aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins/groebner/ideal.ml4
blob: eae849921967f7900b6d7135748ce8981b0a7071 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i camlp4deps: "lib/refutpat.cmo" i*)
(* NB: The above camlp4 extension adds a let* syntax for refutable patterns *)

(*
   Nullstellensatz par calcul de base de Grobner

   On utilise une representation creuse des polynomes:
   un monome est un tableau d'exposants (un par variable),
   avec son degre en tete.
   un polynome est une liste de (coefficient,monome).

   L'algorithme de Buchberger a proprement parler est tire du code caml
   extrait du code Coq ecrit par L.Thery.

 *)

open Utile

exception NotInIdeal

module type S = sig

(* Monomials *)
type mon = int array

val mult_mon : int -> mon -> mon -> mon
val deg : mon -> int
val compare_mon : int -> mon -> mon -> int
val div_mon : int -> mon -> mon -> mon
val div_mon_test : int -> mon -> mon -> bool
val ppcm_mon : int -> mon -> mon -> mon

(* Polynomials *)

type deg = int
type coef
type poly
val repr : poly -> (coef * mon) list
val polconst : deg -> coef -> poly
val zeroP : poly
val gen : deg -> int -> poly

val equal : poly -> poly -> bool
val name_var : string list ref
val getvar : string list -> int -> string
val lstringP : poly list -> string
val printP : poly -> unit
val lprintP : poly list -> unit

val div_pol_coef : poly -> coef -> poly
val plusP : deg -> poly -> poly -> poly
val mult_t_pol : deg -> coef -> mon -> poly -> poly
val selectdiv : deg -> mon -> poly list -> poly
val oppP : poly -> poly
val emultP : coef -> poly -> poly
val multP : deg -> poly -> poly -> poly
val puisP : deg -> poly -> int -> poly
val contentP : poly -> coef
val contentPlist : poly list -> coef
val pgcdpos : coef -> coef -> coef
val div_pol : deg -> poly -> poly -> coef -> coef -> mon -> poly
val reduce2 : deg -> poly -> poly list -> coef * poly

val poldepcontent : coef list ref
val coefpoldep_find : poly -> poly -> poly
val coefpoldep_set : poly -> poly -> poly -> unit
val initcoefpoldep : deg -> poly list -> unit
val reduce2_trace : deg -> poly -> poly list -> poly list -> poly list * poly
val spol : deg -> poly -> poly -> poly
val etrangers : deg -> poly -> poly -> bool
val div_ppcm : deg -> poly -> poly -> poly -> bool

val genPcPf : deg -> poly -> poly list -> poly list -> poly list
val genOCPf : deg -> poly list -> poly list

val is_homogeneous : poly -> bool

type certificate =
    { coef : coef; power : int;
      gb_comb : poly list list; last_comb : poly list }
val test_dans_ideal : deg -> poly -> poly list -> poly list ->
  poly list * poly * certificate
val in_ideal : deg -> poly list -> poly -> poly list * poly * certificate

end

(***********************************************************************
   Global options
*)
let lexico = ref false
let use_hmon = ref false

(***********************************************************************
   Functor
*)

module Make (P:Polynom.S) = struct

  type coef = P.t
  let coef0 = P.of_num (Num.Int 0)
  let coef1 = P.of_num (Num.Int 1)
  let coefm1 = P.of_num (Num.Int (-1))
  let string_of_coef c = "["^(P.to_string c)^"]"

(***********************************************************************
   Monomes
   tableau d'entiers
   le premier coefficient est le degre
 *)

type mon = int array
type deg = int
type poly = (coef * mon) list

(* d représente le nb de variables du monome *)

(* Multiplication de monomes ayant le meme nb de variables = d *)
let mult_mon d m m' =
  let m'' = Array.create (d+1) 0 in
  for i=0 to d do
    m''.(i)<- (m.(i)+m'.(i));
  done;
  m''

(* Degré d'un monome *)
let deg m = m.(0)


let compare_mon d m m' =
  if !lexico
  then (
    (* Comparaison de monomes avec ordre du degre lexicographique
       = on commence par regarder la 1ere variable*)
    let res=ref 0 in
    let i=ref 1 in (* 1 si lexico pur 0 si degre*)
    while (!res=0) && (!i<=d) do
      res:= (compare m.(!i) m'.(!i));
      i:=!i+1;
    done;
    !res)
  else (
     (* degre lexicographique inverse *)
    match compare m.(0) m'.(0) with
    | 0 -> (* meme degre total *)
	let res=ref 0 in
	let i=ref d in
	while (!res=0) && (!i>=1) do
	  res:= - (compare m.(!i) m'.(!i));
	  i:=!i-1;
	done;
	!res
    | x -> x)

(* Division de monome ayant le meme nb de variables *)
let div_mon d m m' =
  let m'' = Array.create (d+1) 0 in
  for i=0 to d do
    m''.(i)<- (m.(i)-m'.(i));
  done;
  m''

let div_pol_coef p c =
  List.map (fun (a,m) -> (P.divP a c,m)) p

(* m' divise m  *)
let div_mon_test d m m' =
  let res=ref true in
  let i=ref 1 in
  while (!res) && (!i<=d) do
    res:= (m.(!i) >= m'.(!i));
    i:=succ !i;
  done;
  !res


(* Mise en place du degré total du monome *)
let set_deg d m =
  m.(0)<-0;
  for i=1 to d do
    m.(0)<-  m.(i)+m.(0);
  done;
  m


(* ppcm de monomes *)
let ppcm_mon d m m' =
  let m'' = Array.create (d+1) 0 in
  for i=1 to d do
    m''.(i)<- (max m.(i) m'.(i));
  done;
  set_deg d m''



(**********************************************************************

   Polynomes
   liste de couples (coefficient,monome) ordonnee en decroissant

 *)


let repr p = p

let equal =
  Util.list_for_all2eq
    (fun (c1,m1) (c2,m2) -> P.equal c1 c2 && m1=m2)

let hash p =
  let c = List.map fst p in
  let m = List.map snd p in
  List.fold_left (fun h p -> h * 17 + P.hash p) (Hashtbl.hash m) c

module Hashpol = Hashtbl.Make(
  struct
    type t = poly
    let equal = equal
    let hash = hash
  end)


(*
   A pretty printer for polynomials, with Maple-like syntax.
 *)

open Format

let getvar lv i =
  try (List.nth lv i)
  with _ -> (List.fold_left (fun r x -> r^" "^x) "lv= " lv)
    ^" i="^(string_of_int i)

let string_of_pol zeroP hdP tlP coefterm monterm string_of_coef
    dimmon string_of_exp lvar p =

  let rec string_of_mon m coefone =
    let s=ref [] in
    for i=1 to (dimmon m) do
      (match (string_of_exp m i) with
        "0" -> ()
      | "1" -> s:= (!s) @ [(getvar !lvar (i-1))]
      | e -> s:= (!s) @ [((getvar !lvar (i-1)) ^ "^" ^ e)]);
    done;
    (match !s with
      [] -> if coefone
      then  "1"
      else ""
    | l -> if coefone
    then  (String.concat "*" l)
    else ( "*" ^
           (String.concat "*" l)))
  and string_of_term t start = let a = coefterm t and m = monterm t in
  match (string_of_coef a) with
    "0" -> ""
  | "1" ->(match start with
      true -> string_of_mon m true
    |false -> ( "+ "^
                (string_of_mon m true)))
  | "-1" ->( "-" ^" "^(string_of_mon m true))
  | c -> if (String.get c 0)='-'
  then ( "- "^
         (String.sub c 1
            ((String.length c)-1))^
         (string_of_mon m false))
  else (match start with
    true -> ( c^(string_of_mon m false))
  |false -> ( "+ "^
              c^(string_of_mon m false)))
  and stringP p start =
    if (zeroP p)
    then (if start
    then ("0")
    else "")
    else ((string_of_term (hdP p) start)^
          " "^
          (stringP (tlP p) false))
  in
  (stringP p true)



let print_pol zeroP hdP tlP coefterm monterm string_of_coef
    dimmon string_of_exp lvar p =

  let rec print_mon m coefone =
    let s=ref [] in
    for i=1 to (dimmon m) do
      (match (string_of_exp m i) with
        "0" -> ()
      | "1" -> s:= (!s) @ [(getvar !lvar (i-1))]
      | e -> s:= (!s) @ [((getvar !lvar (i-1)) ^ "^" ^ e)]);
    done;
    (match !s with
      [] -> if coefone
      then print_string "1"
      else ()
    | l -> if coefone
    then print_string (String.concat "*" l)
    else (print_string "*";
          print_string (String.concat "*" l)))
  and print_term t start = let a = coefterm t and m = monterm t in
  match (string_of_coef a) with
    "0" -> ()
  | "1" ->(match start with
      true -> print_mon m true
    |false -> (print_string "+ ";
               print_mon m true))
  | "-1" ->(print_string "-";print_space();print_mon m true)
  | c -> if (String.get c 0)='-'
  then (print_string "- ";
        print_string (String.sub c 1
                        ((String.length c)-1));
        print_mon m false)
  else (match start with
    true -> (print_string c;print_mon m false)
  |false -> (print_string "+ ";
             print_string c;print_mon m false))
  and printP p start =
    if (zeroP p)
    then (if start
    then print_string("0")
    else ())
    else (print_term (hdP p) start;
          if start then open_hovbox 0;
          print_space();
          print_cut();
          printP (tlP p) false)
  in open_hovbox 3;
  printP p true;
  print_flush()


let name_var= ref []

let stringP = string_of_pol
    (fun p -> match p with [] -> true | _ -> false)
    (fun p -> match p with (t::p) -> t |_ -> failwith "print_pol dans dansideal")
    (fun p -> match p with (t::p) -> p |_ -> failwith "print_pol dans dansideal")
    (fun (a,m) -> a)
    (fun (a,m) -> m)
    string_of_coef
    (fun m -> (Array.length m)-1)
    (fun m i -> (string_of_int (m.(i))))
    name_var


let stringPcut p =
  if (List.length p)>20
  then (stringP [List.hd p])^" + "^(string_of_int (List.length p))^" termes"
  else  stringP p

let rec lstringP l =
  match l with
    [] -> ""
  |p::l -> (stringP p)^("\n")^(lstringP l)

let printP = print_pol
    (fun p -> match p with [] -> true | _ -> false)
    (fun p -> match p with (t::p) -> t |_ -> failwith "print_pol dans dansideal")
    (fun p -> match p with (t::p) -> p |_ -> failwith "print_pol dans dansideal")
    (fun (a,m) -> a)
    (fun (a,m) -> m)
    string_of_coef
    (fun m -> (Array.length m)-1)
    (fun m i -> (string_of_int (m.(i))))
    name_var


let rec lprintP l =
  match l with
    [] -> ()
  |p::l -> printP p;print_string "\n"; lprintP l


(* Operations
 *)

let zeroP = []

(* Retourne un polynome constant à d variables *)
let polconst d c =
  let m = Array.create (d+1) 0 in
  let m = set_deg d m in
  [(c,m)]



(* somme de polynomes= liste de couples (int,monomes) *)
let plusP d p q =
  let rec plusP p q =
    match p with
      [] -> q
    |t::p' ->
	match q with
	  [] -> p
	|t'::q' ->
            match compare_mon d (snd t) (snd t') with
              1 -> t::(plusP p' q)
            |(-1) -> t'::(plusP p q')
            |_ -> let c=P.plusP (fst t) (fst t') in
              match P.equal c coef0 with
                true -> (plusP p' q')
              |false -> (c,(snd t))::(plusP p' q')
  in plusP p q


(* multiplication d'un polynome par (a,monome) *)
let mult_t_pol d a m p =
  let rec mult_t_pol p =
    match p with
      [] -> []
    |(b,m')::p -> ((P.multP a b),(mult_mon d m m'))::(mult_t_pol p)
  in mult_t_pol p


(* Retourne un polynome de l dont le monome de tete divise m,  [] si rien *)
let rec selectdiv d m l =
  match l with
    [] -> []
  | q::r ->
      let m'= snd (List.hd q) in
      if div_mon_test d m m' then q else selectdiv d m r


(* Retourne un polynome générateur 'i' à d variables *)
let gen d i =
  let m = Array.create (d+1) 0 in
  m.(i) <- 1;
  let m = set_deg d m in
  [(coef1,m)]



(* oppose d'un polynome *)
let oppP p =
  let rec oppP p =
    match p with
      [] -> []
    |(b,m')::p -> ((P.oppP b),m')::(oppP p)
  in oppP p


(* multiplication d'un polynome par un coefficient par 'a' *)
let emultP a p =
  let rec emultP p =
    match p with
      [] -> []
    |(b,m')::p -> ((P.multP a b),m')::(emultP p)
  in emultP p


let multP d p q =
  let rec aux p =
    match p with
      [] -> []
    |(a,m)::p' -> plusP d (mult_t_pol d a m q) (aux p')
  in aux p


let puisP d p n=
  let rec puisP n =
    match n with
      0 -> [coef1, Array.create (d+1) 0]
    | 1 -> p
    |_ -> multP d p (puisP (n-1))
  in puisP n

let pgcdpos a b  = P.pgcdP a b
let pgcd1 p q =
  if P.equal p coef1 || P.equal p coefm1 then p else P.pgcdP p q

let rec contentP p =
  match p with
  |[] -> coef1
  |[a,m] -> a
  |(a,m)::p1 -> pgcd1 a (contentP p1)

let contentPlist lp =
  match lp with
    |[] -> coef1
    |p::l1 -> List.fold_left (fun r q -> pgcd1 r (contentP q)) (contentP p) l1

(***********************************************************************
   Division de polynomes
 *)

let hmon = (Hashtbl.create 1000 : (mon,poly) Hashtbl.t)

let find_hmon m =
  if !use_hmon
  then Hashtbl.find hmon m
  else raise Not_found

let add_hmon m q =
  if !use_hmon then Hashtbl.add hmon m q

let selectdiv_cache d m l =
  try find_hmon m
  with Not_found ->
    match selectdiv d m l with
	[] -> []
      | q -> add_hmon m q; q

let div_pol d p q a b m =
(*  info ".";*)
  plusP d (emultP a p) (mult_t_pol d b m q)

(* si false on ne divise que le monome de tete *)
let reduire_les_queues = false

(* reste de la division de p par les polynomes de l
  rend le reste et le coefficient multiplicateur *)

let reduce2 d p l =
  let rec reduce p =
    match p with
      [] -> (coef1,[])
    | (a,m)::p' ->
      let q = selectdiv_cache d m l in
      (match q with
	[] ->
	  if reduire_les_queues
	  then
	    let (c,r)=(reduce p') in
            (c,((P.multP a c,m)::r))
	  else (coef1,p)
      |(b,m')::q' ->
          let c=(pgcdpos a b) in
          let a'= (P.divP b c) in
          let b'=(P.oppP (P.divP a c)) in
          let (e,r)=reduce (div_pol d p' q' a' b'
                              (div_mon d m m')) in
          (P.multP a' e,r)) in
  reduce p

(* trace des divisions *)

(* liste des polynomes de depart *)
let poldep = ref []
let poldepcontent = ref []


module HashPolPair = Hashtbl.Make
  (struct
     type t = poly * poly
     let equal (p,q) (p',q') = equal p p' && equal q q'
     let hash (p,q) =
       let c = List.map fst p @ List.map fst q in
       let m = List.map snd p @ List.map snd q in
       List.fold_left (fun h p -> h * 17 + P.hash p) (Hashtbl.hash m) c
   end)

(* table des coefficients des polynomes en fonction des polynomes de depart *)
let coefpoldep = HashPolPair.create 51

(* coefficient de q dans l expression de p = sum_i c_i*q_i *)
let coefpoldep_find p q =
  try (HashPolPair.find coefpoldep (p,q))
  with _ -> []

let coefpoldep_set p q c =
  HashPolPair.add coefpoldep (p,q) c

let initcoefpoldep d lp =
  poldep:=lp;
  poldepcontent:= List.map contentP (!poldep);
  List.iter
    (fun p -> coefpoldep_set p p (polconst d coef1))
    lp

(* garde la trace dans coefpoldep
   divise sans pseudodivisions *)

let reduce2_trace d p l lcp =
  (* rend (lq,r), ou r = p + sum(lq) *)
  let rec reduce p =
    match p with
      [] -> ([],[])
    |t::p' -> let (a,m)=t in
      let q =
	(try Hashtbl.find hmon m
	with Not_found ->
	  let q = selectdiv d m l in
	  match q with
            t'::q' -> (Hashtbl.add hmon m q;q)
          |[] -> q) in
      match q with
	[] ->
	  if reduire_les_queues
	  then
	    let (lq,r)=(reduce p') in
            (lq,((a,m)::r))
	  else ([],p)
      |(b,m')::q' ->
          let b' = P.oppP (P.divP a b) in
          let m''= div_mon d m m' in
          let p1=plusP d p' (mult_t_pol d b' m'' q') in
          let (lq,r)=reduce p1 in
          ((b',m'',q)::lq, r)
  in let (lq,r) = reduce p in
  (*info "reduce2_trace:\n";
     List.iter
     (fun (a,m,s) ->
     let x = mult_t_pol d a m s in
     info ((stringP x)^"\n"))
     lq;
     info "ok\n";*)
  (List.map2
     (fun c0 q ->
       let c =
	 List.fold_left
	   (fun x (a,m,s) ->
	     if equal s q
	     then
	       plusP d x (mult_t_pol d a m (polconst d coef1))
	     else x)
	   c0
	   lq in
       c)
     lcp
     !poldep,
   r)

(***********************************************************************
  Algorithme de Janet (V.P.Gerdt Involutive algorithms...)
*)

(***********************************
  deuxieme version, qui elimine des poly inutiles
*)
let homogeneous = ref false
let pol_courant = ref []


type pol3 =
   {pol : poly;
    anc : poly;
    nmp : mon}

let fst_mon q = snd (List.hd q.pol)
let lm_anc q = snd (List.hd q.anc)

let pol_to_pol3 d p =
  {pol = p; anc = p; nmp = Array.create (d+1) 0}

let is_multiplicative u s i =
  if i=1
  then List.for_all (fun q -> (fst_mon q).(1) <= u.(1)) s
  else
     List.for_all
      (fun q ->
        let v = fst_mon q in
	let res = ref true in
	let j = ref 1 in
	while !j < i && !res do
	  res:= v.(!j) = u.(!j);
	  j:= !j + 1;
	done;
	if !res
	then v.(i) <= u.(i)
	else true)
      s

let is_multiplicative_rev d u s i =
  if i=1
  then
    List.for_all
      (fun q -> (fst_mon q).(d+1-1) <= u.(d+1-1))
      s
  else
     List.for_all
      (fun q ->
        let v = fst_mon q in
	let res = ref true in
	let j = ref 1 in
	while !j < i && !res do
	  res:= v.(d+1- !j) = u.(d+1- !j);
	  j:= !j + 1;
	done;
	if !res
	then v.(d+1-i) <= u.(d+1-i)
	else true)
      s

let monom_multiplicative d u s =
  let m = Array.create (d+1) 0 in
  for i=1 to d do
    if is_multiplicative u s i
    then m.(i)<- 1;
  done;
  m

(* mu monome des variables multiplicative de u *)
let janet_div_mon d u mu v =
  let res = ref true in
  let i = ref 1 in
  while  !i <= d && !res do
    if mu.(!i) = 0
    then res := u.(!i) = v.(!i)
    else res := u.(!i) <= v.(!i);
    i:= !i + 1;
  done;
  !res

let find_multiplicative p mg =
  try Hashpol.find mg p.pol
  with Not_found -> (info "\nPROBLEME DANS LA TABLE DES VAR MULT";
	     info (stringPcut p.pol);
	     failwith "aie")

(* mg hashtable de p -> monome_multiplicatif de g *)

let hashtbl_reductor = ref (Hashtbl.create 51 : (mon,pol3) Hashtbl.t)

(* suppose que la table a été initialisée *)
let find_reductor d v lt mt =
  try Hashtbl.find !hashtbl_reductor v
  with Not_found ->
    let r =
      List.find
	(fun q ->
	  let u = fst_mon q in
	  let mu =  find_multiplicative q mt in
	  janet_div_mon d u mu v
	)
	lt in
    Hashtbl.add !hashtbl_reductor v r;
    r

let normal_form d p g mg onlyhead =
  let rec aux = function
      [] -> (coef1,p)
    | (a,v)::p' ->
	(try
	   let q = find_reductor d v g mg in
	   let* (b,u)::q' = q.pol in
	   let c = P.pgcdP a b in
	   let a' = P.divP b c in
	   let b' = P.oppP (P.divP a c) in
	   let m = div_mon d v u in
	   (*      info ".";*)
	   let (c,r) = aux (plusP d (emultP a' p') (mult_t_pol d b' m q')) in
	   (P.multP c a', r)
	 with _ -> (* TODO: catch only relevant exn *)
	   if onlyhead
	   then (coef1,p)
	   else
	     let (c,r)= (aux p') in
	     (c, plusP d [(P.multP a c,v)] r)) in
  aux p

let janet_normal_form d p g mg =
  let (_,r) = normal_form d p g mg false in r

let head_janet_normal_form d p g mg =
  let (_,r) = normal_form d p g mg true in r

let reduce_rem d r lt lq =
  Hashtbl.clear hmon;
  let (_,r) = reduce2 d r (List.map (fun p -> p.pol) (lt @ lq)) in
  Hashtbl.clear hmon;
  r

let tail_normal_form d p g mg =
  let* (a,v)::p' = p in
  let (c,r)= (normal_form d p' g mg false) in
  plusP d [(P.multP a c,v)] r

let div_strict d m1 m2 =
  m1 <> m2 && div_mon_test d m2 m1

let criteria d p g lt =
  mult_mon d (lm_anc p) (lm_anc g) = fst_mon p
||
  (let c = ppcm_mon  d (lm_anc p)  (lm_anc g) in
   div_strict d c (fst_mon p))
||
  (List.exists
     (fun t ->
       let cp = ppcm_mon d (lm_anc p) (fst_mon t) in
       let cg = ppcm_mon d (lm_anc g) (fst_mon t) in
       let c = ppcm_mon d (lm_anc p)  (lm_anc g) in
       div_strict d cp c && div_strict d cg c)
     lt)

let head_normal_form d p lt mt =
  let h = ref (p.pol) in
  let res =
  try (
    let v = snd(List.hd !h) in
    let g = ref (find_reductor d v lt mt) in
    if snd(List.hd !h) <> lm_anc p && criteria d p !g lt
    then ((* info "=";*) [])
    else (
      while !h <> [] && (!g).pol <> [] do
	let* (a,v)::p' = !h in
	let* (b,u)::q' = (!g).pol in
	let c = P.pgcdP a b in
	let a' = P.divP b c in
	let b' = P.oppP (P.divP a c) in
	let m = (div_mon d v u) in
	h := plusP d (emultP a' p') (mult_t_pol d b' m q');
	let v = snd(List.hd !h) in
	g := (
	  try find_reductor d v lt mt
	  with _ -> pol_to_pol3 d []);
      done;
      !h)
    )
  with _ -> ((* info ".";*) !h)
  in
  (*info ("temps de head_normal_form: "
	^(Format.sprintf "@[%10.3f@]s\n" ((Unix.gettimeofday ())-.t1)));*)
  res

let deg_hom p =
  match p with
  | [] -> -1
  | (_,m)::_ -> m.(0)

let head_reduce d lq lt mt =
  let ls = ref lq in
  let lq = ref [] in
  while !ls <> [] do
    let* p::ls1 = !ls in
    ls := ls1;
    if !homogeneous && p.pol<>[] && deg_hom p.pol > deg_hom !pol_courant
    then info "h"
    else
      match head_normal_form d p lt mt with
	  (_,v)::_ as h ->
	    if fst_mon p <> v
	    then lq := (!lq) @ [{pol = h; anc = h; nmp = Array.create (d+1) 0}]
	    else lq := (!lq) @ [p]
	| [] ->
	    (* info "*";*)
	    if fst_mon p = lm_anc p
	    then ls := List.filter (fun q -> not (equal q.anc p.anc)) !ls
  done;
  (*info ("temps de head_reduce: "
	^(Format.sprintf "@[%10.3f@]s\n" ((Unix.gettimeofday ())-.t1)));*)
  !lq

let choose_irreductible d lf =
  List.hd lf
(* bien plus lent
    (List.sort (fun p q -> compare_mon d (fst_mon p.pol) (fst_mon q.pol)) lf)
*)


let hashtbl_multiplicative d lf =
  let mg = Hashpol.create 51 in
  hashtbl_reductor := Hashtbl.create 51;
  List.iter
    (fun g ->
      let (_,u) = List.hd g.pol in
      Hashpol.add mg g.pol (monom_multiplicative d u lf))
    lf;
  (*info ("temps de hashtbl_multiplicative: "
	^(Format.sprintf "@[%10.3f@]s\n" ((Unix.gettimeofday ())-.t1)));*)
  mg

let list_diff l x =
  List.filter (fun y -> y <> x) l

let janet2 d lf p0 =
  hashtbl_reductor := Hashtbl.create 51;
  let t1 = Unix.gettimeofday() in
  info ("------------- Janet2 ------------------\n");
  pol_courant := p0;
  let r = ref p0 in
  let lf = List.map (pol_to_pol3 d) lf in
  let f = choose_irreductible d lf in
  let lt = ref [f] in
  let mt = ref (hashtbl_multiplicative d !lt) in
  let lq = ref (list_diff lf f) in
  lq := head_reduce d !lq !lt !mt;
  r := (* lent head_janet_normal_form  d !r !lt !mt ; *)
    reduce_rem  d !r !lt !lq ;
  info ("reste: "^(stringPcut !r)^"\n");
  while !lq <> [] && !r <> [] do
    let p = choose_irreductible d !lq in
    lq := list_diff !lq p;
    if p.pol = p.anc
    then ( (* on enleve de lt les pol divisibles par p et on les met dans lq *)
      let m = fst_mon p in
      let lt1 = !lt in
      List.iter
	(fun q ->
	  let m'= fst_mon q in
	  if div_strict d m m'
	  then (
	    lq := (!lq) @ [q];
	    lt := list_diff !lt q))
	lt1;
      mt := hashtbl_multiplicative d !lt;
      );
    let h = tail_normal_form d p.pol !lt !mt in
    if h = []
    then info "************ reduction a zero, ne devrait pas arriver *\n"
    else (
      lt := (!lt) @ [{pol = h; anc = p.anc; nmp = Array.copy p.nmp}];
      info ("nouveau polynome: "^(stringPcut h)^"\n");
      mt := hashtbl_multiplicative d !lt;
      r := (* lent head_janet_normal_form  d !r !lt !mt ; *)
	reduce_rem  d !r !lt !lq ;
      info ("reste: "^(stringPcut !r)^"\n");
      if !r <> []
      then (
	List.iter
	  (fun q ->
	    let mq = find_multiplicative q !mt in
	    for i=1 to d do
	      if mq.(i) = 1
	      then q.nmp.(i)<- 0
	      else
		if q.nmp.(i) = 0
		then (
		  (* info "+";*)
		  lq := (!lq) @
		    [{pol = multP d (gen d i) q.pol;
		      anc = q.anc;
		      nmp = Array.create (d+1) 0}];
		  q.nmp.(i)<-1;
		 );
	    done;
	  )
	  !lt;
	lq := head_reduce d !lq !lt !mt;
	info ("["^(string_of_int (List.length !lt))^";"
	      ^(string_of_int (List.length !lq))^"]");
       ));
  done;
  info ("--- Janet2 donne:\n");
  (* List.iter (fun p -> info ("polynome: "^(stringPcut p.pol)^"\n")) !lt; *)
  info ("reste: "^(stringPcut !r)^"\n");
  info ("--- fin Janet2\n");
  info ("temps: "^(Format.sprintf "@[%10.3f@]s\n" ((Unix.gettimeofday ())-.t1)));
  List. map (fun q -> q.pol) !lt

(**********************************************************************
 version 3 *)

let head_normal_form3 d p lt mt =
  let h = ref (p.pol) in
  let res =
  try (
    let v = snd(List.hd !h) in
    let g = ref (find_reductor d v lt mt) in
    if snd(List.hd !h) <> lm_anc p && criteria d p !g lt
    then ((* info "=";*) [])
    else (
      while !h <> [] && (!g).pol <> [] do
	let* (a,v)::p' = !h in
        let* (b,u)::q' = (!g).pol in
	let c = P.pgcdP a b in
	let a' = P.divP b c in
	let b' = P.oppP (P.divP a c) in
	let m = div_mon d v u in
	h := plusP d (emultP a' p') (mult_t_pol d b' m q');
	let v = snd(List.hd !h) in
	g := (
	  try find_reductor d v lt mt
	  with _ -> pol_to_pol3 d []);
      done;
      !h)
    )
  with _ -> ((* info ".";*) !h)
  in
  (*info ("temps de head_normal_form: "
	^(Format.sprintf "@[%10.3f@]s\n" ((Unix.gettimeofday ())-.t1)));*)
  res


let janet3 d lf p0 =
  hashtbl_reductor := Hashtbl.create 51;
  let t1 = Unix.gettimeofday() in
  info ("------------- Janet2 ------------------\n");
  let r = ref p0 in
  let lf = List.map (pol_to_pol3 d) lf in

  let* f::lf1 = lf in
  let lt = ref [f] in
  let mt = ref (hashtbl_multiplicative d !lt) in
  let lq = ref lf1 in
  r := reduce_rem  d !r !lt !lq ; (* janet_normal_form  d !r !lt !mt ;*)
  info ("reste: "^(stringPcut !r)^"\n");
  while !lq <> [] && !r <> [] do
    let* p::lq1 = !lq in
    lq := lq1;
(*
    if p.pol = p.anc
    then ( (* on enleve de lt les pol divisibles par p et on les met dans lq *)
      let m = fst_mon (p.pol) in
      let lt1 = !lt in
      List.iter
	(fun q ->
	  let m'= fst_mon (q.pol) in
	  if div_strict d m m'
	  then (
	    lq := (!lq) @ [q];
	    lt := list_diff !lt q))
	lt1;
      mt := hashtbl_multiplicative d !lt;
      );
*)
    let h = head_normal_form3 d p !lt !mt in
    if h = []
    then (
      info "*";
      if fst_mon p = lm_anc p
      then
	lq := List.filter (fun q -> not (equal q.anc p.anc)) !lq;
     )
    else (
      let q =
	if fst_mon p <> snd(List.hd h)
	then {pol = h; anc = h; nmp = Array.create (d+1) 0}
	else {pol = h; anc = p.anc; nmp = Array.copy p.nmp}
      in
      lt:= (!lt) @ [q];
      info ("nouveau polynome: "^(stringPcut q.pol)^"\n");
      mt := hashtbl_multiplicative d !lt;
      r := reduce_rem  d !r !lt !lq ; (* janet_normal_form  d !r !lt !mt ;*)
      info ("reste: "^(stringPcut !r)^"\n");
      if !r <> []
      then (
	List.iter
	  (fun q ->
	    let mq = find_multiplicative q !mt in
	    for i=1 to d do
	      if mq.(i) = 1
	      then q.nmp.(i)<- 0
	      else
		if q.nmp.(i) = 0
		then (
		  (* info "+";*)
		  lq := (!lq) @
		    [{pol = multP d (gen d i) q.pol;
		      anc = q.anc;
		      nmp = Array.create (d+1) 0}];
		  q.nmp.(i)<-1;
		 );
	    done;
	  )
	  !lt;
	info ("["^(string_of_int (List.length !lt))^";"
	      ^(string_of_int (List.length !lq))^"]");
       ));
  done;
  info ("--- Janet3 donne:\n");
  (* List.iter (fun p -> info ("polynome: "^(stringPcut p.pol)^"\n")) !lt; *)
  info ("reste: "^(stringPcut !r)^"\n");
  info ("--- fin Janet3\n");
  info ("temps: "^(Format.sprintf "@[%10.3f@]s\n" ((Unix.gettimeofday ())-.t1)));
  List. map (fun q -> q.pol) !lt


(***********************************************************************
   Completion
 *)

let sugar_flag = ref true

let sugartbl = (Hashpol.create 1000 : int Hashpol.t)

let compute_sugar p =
  List.fold_left (fun s (a,m) -> max s m.(0)) 0 p

let sugar p =
  try Hashpol.find sugartbl p
  with Not_found ->
    let s = compute_sugar p in
    Hashpol.add sugartbl p s;
    s

let spol d p q=
  let m = snd (List.hd p) in
  let m'= snd (List.hd q) in
  let a = fst (List.hd p) in
  let b = fst (List.hd q) in
  let p'= List.tl p in
  let q'= List.tl q in
  let c=(pgcdpos a b) in
  let m''=(ppcm_mon d m m') in
  let m1 = div_mon d m'' m in
  let m2 = div_mon d m'' m' in
  let fsp p' q' =
    plusP d
      (mult_t_pol d (P.divP b c) m1 p')
      (mult_t_pol d (P.oppP (P.divP a c)) m2 q') in
  let sp = fsp p' q' in
  coefpoldep_set sp p (fsp (polconst d coef1) []);
  coefpoldep_set sp q (fsp [] (polconst d coef1));
  Hashpol.add sugartbl sp
    (max (m1.(0) + (sugar p)) (m2.(0) + (sugar q)));
  sp

let etrangers d p p'=
  let m = snd (List.hd p) in
  let m'= snd (List.hd p') in
  let res=ref true in
  let i=ref 1 in
  while (!res) && (!i<=d) do
    res:= (m.(!i) = 0) || (m'.(!i)=0);
      i:=!i+1;
  done;
  !res


(* teste si le monome dominant de p''
   divise le ppcm des monomes dominants de p et p' *)

let div_ppcm d p p' p'' =
  let m = snd (List.hd p) in
  let m'= snd (List.hd p') in
  let m''= snd (List.hd p'') in
  let res=ref true in
  let i=ref 1 in
  while (!res) && (!i<=d) do
    res:= ((max m.(!i) m'.(!i)) >= m''.(!i));
    i:=!i+1;
  done;
  !res

(***********************************************************************
   Code extrait de la preuve de L.Thery en Coq
 *)
type 'poly cpRes =
    Keep of ('poly list)
  | DontKeep of ('poly list)

let addRes i = function
    Keep h'0 -> Keep (i::h'0)
  | DontKeep h'0 -> DontKeep (i::h'0)

let rec slice d i a = function
    [] -> if etrangers d i a then DontKeep [] else Keep []
  | b::q1 ->
      if div_ppcm d i a b then DontKeep (b::q1)
      else if div_ppcm d i b a then slice d i a q1
      else addRes b (slice d i a q1)

let rec addS x l = l @[x]

let addSugar x l =
  if !sugar_flag
  then
    let sx = sugar x in
    let rec insere l  =
      match l with
      | [] -> [x]
      | y::l1 ->
	  if sx <= (sugar y)
	  then x::l
	  else y::(insere l1)
    in insere l
  else addS x l

(* ajoute les spolynomes de i avec la liste de polynomes aP,
   a la liste q *)

let rec genPcPf d i aP q =
  match aP with
      [] -> q
    | a::l1 ->
        (match slice d i a l1 with
             Keep l2 -> addSugar (spol d i a) (genPcPf d i l2 q)
           | DontKeep l2 -> genPcPf d i l2 q)

let rec genOCPf d = function
    [] -> []
  | a::l -> genPcPf d a l (genOCPf d l)

let step = ref 0

let infobuch p q =
  if !step = 0
  then (info ("[" ^ (string_of_int (List.length p))
              ^ "," ^  (string_of_int (List.length q))
              ^ "]"))

(***********************************************************************)
(* dans lp les nouveaux sont en queue *)

let coef_courant = ref coef1


type certificate =
    { coef : coef; power : int;
      gb_comb : poly list list; last_comb : poly list }

let test_dans_ideal d p lp lp0 =
  let (c,r) = reduce2 d !pol_courant lp in
  info ("reste: "^(stringPcut r)^"\n");
  coef_courant:= P.multP !coef_courant c;
  pol_courant:= r;
  if r=[]
  then (info "polynome reduit a 0\n";
	let lcp = List.map (fun q -> []) !poldep in
	let c = !coef_courant in
	let (lcq,r) = reduce2_trace d (emultP c p) lp lcp in
	info ("r: "^(stringP r)^"\n");
        let res=ref  (emultP c p) in
	List.iter2
	  (fun cq q -> res:=plusP d (!res) (multP d cq q);
	  )
	  lcq !poldep;
	info ("verif somme: "^(stringP (!res))^"\n");
	info ("coefficient: "^(stringP (polconst d c))^"\n");
	let rec aux lp =
	  match lp with
	  |[] -> []
	  |p::lp ->
	      (List.map
		 (fun q -> coefpoldep_find p q)
		 lp)::(aux lp)
	in
	let liste_polynomes_de_depart = List.rev lp0 in
	let polynome_a_tester = p in
	let liste_des_coefficients_intermediaires =
	  (let lci = List.rev (aux (List.rev lp)) in
	  let lci = ref lci (* (List.map List.rev lci) *) in
	  List.iter (fun x -> lci := List.tl (!lci)) lp0;
	  !lci) in
	let liste_des_coefficients =
	  List.map
	    (fun cq -> emultP coefm1 cq)
	    (List.rev lcq) in
	(liste_polynomes_de_depart,
	 polynome_a_tester,
	 {coef=c;
	  power=1;
	  gb_comb = liste_des_coefficients_intermediaires;
	  last_comb = liste_des_coefficients}))
  else ((*info "polynome non reduit a 0\n";
	info ("\nreste: "^(stringPcut r)^"\n");*)
	raise NotInIdeal)

let divide_rem_with_critical_pair = ref false

let choix_spol d p l =
  if !divide_rem_with_critical_pair
  then (
    let (_,m) = List.hd p in
    try (
      let q =
	List.find
	  (fun q ->
	    let (_,m') = List.hd q in
	    div_mon_test d m m')
	  l in
      q::(list_diff l q))
    with _ -> l)
  else l

let pbuchf d pq p lp0=
  info "calcul de la base de Groebner\n";
  step:=0;
  Hashtbl.clear hmon;
  let rec pbuchf lp lpc =
      infobuch lp lpc;
(*      step:=(!step+1)mod 10;*)
      match lpc with
        [] -> test_dans_ideal d p lp lp0
      | _ ->
	  let* a::lpc2 = choix_spol d !pol_courant lpc in
	  if !homogeneous && a<>[] && deg_hom a > deg_hom !pol_courant
	  then (info "h";pbuchf lp lpc2)
	  else
	    let sa = sugar a in
            let (ca,a0)= reduce2 d a lp in
            match a0 with
              [] -> info "0";pbuchf lp lpc2
            | _ ->
		let a1 = emultP ca a in
		List.iter
		  (fun q ->
		    coefpoldep_set a1 q (emultP ca (coefpoldep_find a q)))
		  !poldep;
		let (lca,a0) = reduce2_trace d a1 lp
		    (List.map (fun q -> coefpoldep_find a1 q) !poldep) in
		List.iter2 (fun c q -> coefpoldep_set a0 q c) lca !poldep;
		info ("\nnouveau polynome: "^(stringPcut a0)^"\n");
		let ct = coef1 (* contentP a0 *) in
		(*info ("contenu: "^(string_of_coef ct)^"\n");*)
		Hashpol.add sugartbl a0 sa;
		poldep:=addS a0 lp;
		poldepcontent:=addS ct (!poldepcontent);
		try test_dans_ideal d p (addS a0 lp) lp0
		with NotInIdeal -> pbuchf (addS a0 lp) (genPcPf d a0 lp lpc2)
  in pbuchf (fst pq) (snd pq)

let is_homogeneous p =
  match p with
  | [] -> true
  | (a,m)::p1 -> let d = m.(0) in
    List.for_all (fun (b,m') -> m'.(0)=d) p1

(* rend
   c
   lp = [pn;...;p1]
   p
   lci = [[a(n+1,n);...;a(n+1,1)];
   [a(n+2,n+1);...;a(n+2,1)];
   ...
   [a(n+m,n+m-1);...;a(n+m,1)]]
   lc = [qn+m; ... q1]

   tels que
   c*p = sum qi*pi
   ou pn+k = a(n+k,n+k-1)*pn+k-1 + ... + a(n+k,1)* p1
 *)

let in_ideal d lp p =
  homogeneous := List.for_all is_homogeneous (p::lp);
  if !homogeneous then info "polynomes homogenes\n";
  (* janet2 d lp p;*)
  info ("p: "^stringPcut p^"\n");
  info ("lp:\n"^List.fold_left (fun r p -> r^stringPcut p^"\n") "" lp);
  initcoefpoldep d lp;
  coef_courant:=coef1;
  pol_courant:=p;
  try test_dans_ideal d p lp lp
  with NotInIdeal -> pbuchf d (lp, genOCPf d lp) p lp

end