1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
|
open Names
open Pp
open Constr
open Libnames
open Globnames
open Refiner
let mk_prefix pre id = Id.of_string (pre^(Id.to_string id))
let mk_rel_id = mk_prefix "R_"
let mk_correct_id id = Nameops.add_suffix (mk_rel_id id) "_correct"
let mk_complete_id id = Nameops.add_suffix (mk_rel_id id) "_complete"
let mk_equation_id id = Nameops.add_suffix id "_equation"
let msgnl m =
()
let fresh_id avoid s = Namegen.next_ident_away_in_goal (Id.of_string s) (Id.Set.of_list avoid)
let fresh_name avoid s = Name (fresh_id avoid s)
let get_name avoid ?(default="H") = function
| Anonymous -> fresh_name avoid default
| Name n -> Name n
let array_get_start a =
Array.init
(Array.length a - 1)
(fun i -> a.(i))
let id_of_name = function
Name id -> id
| _ -> raise Not_found
let locate ref =
let (loc,qid) = qualid_of_reference ref in
Nametab.locate qid
let locate_ind ref =
match locate ref with
| IndRef x -> x
| _ -> raise Not_found
let locate_constant ref =
match locate ref with
| ConstRef x -> x
| _ -> raise Not_found
let locate_with_msg msg f x =
try f x
with Not_found -> raise (CErrors.UserError(None, msg))
let filter_map filter f =
let rec it = function
| [] -> []
| e::l ->
if filter e
then
(f e) :: it l
else it l
in
it
let chop_rlambda_n =
let rec chop_lambda_n acc n rt =
if n == 0
then List.rev acc,rt
else
match DAst.get rt with
| Glob_term.GLambda(name,k,t,b) -> chop_lambda_n ((name,t,None)::acc) (n-1) b
| Glob_term.GLetIn(name,v,t,b) -> chop_lambda_n ((name,v,t)::acc) (n-1) b
| _ ->
raise (CErrors.UserError(Some "chop_rlambda_n",
str "chop_rlambda_n: Not enough Lambdas"))
in
chop_lambda_n []
let chop_rprod_n =
let rec chop_prod_n acc n rt =
if n == 0
then List.rev acc,rt
else
match DAst.get rt with
| Glob_term.GProd(name,k,t,b) -> chop_prod_n ((name,t)::acc) (n-1) b
| _ -> raise (CErrors.UserError(Some "chop_rprod_n",str "chop_rprod_n: Not enough products"))
in
chop_prod_n []
let list_union_eq eq_fun l1 l2 =
let rec urec = function
| [] -> l2
| a::l -> if List.exists (eq_fun a) l2 then urec l else a::urec l
in
urec l1
let list_add_set_eq eq_fun x l =
if List.exists (eq_fun x) l then l else x::l
let const_of_id id =
let _,princ_ref =
qualid_of_reference (Libnames.Ident (Loc.tag id))
in
try Constrintern.locate_reference princ_ref
with Not_found ->
CErrors.user_err ~hdr:"IndFun.const_of_id"
(str "cannot find " ++ Id.print id)
let def_of_const t =
match Constr.kind t with
Term.Const sp ->
(try (match Environ.constant_opt_value_in (Global.env()) sp with
| Some c -> c
| _ -> assert false)
with Not_found -> assert false)
|_ -> assert false
let coq_constant s =
Universes.constr_of_global @@
Coqlib.gen_reference_in_modules "RecursiveDefinition"
Coqlib.init_modules s;;
let find_reference sl s =
let dp = Names.DirPath.make (List.rev_map Id.of_string sl) in
Nametab.locate (make_qualid dp (Id.of_string s))
let eq = lazy(EConstr.of_constr (coq_constant "eq"))
let refl_equal = lazy(EConstr.of_constr (coq_constant "eq_refl"))
(*****************************************************************)
(* Copy of the standart save mechanism but without the much too *)
(* slow reduction function *)
(*****************************************************************)
open Entries
open Decl_kinds
open Declare
let definition_message = Declare.definition_message
let get_locality = function
| Discharge -> true
| Local -> true
| Global -> false
let save with_clean id const (locality,_,kind) hook =
let fix_exn = Future.fix_exn_of const.const_entry_body in
let l,r = match locality with
| Discharge when Lib.sections_are_opened () ->
let k = Kindops.logical_kind_of_goal_kind kind in
let c = SectionLocalDef const in
let _ = declare_variable id (Lib.cwd(), c, k) in
(Local, VarRef id)
| Discharge | Local | Global ->
let local = get_locality locality in
let k = Kindops.logical_kind_of_goal_kind kind in
let kn = declare_constant id ~local (DefinitionEntry const, k) in
(locality, ConstRef kn)
in
if with_clean then Proof_global.discard_current ();
CEphemeron.iter_opt hook (fun f -> Lemmas.call_hook fix_exn f l r);
definition_message id
let cook_proof _ =
let (id,(entry,_,strength)) = Pfedit.cook_proof () in
(id,(entry,strength))
let get_proof_clean do_reduce =
let result = cook_proof do_reduce in
Proof_global.discard_current ();
result
let with_full_print f a =
let old_implicit_args = Impargs.is_implicit_args ()
and old_strict_implicit_args = Impargs.is_strict_implicit_args ()
and old_contextual_implicit_args = Impargs.is_contextual_implicit_args () in
let old_rawprint = !Flags.raw_print in
let old_printuniverses = !Constrextern.print_universes in
let old_printallowmatchdefaultclause = !Detyping.print_allow_match_default_clause in
Constrextern.print_universes := true;
Detyping.print_allow_match_default_clause := false;
Flags.raw_print := true;
Impargs.make_implicit_args false;
Impargs.make_strict_implicit_args false;
Impargs.make_contextual_implicit_args false;
Impargs.make_contextual_implicit_args false;
Dumpglob.pause ();
try
let res = f a in
Impargs.make_implicit_args old_implicit_args;
Impargs.make_strict_implicit_args old_strict_implicit_args;
Impargs.make_contextual_implicit_args old_contextual_implicit_args;
Flags.raw_print := old_rawprint;
Constrextern.print_universes := old_printuniverses;
Detyping.print_allow_match_default_clause := old_printallowmatchdefaultclause;
Dumpglob.continue ();
res
with
| reraise ->
Impargs.make_implicit_args old_implicit_args;
Impargs.make_strict_implicit_args old_strict_implicit_args;
Impargs.make_contextual_implicit_args old_contextual_implicit_args;
Flags.raw_print := old_rawprint;
Constrextern.print_universes := old_printuniverses;
Detyping.print_allow_match_default_clause := old_printallowmatchdefaultclause;
Dumpglob.continue ();
raise reraise
(**********************)
type function_info =
{
function_constant : Constant.t;
graph_ind : inductive;
equation_lemma : Constant.t option;
correctness_lemma : Constant.t option;
completeness_lemma : Constant.t option;
rect_lemma : Constant.t option;
rec_lemma : Constant.t option;
prop_lemma : Constant.t option;
is_general : bool; (* Has this function been defined using general recursive definition *)
}
(* type function_db = function_info list *)
(* let function_table = ref ([] : function_db) *)
let from_function = Summary.ref Cmap_env.empty ~name:"functions_db_fn"
let from_graph = Summary.ref Indmap.empty ~name:"functions_db_gr"
(*
let rec do_cache_info finfo = function
| [] -> raise Not_found
| (finfo'::finfos as l) ->
if finfo' == finfo then l
else if finfo'.function_constant = finfo.function_constant
then finfo::finfos
else
let res = do_cache_info finfo finfos in
if res == finfos then l else finfo'::l
let cache_Function (_,(finfos)) =
let new_tbl =
try do_cache_info finfos !function_table
with Not_found -> finfos::!function_table
in
if new_tbl != !function_table
then function_table := new_tbl
*)
let cache_Function (_,finfos) =
from_function := Cmap_env.add finfos.function_constant finfos !from_function;
from_graph := Indmap.add finfos.graph_ind finfos !from_graph
let load_Function _ = cache_Function
let subst_Function (subst,finfos) =
let do_subst_con c = Mod_subst.subst_constant subst c
and do_subst_ind i = Mod_subst.subst_ind subst i
in
let function_constant' = do_subst_con finfos.function_constant in
let graph_ind' = do_subst_ind finfos.graph_ind in
let equation_lemma' = Option.smartmap do_subst_con finfos.equation_lemma in
let correctness_lemma' = Option.smartmap do_subst_con finfos.correctness_lemma in
let completeness_lemma' = Option.smartmap do_subst_con finfos.completeness_lemma in
let rect_lemma' = Option.smartmap do_subst_con finfos.rect_lemma in
let rec_lemma' = Option.smartmap do_subst_con finfos.rec_lemma in
let prop_lemma' = Option.smartmap do_subst_con finfos.prop_lemma in
if function_constant' == finfos.function_constant &&
graph_ind' == finfos.graph_ind &&
equation_lemma' == finfos.equation_lemma &&
correctness_lemma' == finfos.correctness_lemma &&
completeness_lemma' == finfos.completeness_lemma &&
rect_lemma' == finfos.rect_lemma &&
rec_lemma' == finfos.rec_lemma &&
prop_lemma' == finfos.prop_lemma
then finfos
else
{ function_constant = function_constant';
graph_ind = graph_ind';
equation_lemma = equation_lemma' ;
correctness_lemma = correctness_lemma' ;
completeness_lemma = completeness_lemma' ;
rect_lemma = rect_lemma' ;
rec_lemma = rec_lemma';
prop_lemma = prop_lemma';
is_general = finfos.is_general
}
let classify_Function infos = Libobject.Substitute infos
let discharge_Function (_,finfos) =
let function_constant' = Lib.discharge_con finfos.function_constant
and graph_ind' = Lib.discharge_inductive finfos.graph_ind
and equation_lemma' = Option.smartmap Lib.discharge_con finfos.equation_lemma
and correctness_lemma' = Option.smartmap Lib.discharge_con finfos.correctness_lemma
and completeness_lemma' = Option.smartmap Lib.discharge_con finfos.completeness_lemma
and rect_lemma' = Option.smartmap Lib.discharge_con finfos.rect_lemma
and rec_lemma' = Option.smartmap Lib.discharge_con finfos.rec_lemma
and prop_lemma' = Option.smartmap Lib.discharge_con finfos.prop_lemma
in
if function_constant' == finfos.function_constant &&
graph_ind' == finfos.graph_ind &&
equation_lemma' == finfos.equation_lemma &&
correctness_lemma' == finfos.correctness_lemma &&
completeness_lemma' == finfos.completeness_lemma &&
rect_lemma' == finfos.rect_lemma &&
rec_lemma' == finfos.rec_lemma &&
prop_lemma' == finfos.prop_lemma
then Some finfos
else
Some { function_constant = function_constant' ;
graph_ind = graph_ind' ;
equation_lemma = equation_lemma' ;
correctness_lemma = correctness_lemma' ;
completeness_lemma = completeness_lemma';
rect_lemma = rect_lemma';
rec_lemma = rec_lemma';
prop_lemma = prop_lemma' ;
is_general = finfos.is_general
}
let pr_ocst c =
let sigma, env = Pfedit.get_current_context () in
Option.fold_right (fun v acc -> Printer.pr_lconstr_env env sigma (mkConst v)) c (mt ())
let pr_info f_info =
let sigma, env = Pfedit.get_current_context () in
str "function_constant := " ++
Printer.pr_lconstr_env env sigma (mkConst f_info.function_constant)++ fnl () ++
str "function_constant_type := " ++
(try
Printer.pr_lconstr_env env sigma
(fst (Global.type_of_global_in_context env (ConstRef f_info.function_constant)))
with e when CErrors.noncritical e -> mt ()) ++ fnl () ++
str "equation_lemma := " ++ pr_ocst f_info.equation_lemma ++ fnl () ++
str "completeness_lemma :=" ++ pr_ocst f_info.completeness_lemma ++ fnl () ++
str "correctness_lemma := " ++ pr_ocst f_info.correctness_lemma ++ fnl () ++
str "rect_lemma := " ++ pr_ocst f_info.rect_lemma ++ fnl () ++
str "rec_lemma := " ++ pr_ocst f_info.rec_lemma ++ fnl () ++
str "prop_lemma := " ++ pr_ocst f_info.prop_lemma ++ fnl () ++
str "graph_ind := " ++ Printer.pr_lconstr_env env sigma (mkInd f_info.graph_ind) ++ fnl ()
let pr_table tb =
let l = Cmap_env.fold (fun k v acc -> v::acc) tb [] in
Pp.prlist_with_sep fnl pr_info l
let in_Function : function_info -> Libobject.obj =
Libobject.declare_object
{(Libobject.default_object "FUNCTIONS_DB") with
Libobject.cache_function = cache_Function;
Libobject.load_function = load_Function;
Libobject.classify_function = classify_Function;
Libobject.subst_function = subst_Function;
Libobject.discharge_function = discharge_Function
(* Libobject.open_function = open_Function; *)
}
let find_or_none id =
try Some
(match Nametab.locate (qualid_of_ident id) with ConstRef c -> c | _ -> CErrors.anomaly (Pp.str "Not a constant.")
)
with Not_found -> None
let find_Function_infos f =
Cmap_env.find f !from_function
let find_Function_of_graph ind =
Indmap.find ind !from_graph
let update_Function finfo =
(* Pp.msgnl (pr_info finfo); *)
Lib.add_anonymous_leaf (in_Function finfo)
let add_Function is_general f =
let f_id = Label.to_id (Constant.label f) in
let equation_lemma = find_or_none (mk_equation_id f_id)
and correctness_lemma = find_or_none (mk_correct_id f_id)
and completeness_lemma = find_or_none (mk_complete_id f_id)
and rect_lemma = find_or_none (Nameops.add_suffix f_id "_rect")
and rec_lemma = find_or_none (Nameops.add_suffix f_id "_rec")
and prop_lemma = find_or_none (Nameops.add_suffix f_id "_ind")
and graph_ind =
match Nametab.locate (qualid_of_ident (mk_rel_id f_id))
with | IndRef ind -> ind | _ -> CErrors.anomaly (Pp.str "Not an inductive.")
in
let finfos =
{ function_constant = f;
equation_lemma = equation_lemma;
completeness_lemma = completeness_lemma;
correctness_lemma = correctness_lemma;
rect_lemma = rect_lemma;
rec_lemma = rec_lemma;
prop_lemma = prop_lemma;
graph_ind = graph_ind;
is_general = is_general
}
in
update_Function finfos
let pr_table () = pr_table !from_function
(*********************************)
(* Debuging *)
let functional_induction_rewrite_dependent_proofs = ref true
let function_debug = ref false
open Goptions
let functional_induction_rewrite_dependent_proofs_sig =
{
optdepr = false;
optname = "Functional Induction Rewrite Dependent";
optkey = ["Functional";"Induction";"Rewrite";"Dependent"];
optread = (fun () -> !functional_induction_rewrite_dependent_proofs);
optwrite = (fun b -> functional_induction_rewrite_dependent_proofs := b)
}
let _ = declare_bool_option functional_induction_rewrite_dependent_proofs_sig
let do_rewrite_dependent () = !functional_induction_rewrite_dependent_proofs = true
let function_debug_sig =
{
optdepr = false;
optname = "Function debug";
optkey = ["Function_debug"];
optread = (fun () -> !function_debug);
optwrite = (fun b -> function_debug := b)
}
let _ = declare_bool_option function_debug_sig
let do_observe () = !function_debug
let strict_tcc = ref false
let is_strict_tcc () = !strict_tcc
let strict_tcc_sig =
{
optdepr = false;
optname = "Raw Function Tcc";
optkey = ["Function_raw_tcc"];
optread = (fun () -> !strict_tcc);
optwrite = (fun b -> strict_tcc := b)
}
let _ = declare_bool_option strict_tcc_sig
exception Building_graph of exn
exception Defining_principle of exn
exception ToShow of exn
let jmeq () =
try
Coqlib.check_required_library Coqlib.jmeq_module_name;
EConstr.of_constr @@
Universes.constr_of_global @@
Coqlib.coq_reference "Function" ["Logic";"JMeq"] "JMeq"
with e when CErrors.noncritical e -> raise (ToShow e)
let jmeq_refl () =
try
Coqlib.check_required_library Coqlib.jmeq_module_name;
EConstr.of_constr @@
Universes.constr_of_global @@
Coqlib.coq_reference "Function" ["Logic";"JMeq"] "JMeq_refl"
with e when CErrors.noncritical e -> raise (ToShow e)
let h_intros l =
tclMAP (fun x -> Proofview.V82.of_tactic (Tactics.Simple.intro x)) l
let h_id = Id.of_string "h"
let hrec_id = Id.of_string "hrec"
let well_founded = function () -> EConstr.of_constr (coq_constant "well_founded")
let acc_rel = function () -> EConstr.of_constr (coq_constant "Acc")
let acc_inv_id = function () -> EConstr.of_constr (coq_constant "Acc_inv")
let well_founded_ltof () = EConstr.of_constr @@ Universes.constr_of_global @@
Coqlib.coq_reference "" ["Arith";"Wf_nat"] "well_founded_ltof"
let ltof_ref = function () -> (find_reference ["Coq";"Arith";"Wf_nat"] "ltof")
let evaluable_of_global_reference r = (* Tacred.evaluable_of_global_reference (Global.env ()) *)
match r with
ConstRef sp -> EvalConstRef sp
| VarRef id -> EvalVarRef id
| _ -> assert false;;
let list_rewrite (rev:bool) (eqs: (EConstr.constr*bool) list) =
tclREPEAT
(List.fold_right
(fun (eq,b) i -> tclORELSE (Proofview.V82.of_tactic ((if b then Equality.rewriteLR else Equality.rewriteRL) eq)) i)
(if rev then (List.rev eqs) else eqs) (tclFAIL 0 (mt())));;
let decompose_lam_n sigma n =
if n < 0 then CErrors.user_err Pp.(str "decompose_lam_n: integer parameter must be positive");
let rec lamdec_rec l n c =
if Int.equal n 0 then l,c
else match EConstr.kind sigma c with
| Lambda (x,t,c) -> lamdec_rec ((x,t)::l) (n-1) c
| Cast (c,_,_) -> lamdec_rec l n c
| _ -> CErrors.user_err Pp.(str "decompose_lam_n: not enough abstractions")
in
lamdec_rec [] n
let lamn n env b =
let open EConstr in
let rec lamrec = function
| (0, env, b) -> b
| (n, ((v,t)::l), b) -> lamrec (n-1, l, mkLambda (v,t,b))
| _ -> assert false
in
lamrec (n,env,b)
(* compose_lam [xn:Tn;..;x1:T1] b = [x1:T1]..[xn:Tn]b *)
let compose_lam l b = lamn (List.length l) l b
(* prodn n [xn:Tn;..;x1:T1;Gamma] b = (x1:T1)..(xn:Tn)b *)
let prodn n env b =
let open EConstr in
let rec prodrec = function
| (0, env, b) -> b
| (n, ((v,t)::l), b) -> prodrec (n-1, l, mkProd (v,t,b))
| _ -> assert false
in
prodrec (n,env,b)
(* compose_prod [xn:Tn;..;x1:T1] b = (x1:T1)..(xn:Tn)b *)
let compose_prod l b = prodn (List.length l) l b
type tcc_lemma_value =
| Undefined
| Value of constr
| Not_needed
(* We only "purify" on exceptions. XXX: What is this doing here? *)
let funind_purify f x =
let st = Vernacstate.freeze_interp_state `No in
try f x
with e ->
let e = CErrors.push e in
Vernacstate.unfreeze_interp_state st;
Exninfo.iraise e
|