1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
|
open CErrors
open Sorts
open Util
open Names
open Constr
open EConstr
open Pp
open Indfun_common
open Libnames
open Globnames
open Glob_term
open Declarations
open Misctypes
open Decl_kinds
module RelDecl = Context.Rel.Declaration
let is_rec_info sigma scheme_info =
let test_branche min acc decl =
acc || (
let new_branche =
it_mkProd_or_LetIn mkProp (fst (decompose_prod_assum sigma (RelDecl.get_type decl))) in
let free_rels_in_br = Termops.free_rels sigma new_branche in
let max = min + scheme_info.Tactics.npredicates in
Int.Set.exists (fun i -> i >= min && i< max) free_rels_in_br
)
in
List.fold_left_i test_branche 1 false (List.rev scheme_info.Tactics.branches)
let choose_dest_or_ind scheme_info args =
Proofview.tclBIND Proofview.tclEVARMAP (fun sigma ->
Tactics.induction_destruct (is_rec_info sigma scheme_info) false args)
let functional_induction with_clean c princl pat =
let res =
fun g ->
let sigma = Tacmach.project g in
let f,args = decompose_app sigma c in
let princ,bindings, princ_type,g' =
match princl with
| None -> (* No principle is given let's find the good one *)
begin
match EConstr.kind sigma f with
| Const (c',u) ->
let princ_option =
let finfo = (* we first try to find out a graph on f *)
try find_Function_infos c'
with Not_found ->
user_err (str "Cannot find induction information on "++
Printer.pr_leconstr_env (Tacmach.pf_env g) sigma (mkConst c') )
in
match Tacticals.elimination_sort_of_goal g with
| InProp -> finfo.prop_lemma
| InSet -> finfo.rec_lemma
| InType -> finfo.rect_lemma
in
let princ,g' = (* then we get the principle *)
try
let g',princ =
Tacmach.pf_eapply (Evd.fresh_global) g (Globnames.ConstRef (Option.get princ_option )) in
princ,g'
with Option.IsNone ->
(*i If there is not default lemma defined then,
we cross our finger and try to find a lemma named f_ind
(or f_rec, f_rect) i*)
let princ_name =
Indrec.make_elimination_ident
(Label.to_id (Constant.label c'))
(Tacticals.elimination_sort_of_goal g)
in
try
let princ_ref = const_of_id princ_name in
let (a,b) = Tacmach.pf_eapply (Evd.fresh_global) g princ_ref in
(b,a)
(* mkConst(const_of_id princ_name ),g (\* FIXME *\) *)
with Not_found -> (* This one is neither defined ! *)
user_err (str "Cannot find induction principle for "
++ Printer.pr_leconstr_env (Tacmach.pf_env g) sigma (mkConst c') )
in
let princ = EConstr.of_constr princ in
(princ,NoBindings,Tacmach.pf_unsafe_type_of g' princ,g')
| _ -> raise (UserError(None,str "functional induction must be used with a function" ))
end
| Some ((princ,binding)) ->
princ,binding,Tacmach.pf_unsafe_type_of g princ,g
in
let sigma = Tacmach.project g' in
let princ_infos = Tactics.compute_elim_sig (Tacmach.project g') princ_type in
let args_as_induction_constr =
let c_list =
if princ_infos.Tactics.farg_in_concl
then [c] else []
in
let encoded_pat_as_patlist =
List.make (List.length args + List.length c_list - 1) None @ [pat] in
List.map2 (fun c pat -> ((None,Tacexpr.ElimOnConstr (fun env sigma -> (sigma,(c,NoBindings)) )),(None,pat),None))
(args@c_list) encoded_pat_as_patlist
in
let princ' = Some (princ,bindings) in
let princ_vars =
List.fold_right
(fun a acc -> try Id.Set.add (destVar sigma a) acc with DestKO -> acc)
args
Id.Set.empty
in
let old_idl = List.fold_right Id.Set.add (Tacmach.pf_ids_of_hyps g) Id.Set.empty in
let old_idl = Id.Set.diff old_idl princ_vars in
let subst_and_reduce g =
if with_clean
then
let idl =
List.filter (fun id -> not (Id.Set.mem id old_idl))
(Tacmach.pf_ids_of_hyps g)
in
let flag =
Genredexpr.Cbv
{Redops.all_flags
with Genredexpr.rDelta = false;
}
in
Tacticals.tclTHEN
(Tacticals.tclMAP (fun id -> Tacticals.tclTRY (Proofview.V82.of_tactic (Equality.subst_gen (do_rewrite_dependent ()) [id]))) idl )
(Proofview.V82.of_tactic (Tactics.reduce flag Locusops.allHypsAndConcl))
g
else Tacticals.tclIDTAC g
in
Tacticals.tclTHEN
(Proofview.V82.of_tactic (choose_dest_or_ind
princ_infos
(args_as_induction_constr,princ')))
subst_and_reduce
g'
in res
let rec abstract_glob_constr c = function
| [] -> c
| Constrexpr.CLocalDef (x,b,t)::bl -> Constrexpr_ops.mkLetInC(x,b,t,abstract_glob_constr c bl)
| Constrexpr.CLocalAssum (idl,k,t)::bl ->
List.fold_right (fun x b -> Constrexpr_ops.mkLambdaC([x],k,t,b)) idl
(abstract_glob_constr c bl)
| Constrexpr.CLocalPattern _::bl -> assert false
let interp_casted_constr_with_implicits env sigma impls c =
Constrintern.intern_gen Pretyping.WithoutTypeConstraint env ~impls
c
(*
Construct a fixpoint as a Glob_term
and not as a constr
*)
let build_newrecursive
lnameargsardef =
let env0 = Global.env() in
let sigma = Evd.from_env env0 in
let (rec_sign,rec_impls) =
List.fold_left
(fun (env,impls) (((_,recname),_),bl,arityc,_) ->
let arityc = Constrexpr_ops.mkCProdN bl arityc in
let arity,ctx = Constrintern.interp_type env0 sigma arityc in
let evdref = ref (Evd.from_env env0) in
let _, (_, impls') = Constrintern.interp_context_evars env evdref bl in
let impl = Constrintern.compute_internalization_data env0 Constrintern.Recursive arity impls' in
let open Context.Named.Declaration in
(Environ.push_named (LocalAssum (recname,arity)) env, Id.Map.add recname impl impls))
(env0,Constrintern.empty_internalization_env) lnameargsardef in
let recdef =
(* Declare local notations *)
let f (_,bl,_,def) =
let def = abstract_glob_constr def bl in
interp_casted_constr_with_implicits
rec_sign sigma rec_impls def
in
States.with_state_protection (List.map f) lnameargsardef
in
recdef,rec_impls
let build_newrecursive l =
let l' = List.map
(fun ((fixna,_,bll,ar,body_opt),lnot) ->
match body_opt with
| Some body ->
(fixna,bll,ar,body)
| None -> user_err ~hdr:"Function" (str "Body of Function must be given")
) l
in
build_newrecursive l'
let error msg = user_err Pp.(str msg)
(* Checks whether or not the mutual bloc is recursive *)
let is_rec names =
let names = List.fold_right Id.Set.add names Id.Set.empty in
let check_id id names = Id.Set.mem id names in
let rec lookup names gt = match DAst.get gt with
| GVar(id) -> check_id id names
| GRef _ | GEvar _ | GPatVar _ | GSort _ | GHole _ -> false
| GCast(b,_) -> lookup names b
| GRec _ -> error "GRec not handled"
| GIf(b,_,lhs,rhs) ->
(lookup names b) || (lookup names lhs) || (lookup names rhs)
| GProd(na,_,t,b) | GLambda(na,_,t,b) ->
lookup names t || lookup (Nameops.Name.fold_right Id.Set.remove na names) b
| GLetIn(na,b,t,c) ->
lookup names b || Option.cata (lookup names) true t || lookup (Nameops.Name.fold_right Id.Set.remove na names) c
| GLetTuple(nal,_,t,b) -> lookup names t ||
lookup
(List.fold_left
(fun acc na -> Nameops.Name.fold_right Id.Set.remove na acc)
names
nal
)
b
| GApp(f,args) -> List.exists (lookup names) (f::args)
| GCases(_,_,el,brl) ->
List.exists (fun (e,_) -> lookup names e) el ||
List.exists (lookup_br names) brl
and lookup_br names (_,(idl,_,rt)) =
let new_names = List.fold_right Id.Set.remove idl names in
lookup new_names rt
in
lookup names
let rec local_binders_length = function
(* Assume that no `{ ... } contexts occur *)
| [] -> 0
| Constrexpr.CLocalDef _::bl -> 1 + local_binders_length bl
| Constrexpr.CLocalAssum (idl,_,_)::bl -> List.length idl + local_binders_length bl
| Constrexpr.CLocalPattern _::bl -> assert false
let prepare_body ((name,_,args,types,_),_) rt =
let n = local_binders_length args in
(* Pp.msgnl (str "nb lambda to chop : " ++ str (string_of_int n) ++ fnl () ++Printer.pr_glob_constr rt); *)
let fun_args,rt' = chop_rlambda_n n rt in
(fun_args,rt')
let process_vernac_interp_error e =
fst (ExplainErr.process_vernac_interp_error (e, Exninfo.null))
let warn_funind_cannot_build_inversion =
CWarnings.create ~name:"funind-cannot-build-inversion" ~category:"funind"
(fun e' -> strbrk "Cannot build inversion information" ++
if do_observe () then (fnl() ++ CErrors.print e') else mt ())
let derive_inversion fix_names =
try
let evd' = Evd.from_env (Global.env ()) in
(* we first transform the fix_names identifier into their corresponding constant *)
let evd',fix_names_as_constant =
List.fold_right
(fun id (evd,l) ->
let evd,c =
Evd.fresh_global
(Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident id)) in
let c = EConstr.of_constr c in
let (cst, u) = destConst evd c in
evd, (cst, EInstance.kind evd u) :: l
)
fix_names
(evd',[])
in
(*
Then we check that the graphs have been defined
If one of the graphs haven't been defined
we do nothing
*)
List.iter (fun c -> ignore (find_Function_infos (fst c))) fix_names_as_constant ;
try
let evd', lind =
List.fold_right
(fun id (evd,l) ->
let evd,id =
Evd.fresh_global
(Global.env ()) evd
(Constrintern.locate_reference (Libnames.qualid_of_ident (mk_rel_id id)))
in
let id = EConstr.of_constr id in
evd,(fst (destInd evd id))::l
)
fix_names
(evd',[])
in
Invfun.derive_correctness
Functional_principles_types.make_scheme
functional_induction
fix_names_as_constant
lind;
with e when CErrors.noncritical e ->
let e' = process_vernac_interp_error e in
warn_funind_cannot_build_inversion e'
with e when CErrors.noncritical e ->
let e' = process_vernac_interp_error e in
warn_funind_cannot_build_inversion e'
let warn_cannot_define_graph =
CWarnings.create ~name:"funind-cannot-define-graph" ~category:"funind"
(fun (names,error) -> strbrk "Cannot define graph(s) for " ++
h 1 names ++ error)
let warn_cannot_define_principle =
CWarnings.create ~name:"funind-cannot-define-principle" ~category:"funind"
(fun (names,error) -> strbrk "Cannot define induction principle(s) for "++
h 1 names ++ error)
let warning_error names e =
let e = process_vernac_interp_error e in
let e_explain e =
match e with
| ToShow e ->
let e = process_vernac_interp_error e in
spc () ++ CErrors.print e
| _ ->
if do_observe ()
then
let e = process_vernac_interp_error e in
(spc () ++ CErrors.print e)
else mt ()
in
match e with
| Building_graph e ->
let names = prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names in
warn_cannot_define_graph (names,e_explain e)
| Defining_principle e ->
let names = prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names in
warn_cannot_define_principle (names,e_explain e)
| _ -> raise e
let error_error names e =
let e = process_vernac_interp_error e in
let e_explain e =
match e with
| ToShow e -> spc () ++ CErrors.print e
| _ -> if do_observe () then (spc () ++ CErrors.print e) else mt ()
in
match e with
| Building_graph e ->
user_err
(str "Cannot define graph(s) for " ++
h 1 (prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names) ++
e_explain e)
| _ -> raise e
let generate_principle (evd:Evd.evar_map ref) pconstants on_error
is_general do_built (fix_rec_l:(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) recdefs interactive_proof
(continue_proof : int -> Names.Constant.t array -> EConstr.constr array -> int ->
Tacmach.tactic) : unit =
let names = List.map (function (((_, name),_),_,_,_,_),_ -> name) fix_rec_l in
let fun_bodies = List.map2 prepare_body fix_rec_l recdefs in
let funs_args = List.map fst fun_bodies in
let funs_types = List.map (function ((_,_,_,types,_),_) -> types) fix_rec_l in
try
(* We then register the Inductive graphs of the functions *)
Glob_term_to_relation.build_inductive !evd pconstants funs_args funs_types recdefs;
if do_built
then
begin
(*i The next call to mk_rel_id is valid since we have just construct the graph
Ensures by : do_built
i*)
let f_R_mut = Ident (Loc.tag @@ mk_rel_id (List.nth names 0)) in
let ind_kn =
fst (locate_with_msg
(pr_reference f_R_mut++str ": Not an inductive type!")
locate_ind
f_R_mut)
in
let fname_kn (((fname,_),_,_,_,_),_) =
let f_ref = Ident fname in
locate_with_msg
(pr_reference f_ref++str ": Not an inductive type!")
locate_constant
f_ref
in
let funs_kn = Array.of_list (List.map fname_kn fix_rec_l) in
let _ =
List.map_i
(fun i x ->
let princ = Indrec.lookup_eliminator (ind_kn,i) (InProp) in
let env = Global.env () in
let evd = ref (Evd.from_env env) in
let evd',uprinc = Evd.fresh_global env !evd princ in
let _ = evd := evd' in
let princ_type = Typing.e_type_of ~refresh:true env evd (EConstr.of_constr uprinc) in
let princ_type = EConstr.Unsafe.to_constr princ_type in
Functional_principles_types.generate_functional_principle
evd
interactive_proof
princ_type
None
None
(Array.of_list pconstants)
(* funs_kn *)
i
(continue_proof 0 [|funs_kn.(i)|])
)
0
fix_rec_l
in
Array.iter (add_Function is_general) funs_kn;
()
end
with e when CErrors.noncritical e ->
on_error names e
let register_struct is_rec (fixpoint_exprl:(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) =
match fixpoint_exprl with
| [(((_,fname),pl),_,bl,ret_type,body),_] when not is_rec ->
let body = match body with | Some body -> body | None -> user_err ~hdr:"Function" (str "Body of Function must be given") in
Command.do_definition
fname
(Decl_kinds.Global,(Flags.is_universe_polymorphism ()),Decl_kinds.Definition) pl
bl None body (Some ret_type) (Lemmas.mk_hook (fun _ _ -> ()));
let evd,rev_pconstants =
List.fold_left
(fun (evd,l) ((((_,fname),_),_,_,_,_),_) ->
let evd,c =
Evd.fresh_global
(Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident fname)) in
let c = EConstr.of_constr c in
let (cst, u) = destConst evd c in
let u = EInstance.kind evd u in
evd,((cst, u) :: l)
)
(Evd.from_env (Global.env ()),[])
fixpoint_exprl
in
evd,List.rev rev_pconstants
| _ ->
Command.do_fixpoint Global (Flags.is_universe_polymorphism ()) fixpoint_exprl;
let evd,rev_pconstants =
List.fold_left
(fun (evd,l) ((((_,fname),_),_,_,_,_),_) ->
let evd,c =
Evd.fresh_global
(Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident fname)) in
let c = EConstr.of_constr c in
let (cst, u) = destConst evd c in
let u = EInstance.kind evd u in
evd,((cst, u) :: l)
)
(Evd.from_env (Global.env ()),[])
fixpoint_exprl
in
evd,List.rev rev_pconstants
let generate_correction_proof_wf f_ref tcc_lemma_ref
is_mes functional_ref eq_ref rec_arg_num rec_arg_type nb_args relation
(_: int) (_:Names.Constant.t array) (_:EConstr.constr array) (_:int) : Tacmach.tactic =
Functional_principles_proofs.prove_principle_for_gen
(f_ref,functional_ref,eq_ref)
tcc_lemma_ref is_mes rec_arg_num rec_arg_type relation
let register_wf ?(is_mes=false) fname rec_impls wf_rel_expr wf_arg using_lemmas args ret_type body
pre_hook
=
let type_of_f = Constrexpr_ops.mkCProdN args ret_type in
let rec_arg_num =
let names =
List.map
snd
(Constrexpr_ops.names_of_local_assums args)
in
match wf_arg with
| None ->
if Int.equal (List.length names) 1 then 1
else error "Recursive argument must be specified"
| Some wf_arg ->
List.index Name.equal (Name wf_arg) names
in
let unbounded_eq =
let f_app_args =
CAst.make @@ Constrexpr.CAppExpl(
(None,(Ident (Loc.tag fname)),None) ,
(List.map
(function
| _,Anonymous -> assert false
| _,Name e -> (Constrexpr_ops.mkIdentC e)
)
(Constrexpr_ops.names_of_local_assums args)
)
)
in
CAst.make @@ Constrexpr.CApp ((None,Constrexpr_ops.mkRefC (Qualid (Loc.tag (qualid_of_string "Logic.eq")))),
[(f_app_args,None);(body,None)])
in
let eq = Constrexpr_ops.mkCProdN args unbounded_eq in
let hook ((f_ref,_) as fconst) tcc_lemma_ref (functional_ref,_) (eq_ref,_) rec_arg_num rec_arg_type
nb_args relation =
try
pre_hook [fconst]
(generate_correction_proof_wf f_ref tcc_lemma_ref is_mes
functional_ref eq_ref rec_arg_num rec_arg_type nb_args relation
);
derive_inversion [fname]
with e when CErrors.noncritical e ->
(* No proof done *)
()
in
Recdef.recursive_definition
is_mes fname rec_impls
type_of_f
wf_rel_expr
rec_arg_num
eq
hook
using_lemmas
let register_mes fname rec_impls wf_mes_expr wf_rel_expr_opt wf_arg using_lemmas args ret_type body =
let wf_arg_type,wf_arg =
match wf_arg with
| None ->
begin
match args with
| [Constrexpr.CLocalAssum ([(_,Name x)],k,t)] -> t,x
| _ -> error "Recursive argument must be specified"
end
| Some wf_args ->
try
match
List.find
(function
| Constrexpr.CLocalAssum(l,k,t) ->
List.exists
(function (_,Name id) -> Id.equal id wf_args | _ -> false)
l
| _ -> false
)
args
with
| Constrexpr.CLocalAssum(_,k,t) -> t,wf_args
| _ -> assert false
with Not_found -> assert false
in
let wf_rel_from_mes,is_mes =
match wf_rel_expr_opt with
| None ->
let ltof =
let make_dir l = DirPath.make (List.rev_map Id.of_string l) in
Libnames.Qualid (Loc.tag @@ Libnames.qualid_of_path
(Libnames.make_path (make_dir ["Arith";"Wf_nat"]) (Id.of_string "ltof")))
in
let fun_from_mes =
let applied_mes =
Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC wf_arg]) in
Constrexpr_ops.mkLambdaC ([(Loc.tag @@ Name wf_arg)],Constrexpr_ops.default_binder_kind,wf_arg_type,applied_mes)
in
let wf_rel_from_mes =
Constrexpr_ops.mkAppC(Constrexpr_ops.mkRefC ltof,[wf_arg_type;fun_from_mes])
in
wf_rel_from_mes,true
| Some wf_rel_expr ->
let wf_rel_with_mes =
let a = Names.Id.of_string "___a" in
let b = Names.Id.of_string "___b" in
Constrexpr_ops.mkLambdaC(
[Loc.tag @@ Name a;Loc.tag @@ Name b],
Constrexpr.Default Explicit,
wf_arg_type,
Constrexpr_ops.mkAppC(wf_rel_expr,
[
Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC a]);
Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC b])
])
)
in
wf_rel_with_mes,false
in
register_wf ~is_mes:is_mes fname rec_impls wf_rel_from_mes (Some wf_arg)
using_lemmas args ret_type body
let map_option f = function
| None -> None
| Some v -> Some (f v)
open Constrexpr
let rec rebuild_bl aux bl typ =
match bl,typ with
| [], _ -> List.rev aux,typ
| (CLocalAssum(nal,bk,_))::bl',typ ->
rebuild_nal aux bk bl' nal typ
| (CLocalDef(na,_,_))::bl',{ CAst.v = CLetIn(_,nat,ty,typ') } ->
rebuild_bl (Constrexpr.CLocalDef(na,nat,ty)::aux)
bl' typ'
| _ -> assert false
and rebuild_nal aux bk bl' nal typ =
match nal,typ with
| _,{ CAst.v = CProdN([],typ) } -> rebuild_nal aux bk bl' nal typ
| [], _ -> rebuild_bl aux bl' typ
| na::nal,{ CAst.v = CProdN((na'::nal',bk',nal't)::rest,typ') } ->
if Name.equal (snd na) (snd na') || Name.is_anonymous (snd na')
then
let assum = CLocalAssum([na],bk,nal't) in
let new_rest = if nal' = [] then rest else ((nal',bk',nal't)::rest) in
rebuild_nal
(assum::aux)
bk
bl'
nal
(CAst.make @@ CProdN(new_rest,typ'))
else
let assum = CLocalAssum([na'],bk,nal't) in
let new_rest = if nal' = [] then rest else ((nal',bk',nal't)::rest) in
rebuild_nal
(assum::aux)
bk
bl'
(na::nal)
(CAst.make @@ CProdN(new_rest,typ'))
| _ ->
assert false
let rebuild_bl aux bl typ = rebuild_bl aux bl typ
let recompute_binder_list (fixpoint_exprl : (Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) =
let fixl,ntns = Command.extract_fixpoint_components false fixpoint_exprl in
let ((_,_,typel),_,ctx,_) = Command.interp_fixpoint fixl ntns in
let constr_expr_typel =
with_full_print (List.map (fun c -> Constrextern.extern_constr false (Global.env ()) (Evd.from_ctx ctx) (EConstr.of_constr c))) typel in
let fixpoint_exprl_with_new_bl =
List.map2 (fun ((lna,(rec_arg_opt,rec_order),bl,ret_typ,opt_body),notation_list) fix_typ ->
let new_bl',new_ret_type = rebuild_bl [] bl fix_typ in
(((lna,(rec_arg_opt,rec_order),new_bl',new_ret_type,opt_body),notation_list):(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list))
)
fixpoint_exprl constr_expr_typel
in
fixpoint_exprl_with_new_bl
let do_generate_principle pconstants on_error register_built interactive_proof
(fixpoint_exprl:(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) :unit =
List.iter (fun (_,l) -> if not (List.is_empty l) then error "Function does not support notations for now") fixpoint_exprl;
let _is_struct =
match fixpoint_exprl with
| [((_,(wf_x,Constrexpr.CWfRec wf_rel),_,_,_),_) as fixpoint_expr] ->
let (((((_,name),pl),_,args,types,body)),_) as fixpoint_expr =
match recompute_binder_list [fixpoint_expr] with
| [e] -> e
| _ -> assert false
in
let fixpoint_exprl = [fixpoint_expr] in
let body = match body with | Some body -> body | None -> user_err ~hdr:"Function" (str "Body of Function must be given") in
let recdefs,rec_impls = build_newrecursive fixpoint_exprl in
let using_lemmas = [] in
let pre_hook pconstants =
generate_principle
(ref (Evd.from_env (Global.env ())))
pconstants
on_error
true
register_built
fixpoint_exprl
recdefs
true
in
if register_built
then register_wf name rec_impls wf_rel (map_option snd wf_x) using_lemmas args types body pre_hook;
false
|[((_,(wf_x,Constrexpr.CMeasureRec(wf_mes,wf_rel_opt)),_,_,_),_) as fixpoint_expr] ->
let (((((_,name),_),_,args,types,body)),_) as fixpoint_expr =
match recompute_binder_list [fixpoint_expr] with
| [e] -> e
| _ -> assert false
in
let fixpoint_exprl = [fixpoint_expr] in
let recdefs,rec_impls = build_newrecursive fixpoint_exprl in
let using_lemmas = [] in
let body = match body with | Some body -> body | None -> user_err ~hdr:"Function" (str "Body of Function must be given") in
let pre_hook pconstants =
generate_principle
(ref (Evd.from_env (Global.env ())))
pconstants
on_error
true
register_built
fixpoint_exprl
recdefs
true
in
if register_built
then register_mes name rec_impls wf_mes wf_rel_opt (map_option snd wf_x) using_lemmas args types body pre_hook;
true
| _ ->
List.iter (function ((_na,(_,ord),_args,_body,_type),_not) ->
match ord with
| Constrexpr.CMeasureRec _ | Constrexpr.CWfRec _ ->
error
("Cannot use mutual definition with well-founded recursion or measure")
| _ -> ()
)
fixpoint_exprl;
let fixpoint_exprl = recompute_binder_list fixpoint_exprl in
let fix_names =
List.map (function ((((_,name),_),_,_,_,_),_) -> name) fixpoint_exprl
in
(* ok all the expressions are structural *)
let recdefs,rec_impls = build_newrecursive fixpoint_exprl in
let is_rec = List.exists (is_rec fix_names) recdefs in
let evd,pconstants =
if register_built
then register_struct is_rec fixpoint_exprl
else (Evd.from_env (Global.env ()),pconstants)
in
let evd = ref evd in
generate_principle
(ref !evd)
pconstants
on_error
false
register_built
fixpoint_exprl
recdefs
interactive_proof
(Functional_principles_proofs.prove_princ_for_struct evd interactive_proof);
if register_built then begin derive_inversion fix_names; end;
true;
in
()
let rec add_args id new_args = CAst.map (function
| CRef (r,_) as b ->
begin match r with
| Libnames.Ident(loc,fname) when Id.equal fname id ->
CAppExpl((None,r,None),new_args)
| _ -> b
end
| CFix _ | CCoFix _ -> anomaly ~label:"add_args " (Pp.str "todo.")
| CProdN(nal,b1) ->
CProdN(List.map (fun (nal,k,b2) -> (nal,k,add_args id new_args b2)) nal,
add_args id new_args b1)
| CLambdaN(nal,b1) ->
CLambdaN(List.map (fun (nal,k,b2) -> (nal,k,add_args id new_args b2)) nal,
add_args id new_args b1)
| CLetIn(na,b1,t,b2) ->
CLetIn(na,add_args id new_args b1,Option.map (add_args id new_args) t,add_args id new_args b2)
| CAppExpl((pf,r,us),exprl) ->
begin
match r with
| Libnames.Ident(loc,fname) when Id.equal fname id ->
CAppExpl((pf,r,us),new_args@(List.map (add_args id new_args) exprl))
| _ -> CAppExpl((pf,r,us),List.map (add_args id new_args) exprl)
end
| CApp((pf,b),bl) ->
CApp((pf,add_args id new_args b),
List.map (fun (e,o) -> add_args id new_args e,o) bl)
| CCases(sty,b_option,cel,cal) ->
CCases(sty,Option.map (add_args id new_args) b_option,
List.map (fun (b,na,b_option) ->
add_args id new_args b,
na, b_option) cel,
List.map (fun (loc,(cpl,e)) -> Loc.tag ?loc @@ (cpl,add_args id new_args e)) cal
)
| CLetTuple(nal,(na,b_option),b1,b2) ->
CLetTuple(nal,(na,Option.map (add_args id new_args) b_option),
add_args id new_args b1,
add_args id new_args b2
)
| CIf(b1,(na,b_option),b2,b3) ->
CIf(add_args id new_args b1,
(na,Option.map (add_args id new_args) b_option),
add_args id new_args b2,
add_args id new_args b3
)
| CHole _
| CPatVar _
| CEvar _
| CPrim _
| CSort _ as b -> b
| CCast(b1,b2) ->
CCast(add_args id new_args b1,
Miscops.map_cast_type (add_args id new_args) b2)
| CRecord pars ->
CRecord (List.map (fun (e,o) -> e, add_args id new_args o) pars)
| CNotation _ -> anomaly ~label:"add_args " (Pp.str "CNotation.")
| CGeneralization _ -> anomaly ~label:"add_args " (Pp.str "CGeneralization.")
| CDelimiters _ -> anomaly ~label:"add_args " (Pp.str "CDelimiters.")
)
exception Stop of Constrexpr.constr_expr
(* [chop_n_arrow n t] chops the [n] first arrows in [t]
Acts on Constrexpr.constr_expr
*)
let rec chop_n_arrow n t =
if n <= 0
then t (* If we have already removed all the arrows then return the type *)
else (* If not we check the form of [t] *)
match t.CAst.v with
| Constrexpr.CProdN(nal_ta',t') -> (* If we have a forall, to result are possible :
either we need to discard more than the number of arrows contained
in this product declaration then we just recall [chop_n_arrow] on
the remaining number of arrow to chop and [t'] we discard it and
recall [chop_n_arrow], either this product contains more arrows
than the number we need to chop and then we return the new type
*)
begin
try
let new_n =
let rec aux (n:int) = function
[] -> n
| (nal,k,t'')::nal_ta' ->
let nal_l = List.length nal in
if n >= nal_l
then
aux (n - nal_l) nal_ta'
else
let new_t' = CAst.make @@
Constrexpr.CProdN(
((snd (List.chop n nal)),k,t'')::nal_ta',t')
in
raise (Stop new_t')
in
aux n nal_ta'
in
chop_n_arrow new_n t'
with Stop t -> t
end
| _ -> anomaly (Pp.str "Not enough products.")
let rec get_args b t : Constrexpr.local_binder_expr list *
Constrexpr.constr_expr * Constrexpr.constr_expr =
match b.CAst.v with
| Constrexpr.CLambdaN ((nal_ta), b') ->
begin
let n =
(List.fold_left (fun n (nal,_,_) ->
n+List.length nal) 0 nal_ta )
in
let nal_tas,b'',t'' = get_args b' (chop_n_arrow n t) in
(List.map (fun (nal,k,ta) ->
(Constrexpr.CLocalAssum (nal,k,ta))) nal_ta)@nal_tas, b'',t''
end
| _ -> [],b,t
let make_graph (f_ref:global_reference) =
let c,c_body =
match f_ref with
| ConstRef c ->
begin try c,Global.lookup_constant c
with Not_found ->
let sigma, env = Pfedit.get_current_context () in
raise (UserError (None,str "Cannot find " ++ Printer.pr_leconstr_env env sigma (mkConst c)) )
end
| _ -> raise (UserError (None, str "Not a function reference") )
in
(match Global.body_of_constant_body c_body with
| None -> error "Cannot build a graph over an axiom!"
| Some (body, _) ->
let env = Global.env () in
let sigma = Evd.from_env env in
let extern_body,extern_type =
with_full_print (fun () ->
(Constrextern.extern_constr false env sigma (EConstr.of_constr body),
Constrextern.extern_type false env sigma
(EConstr.of_constr (*FIXME*) c_body.const_type)
)
)
()
in
let (nal_tas,b,t) = get_args extern_body extern_type in
let expr_list =
match b.CAst.v with
| Constrexpr.CFix(l_id,fixexprl) ->
let l =
List.map
(fun (id,(n,recexp),bl,t,b) ->
let loc, rec_id = Option.get n in
let new_args =
List.flatten
(List.map
(function
| Constrexpr.CLocalDef (na,_,_)-> []
| Constrexpr.CLocalAssum (nal,_,_) ->
List.map
(fun (loc,n) -> CAst.make ?loc @@
CRef(Libnames.Ident(loc, Nameops.Name.get_id n),None))
nal
| Constrexpr.CLocalPattern _ -> assert false
)
nal_tas
)
in
let b' = add_args (snd id) new_args b in
((((id,None), ( Some (Loc.tag rec_id),CStructRec),nal_tas@bl,t,Some b'),[]):(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list))
)
fixexprl
in
l
| _ ->
let id = Label.to_id (Constant.label c) in
[(((Loc.tag id),None),(None,Constrexpr.CStructRec),nal_tas,t,Some b),[]]
in
let mp,dp,_ = Constant.repr3 c in
do_generate_principle [c,Univ.Instance.empty] error_error false false expr_list;
(* We register the infos *)
List.iter
(fun ((((_,id),_),_,_,_,_),_) -> add_Function false (Constant.make3 mp dp (Label.of_id id)))
expr_list)
let do_generate_principle = do_generate_principle [] warning_error true
|