec_ren)) q

let rec addS x l = l @[x]

(* ajoute les spolynomes de i avec la liste de polynomes aP, 
   a la liste q *)

let genPcPf d i aP q =
  (let rec genPc aP0 =
    match aP0 with
      [] -> (fun r -> r)
    | a::l1 -> 
	(fun l ->
          (match slice d i a l1 with
            Keep l2 -> addS (spol d i a) (genPc l2 l)
          | DontKeep l2 -> genPc l2 l))
  in genPc aP) q

let genOCPf d h' =
  list_rec [] (fun a l rec_ren ->
    genPcPf d a l rec_ren) h'

let step = ref 0

let infobuch p q =
  if !step = 0 
  then (info ("[" ^ (string_of_int (List.length p))
              ^ "," ^  (string_of_int (List.length q))
              ^ "]"))

(***********************************************************************)
(* dans lp les nouveaux sont en queue *)

let coef_courant = ref coef1
let pol_courant = ref []

let test_dans_ideal d p lp lp0 =
  let (c,r) = reduce2 d !pol_courant lp in
  info ("reste: "^(stringPcut r)^"\n");
  coef_courant:= mult_coef !coef_courant c;
  pol_courant:= r;
  if r=[]
  then (info "polynome reduit a 0\n";
	let lcp = List.map (fun q -> []) !poldep in
	let c = !coef_courant in
	let (lcq,r) = reduce2_trace d (emultP c p) lp lcp in
	info ("r: "^(stringP r)^"\n");
        let res=ref  (emultP c p) in
	List.iter2
	  (fun cq q -> res:=plusP d (!res) (multP d cq q);
	  )
	  lcq !poldep;
	info ("verif somme: "^(stringP (!res))^"\n");

	let rec aux lp =
	  match lp with
	  |[] -> []
	  |p::lp ->
	      (List.map
		 (fun q -> coefpoldep_find p q)
		 lp)::(aux lp)
	in
	let coefficient_multiplicateur = c in
	let liste_polynomes_de_depart = List.rev lp0 in
	let polynome_a_tester = p in
	let liste_des_coefficients_intermediaires =
	  (let lci = List.rev (aux (List.rev lp)) in
	  let lci = ref lci (* (List.map List.rev lci) *) in
	  List.iter (fun x -> lci := List.tl (!lci)) lp0;
	  !lci) in
	let liste_des_coefficients =
	  List.map
	    (fun cq -> emultP (coef_of_int (-1)) cq)
	    (List.rev lcq) in
	(coefficient_multiplicateur,
	 liste_polynomes_de_depart,
	 polynome_a_tester,
	 liste_des_coefficients_intermediaires,
	 liste_des_coefficients))
  else ((*info "polynome non reduit a 0\n";
	info ("\nreste: "^(stringPcut r)^"\n");*)
	(c,[],[],[],[]))
      
let choix_spol p l = l
    
let deg_hom p =
  match p with
  | [] -> -1
  | (a,m)::_ -> m.(0)

let pbuchf d pq p lp0=
  info "calcul de la base de Groebner\n";
  step:=0;
  Hashtbl.clear hmon;
  let rec pbuchf x = 
      let (lp, lpc) = x in
      infobuch lp lpc; 
(*      step:=(!step+1)mod 10;*)
      match lpc with
        [] -> test_dans_ideal d p lp lp0
      | _ ->
	  (match choix_spol !pol_courant lpc with
	  |[] -> assert false
	  |(a::lpc2) ->
	  if !homogeneous && a<>[] && deg_hom a > deg_hom !pol_courant
	  then (info "h";pbuchf (lp, lpc2))
	  else
          let (ca,a0)= reduce2 d a lp in
          match a0 with
            [] -> info "0";pbuchf (lp, lpc2)
          | _ ->
	      let a1 = emultP ca a in
	      List.iter
		(fun q ->
		  coefpoldep_set a1 q (emultP ca (coefpoldep_find a q)))
		!poldep;
	      let (lca,a0) = reduce2_trace d a1 lp
		  (List.map (fun q -> coefpoldep_find a1 q) !poldep) in
	      List.iter2 (fun c q -> coefpoldep_set a0 q c) lca !poldep;
	      info ("\nnouveau polynome: "^(stringPcut a0)^"\n");
	      let ct = coef1 (* contentP a0 *) in
	      (*info ("contenu: "^(string_of_coef ct)^"\n");*)
	      poldep:=addS a0 lp;
	      poldepcontent:=addS ct (!poldepcontent);

	      let (c1,lp1,p1,lci1,lc1)
		  = test_dans_ideal d p (addS a0 lp) lp0 in
	      if lc1<>[]
	      then (c1,lp1,p1,lci1,lc1)
	      else
                pbuchf
                  (((addS a0 lp),
                    (genPcPf d a0 lp lpc2))))
  in pbuchf pq 

let is_homogeneous p =
  match p with
  | [] -> true
  | (a,m)::p1 -> let d = m.(0) in
    List.for_all (fun (b,m') -> m'.(0)=d) p1

(* rend
   c
   lp = [pn;...;p1]
   p
   lci = [[a(n+1,n);...;a(n+1,1)];
   [a(n+2,n+1);...;a(n+2,1)];
   ...
   [a(n+m,n+m-1);...;a(n+m,1)]]
   lc = [qn+m; ... q1]

   tels que 
   c*p = sum qi*pi 
   ou pn+k = a(n+k,n+k-1)*pn+k-1 + ... + a(n+k,1)* p1
 *)

let in_ideal d lp p =
  info ("p: "^(stringPcut p)^"\n");
  info ("lp:\n"^(List.fold_left (fun r p -> r^(stringPcut p)^"\n") "" lp));
  initcoefpoldep d lp;
  coef_courant:=coef1;
  pol_courant:=p;
  homogeneous := List.for_all is_homogeneous (p::lp);
  if !homogeneous then info "polynomes homogenes\n";
  let (c1,lp1,p1,lci1,lc1) = test_dans_ideal d p lp lp in
  if lc1<>[]
  then (c1,lp1,p1,lci1,lc1)
  else pbuchf d (lp, (genOCPf d lp)) p lp