aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins/funind/glob_termops.ml
blob: 7cb35838c7f9519838497d4e68cb21a7161504c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
open Pp
open Glob_term
open CErrors
open Util
open Names
open Decl_kinds
open Misctypes

(*
   Some basic functions to rebuild glob_constr
   In each of them the location is Loc.ghost
*)
let mkGRef ref          = CAst.make @@ GRef(ref,None)
let mkGVar id           = CAst.make @@ GVar(id)
let mkGApp(rt,rtl)      = CAst.make @@ GApp(rt,rtl)
let mkGLambda(n,t,b)    = CAst.make @@ GLambda(n,Explicit,t,b)
let mkGProd(n,t,b)      = CAst.make @@ GProd(n,Explicit,t,b)
let mkGLetIn(n,b,t,c)   = CAst.make @@ GLetIn(n,b,t,c)
let mkGCases(rto,l,brl) = CAst.make @@ GCases(Term.RegularStyle,rto,l,brl)
let mkGSort s           = CAst.make @@ GSort(s)
let mkGHole ()          = CAst.make @@ GHole(Evar_kinds.BinderType Anonymous,Misctypes.IntroAnonymous,None)
let mkGCast(b,t)        = CAst.make @@ GCast(b,CastConv t)

(*
  Some basic functions to decompose glob_constrs
  These are analogous to the ones constrs
*)
let glob_decompose_prod =
  let rec glob_decompose_prod args = function
  | { CAst.v = GProd(n,k,t,b) } ->
      glob_decompose_prod ((n,t)::args) b
  | rt -> args,rt
  in
  glob_decompose_prod []

let glob_decompose_prod_or_letin =
  let rec glob_decompose_prod args = function
  | { CAst.v = GProd(n,k,t,b) } ->
      glob_decompose_prod ((n,None,Some t)::args) b
  | { CAst.v = GLetIn(n,b,t,c) } ->
      glob_decompose_prod ((n,Some b,t)::args) c
  | rt -> args,rt
  in
  glob_decompose_prod []

let glob_compose_prod =
  List.fold_left (fun b (n,t) -> mkGProd(n,t,b))

let glob_compose_prod_or_letin =
  List.fold_left (
      fun concl decl ->
	match decl with
	  | (n,None,Some t) -> mkGProd(n,t,concl)
	  | (n,Some bdy,t) -> mkGLetIn(n,bdy,t,concl)
	  | _ -> assert false)

let glob_decompose_prod_n n =
  let rec glob_decompose_prod i args c =
    if i<=0 then args,c
    else
      match c with
	| { CAst.v = GProd(n,_,t,b) } ->
	    glob_decompose_prod (i-1) ((n,t)::args) b
	| rt -> args,rt
  in
  glob_decompose_prod n []


let glob_decompose_prod_or_letin_n n =
  let rec glob_decompose_prod i args c =
    if i<=0 then args,c
    else
      match c with
	| { CAst.v = GProd(n,_,t,b) } ->
	    glob_decompose_prod (i-1) ((n,None,Some t)::args) b
	| { CAst.v = GLetIn(n,b,t,c) } ->
	    glob_decompose_prod (i-1) ((n,Some b,t)::args) c
	| rt -> args,rt
  in
  glob_decompose_prod n []


let glob_decompose_app =
  let rec decompose_rapp acc rt =
(*     msgnl (str "glob_decompose_app on : "++ Printer.pr_glob_constr rt); *)
    match rt with
    | { CAst.v = GApp(rt,rtl) } ->
	decompose_rapp (List.fold_left (fun y x -> x::y) acc rtl) rt
    | rt -> rt,List.rev acc
  in
  decompose_rapp []




(* [glob_make_eq t1 t2] build the glob_constr corresponding to [t2 = t1] *)
let glob_make_eq ?(typ= mkGHole ()) t1 t2  =
  mkGApp(mkGRef (Lazy.force Coqlib.coq_eq_ref),[typ;t2;t1])

(* [glob_make_neq t1 t2] build the glob_constr corresponding to [t1 <> t2] *)
let glob_make_neq t1 t2 =
  mkGApp(mkGRef (Lazy.force Coqlib.coq_not_ref),[glob_make_eq t1 t2])

(* [glob_make_or P1 P2] build the glob_constr corresponding to [P1 \/ P2] *)
let glob_make_or t1 t2 = mkGApp (mkGRef(Lazy.force Coqlib.coq_or_ref),[t1;t2])

(* [glob_make_or_list [P1;...;Pn]] build the glob_constr corresponding
   to [P1 \/ ( .... \/ Pn)]
*)
let rec glob_make_or_list = function
  | [] -> invalid_arg "mk_or"
  | [e] -> e
  | e::l -> glob_make_or e (glob_make_or_list l)


let remove_name_from_mapping mapping na =
  match na with
    | Anonymous -> mapping
    | Name id -> Id.Map.remove id mapping

let change_vars =
  let rec change_vars mapping rt =
    CAst.map_with_loc (fun ?loc -> function
      | GRef _ as x -> x
      | GVar id ->
	  let new_id =
	    try
	      Id.Map.find id mapping
	    with Not_found -> id
	  in
	  GVar(new_id)
      | GEvar _ as x   -> x
      | GPatVar _ as x -> x
      | GApp(rt',rtl) ->
	  GApp(change_vars mapping rt',
	       List.map (change_vars mapping) rtl
	      )
      | GLambda(name,k,t,b) ->
	  GLambda(name,
		  k,
		  change_vars mapping t,
		  change_vars (remove_name_from_mapping mapping name) b
		 )
      | GProd(name,k,t,b) ->
	  GProd(  name,
	          k,
		  change_vars mapping t,
		  change_vars (remove_name_from_mapping mapping name) b
		 )
      | GLetIn(name,def,typ,b) ->
	  GLetIn(name,
		 change_vars mapping def,
		 Option.map (change_vars mapping) typ,
		 change_vars (remove_name_from_mapping mapping name) b
		)
      | GLetTuple(nal,(na,rto),b,e) ->
	  let new_mapping = List.fold_left remove_name_from_mapping mapping nal in
	  GLetTuple(nal,
		    (na, Option.map (change_vars mapping) rto),
		    change_vars mapping b,
		    change_vars new_mapping e
		   )
      | GCases(sty,infos,el,brl) ->
	  GCases(sty,
		 infos,
		 List.map (fun (e,x) -> (change_vars mapping e,x)) el,
		 List.map (change_vars_br mapping) brl
		)
      | GIf(b,(na,e_option),lhs,rhs) ->
	  GIf(change_vars mapping b,
	      (na,Option.map (change_vars mapping) e_option),
	      change_vars mapping lhs,
	      change_vars mapping rhs
	     )
      | GRec _ -> user_err ?loc Pp.(str "Local (co)fixes are not supported")
      | GSort _ as x -> x
      | GHole _ as x -> x
      | GCast(b,c) ->
	  GCast(change_vars mapping b,
		Miscops.map_cast_type (change_vars mapping) c)
      ) rt
  and change_vars_br mapping ((loc,(idl,patl,res)) as br) =
    let new_mapping = List.fold_right Id.Map.remove idl mapping in
    if Id.Map.is_empty new_mapping
    then br
    else (loc,(idl,patl,change_vars new_mapping res))
  in
  change_vars



let rec alpha_pat excluded pat =
  let loc = pat.CAst.loc in
  match pat.CAst.v with
    | PatVar Anonymous ->
	let new_id = Indfun_common.fresh_id excluded "_x" in
	(CAst.make ?loc @@ PatVar(Name new_id)),(new_id::excluded),Id.Map.empty
    | PatVar(Name id) ->
	if Id.List.mem id excluded
	then
	  let new_id = Namegen.next_ident_away id excluded in
	  (CAst.make ?loc @@ PatVar(Name new_id)),(new_id::excluded),
	(Id.Map.add id new_id Id.Map.empty)
	else pat, excluded,Id.Map.empty
    | PatCstr(constr,patl,na) ->
	let new_na,new_excluded,map =
	  match na with
	    | Name id when Id.List.mem id excluded ->
		let new_id = Namegen.next_ident_away id excluded in
		Name new_id,new_id::excluded, Id.Map.add id new_id Id.Map.empty
	    | _ -> na,excluded,Id.Map.empty
	in
	let new_patl,new_excluded,new_map =
	  List.fold_left
	    (fun (patl,excluded,map) pat ->
	       let new_pat,new_excluded,new_map = alpha_pat excluded pat in
	       (new_pat::patl,new_excluded,Id.Map.fold Id.Map.add new_map map)
	    )
	    ([],new_excluded,map)
	    patl
	in
        (CAst.make ?loc @@ PatCstr(constr,List.rev new_patl,new_na)),new_excluded,new_map

let alpha_patl excluded patl  =
  let patl,new_excluded,map =
    List.fold_left
      (fun (patl,excluded,map) pat ->
	 let new_pat,new_excluded,new_map = alpha_pat excluded pat in
	 new_pat::patl,new_excluded,(Id.Map.fold Id.Map.add new_map map)
      )
      ([],excluded,Id.Map.empty)
      patl
  in
  (List.rev patl,new_excluded,map)




let raw_get_pattern_id pat acc =
  let rec get_pattern_id pat =
    match pat.CAst.v with
      | PatVar(Anonymous) -> assert false
      | PatVar(Name id) ->
	  [id]
      | PatCstr(constr,patternl,_) ->
	  List.fold_right
	  (fun pat idl ->
	     let idl' = get_pattern_id pat in
	     idl'@idl
	  )
	    patternl
	    []
  in
  (get_pattern_id pat)@acc

let get_pattern_id pat = raw_get_pattern_id pat []

let rec alpha_rt excluded rt =
  let loc = rt.CAst.loc in
  let new_rt = CAst.make ?loc @@
    match rt.CAst.v with
      | GRef _ | GVar _ | GEvar _ | GPatVar _ as rt -> rt
      | GLambda(Anonymous,k,t,b) ->
	  let new_id = Namegen.next_ident_away (Id.of_string "_x") excluded in
	  let new_excluded = new_id :: excluded in
	  let new_t = alpha_rt new_excluded t in
	  let new_b = alpha_rt new_excluded b in
	  GLambda(Name new_id,k,new_t,new_b)
      | GProd(Anonymous,k,t,b) ->
	let new_t = alpha_rt excluded t in
	let new_b = alpha_rt excluded b in
	GProd(Anonymous,k,new_t,new_b)
    | GLetIn(Anonymous,b,t,c) ->
	let new_b = alpha_rt excluded b in
	let new_t = Option.map (alpha_rt excluded) t in
	let new_c = alpha_rt excluded c in
	GLetIn(Anonymous,new_b,new_t,new_c)
    | GLambda(Name id,k,t,b) ->
	let new_id = Namegen.next_ident_away id excluded in
	let t,b =
	  if Id.equal new_id id
	  then t, b
	  else
	    let replace = change_vars (Id.Map.add id new_id Id.Map.empty) in
	    (t,replace b)
	in
	let new_excluded = new_id::excluded in
	let new_t = alpha_rt new_excluded t in
	let new_b = alpha_rt new_excluded b in
	GLambda(Name new_id,k,new_t,new_b)
    | GProd(Name id,k,t,b) ->
	let new_id = Namegen.next_ident_away id excluded in
	let new_excluded = new_id::excluded in
	let t,b =
	  if Id.equal new_id id
	  then t,b
	  else
	    let replace = change_vars (Id.Map.add id new_id Id.Map.empty) in
	    (t,replace b)
	in
	let new_t = alpha_rt new_excluded t in
	let new_b = alpha_rt new_excluded b in
	GProd(Name new_id,k,new_t,new_b)
    | GLetIn(Name id,b,t,c) ->
	let new_id = Namegen.next_ident_away id excluded in
	let c =
	  if Id.equal new_id id then c
	  else change_vars (Id.Map.add id new_id Id.Map.empty) c
	in
	let new_excluded = new_id::excluded in
	let new_b = alpha_rt new_excluded b in
	let new_t = Option.map (alpha_rt new_excluded) t in
	let new_c = alpha_rt new_excluded c in
	GLetIn(Name new_id,new_b,new_t,new_c)

    | GLetTuple(nal,(na,rto),t,b) ->
	let rev_new_nal,new_excluded,mapping =
	  List.fold_left
	    (fun (nal,excluded,mapping) na ->
	       match na with
		 | Anonymous -> (na::nal,excluded,mapping)
		 | Name id ->
		     let new_id = Namegen.next_ident_away id excluded in
		     if Id.equal new_id id
		     then
		       na::nal,id::excluded,mapping
		     else
		       (Name new_id)::nal,id::excluded,(Id.Map.add id new_id mapping)
	    )
	    ([],excluded,Id.Map.empty)
	    nal
	in
	let new_nal = List.rev rev_new_nal in
	let new_rto,new_t,new_b =
	  if Id.Map.is_empty mapping
	  then rto,t,b
	  else let replace = change_vars mapping in
	  (Option.map replace rto, t,replace b)
	in
	let new_t = alpha_rt new_excluded new_t in
	let new_b = alpha_rt new_excluded new_b in
	let new_rto = Option.map (alpha_rt new_excluded) new_rto  in
	GLetTuple(new_nal,(na,new_rto),new_t,new_b)
    | GCases(sty,infos,el,brl) ->
	let new_el =
	  List.map (function (rt,i) -> alpha_rt excluded rt, i) el
	in
	GCases(sty,infos,new_el,List.map (alpha_br excluded) brl)
    | GIf(b,(na,e_o),lhs,rhs) ->
	GIf(alpha_rt excluded b,
	    (na,Option.map (alpha_rt excluded) e_o),
	    alpha_rt excluded lhs,
	    alpha_rt excluded rhs
	   )
    | GRec _ -> user_err Pp.(str "Not handled GRec")
    | GSort _
    | GHole _ as rt -> rt
    | GCast (b,c) ->
	GCast(alpha_rt excluded b,
	      Miscops.map_cast_type (alpha_rt excluded) c)
    | GApp(f,args) ->
	GApp(alpha_rt excluded f,
	     List.map (alpha_rt excluded) args
	    )
  in
  new_rt

and alpha_br excluded (loc,(ids,patl,res)) =
  let new_patl,new_excluded,mapping = alpha_patl excluded patl in
  let new_ids = List.fold_right raw_get_pattern_id new_patl [] in
  let new_excluded = new_ids@excluded in
  let renamed_res = change_vars mapping res in
  let new_res = alpha_rt new_excluded renamed_res in
  (loc,(new_ids,new_patl,new_res))

(*
   [is_free_in id rt] checks if [id] is a free variable in [rt]
*)
let is_free_in id =
  let rec is_free_in x = CAst.with_loc_val (fun ?loc -> function
    | GRef _ ->  false
    | GVar id' -> Id.compare id' id == 0
    | GEvar _ -> false
    | GPatVar _ -> false
    | GApp(rt,rtl) -> List.exists is_free_in (rt::rtl)
    | GLambda(n,_,t,b) | GProd(n,_,t,b) ->
	let check_in_b =
	  match n with
	    | Name id' -> not (Id.equal id' id)
	    | _ -> true
	in
	is_free_in t || (check_in_b && is_free_in b)
    | GLetIn(n,b,t,c) ->
	let check_in_c =
	  match n with
	    | Name id' -> not (Id.equal id' id)
	    | _ -> true
	in
	is_free_in b || Option.cata is_free_in true t || (check_in_c && is_free_in c)
    | GCases(_,_,el,brl) ->
	(List.exists (fun (e,_) -> is_free_in e) el) ||
	  List.exists is_free_in_br brl
    | GLetTuple(nal,_,b,t) ->
	let check_in_nal =
	  not (List.exists (function Name id' -> Id.equal id' id | _ -> false) nal)
	in
	is_free_in t  || (check_in_nal && is_free_in b)

    | GIf(cond,_,br1,br2) ->
	is_free_in cond || is_free_in br1 || is_free_in br2
    | GRec _  -> user_err Pp.(str "Not handled GRec")
    | GSort _ -> false
    | GHole _ -> false
    | GCast (b,(CastConv t|CastVM t|CastNative t)) -> is_free_in b || is_free_in t
    | GCast (b,CastCoerce) -> is_free_in b
    ) x
  and is_free_in_br (_,(ids,_,rt)) =
    (not (Id.List.mem id ids)) && is_free_in rt
  in
  is_free_in



let rec pattern_to_term pt = CAst.with_val (function
  | PatVar Anonymous -> assert false
  | PatVar(Name id) ->
	mkGVar id
  | PatCstr(constr,patternl,_) ->
      let cst_narg =
	Inductiveops.constructor_nallargs_env
	  (Global.env ())
	  constr
      in
      let implicit_args =
	Array.to_list
	  (Array.init
	     (cst_narg - List.length patternl)
	     (fun _ -> mkGHole ())
	  )
      in
      let patl_as_term =
	List.map pattern_to_term patternl
      in
      mkGApp(mkGRef(Globnames.ConstructRef constr),
	     implicit_args@patl_as_term
	    )
  ) pt


let replace_var_by_term x_id term =
  let rec replace_var_by_pattern x = CAst.map (function
      | GVar id when Id.compare id x_id == 0 -> term.CAst.v
      | GRef _
      | GVar _
      | GEvar _
      | GPatVar _ as rt -> rt
      | GApp(rt',rtl) ->
	  GApp(replace_var_by_pattern rt',
	       List.map replace_var_by_pattern rtl
	      )
      | GLambda(Name id,_,_,_) as rt when Id.compare id x_id == 0 -> rt
      | GLambda(name,k,t,b) ->
	  GLambda(name,
		  k,
		  replace_var_by_pattern t,
		  replace_var_by_pattern b
		 )
      | GProd(Name id,_,_,_) as rt when Id.compare id x_id == 0 -> rt
      | GProd(name,k,t,b) ->
	  GProd(  name,
	          k,
		  replace_var_by_pattern t,
		  replace_var_by_pattern b
		 )
      | GLetIn(Name id,_,_,_) as rt when Id.compare id x_id == 0 -> rt
      | GLetIn(name,def,typ,b) ->
	  GLetIn(name,
		 replace_var_by_pattern def,
		 Option.map (replace_var_by_pattern) typ,
		 replace_var_by_pattern b
		)
      | GLetTuple(nal,_,_,_) as rt
	  when List.exists (function Name id -> Id.equal id x_id | _ -> false) nal  ->
	  rt
      | GLetTuple(nal,(na,rto),def,b) ->
	  GLetTuple(nal,
		    (na,Option.map replace_var_by_pattern rto),
		    replace_var_by_pattern def,
		    replace_var_by_pattern b
		   )
      | GCases(sty,infos,el,brl) ->
	  GCases(sty,
		 infos,
		 List.map (fun (e,x) -> (replace_var_by_pattern e,x)) el,
		 List.map replace_var_by_pattern_br brl
		)
      | GIf(b,(na,e_option),lhs,rhs) ->
	  GIf(replace_var_by_pattern b,
	      (na,Option.map replace_var_by_pattern e_option),
	      replace_var_by_pattern lhs,
	      replace_var_by_pattern rhs
	     )
      | GRec _ -> raise (UserError(None,str "Not handled GRec"))
      | GSort _
      | GHole _ as rt -> rt
      | GCast(b,c) ->
	  GCast(replace_var_by_pattern b,
		Miscops.map_cast_type replace_var_by_pattern c)
    ) x
  and replace_var_by_pattern_br ((loc,(idl,patl,res)) as br) =
    if List.exists (fun id -> Id.compare id x_id == 0) idl
    then br
    else (loc,(idl,patl,replace_var_by_pattern res))
  in
  replace_var_by_pattern




(* checking unifiability of patterns *)
exception NotUnifiable

let rec are_unifiable_aux  = function
  | [] -> ()
  | eq::eqs ->
      let open CAst in
      match eq with
	 | { v = PatVar _ },_ | _, { v = PatVar _ } -> are_unifiable_aux eqs
	 | { v = PatCstr(constructor1,cpl1,_) }, { v = PatCstr(constructor2,cpl2,_) } ->
	     if not (eq_constructor constructor2 constructor1)
	     then raise NotUnifiable
	     else
	       let eqs' =
		 try (List.combine cpl1 cpl2) @ eqs
		 with Invalid_argument _ -> anomaly (Pp.str "are_unifiable_aux.")
	       in
	       are_unifiable_aux eqs'

let are_unifiable pat1 pat2 =
  try
    are_unifiable_aux [pat1,pat2];
    true
  with NotUnifiable -> false


let rec eq_cases_pattern_aux  = function
  | [] -> ()
  | eq::eqs ->
      let open CAst in
      match eq with
	 | { v = PatVar _ }, { v = PatVar _ } -> eq_cases_pattern_aux eqs
	 | { v = PatCstr(constructor1,cpl1,_) }, { v = PatCstr(constructor2,cpl2,_) } ->
	     if not (eq_constructor constructor2 constructor1)
	     then raise NotUnifiable
	     else
	       let eqs' =
		 try (List.combine cpl1 cpl2) @ eqs
		 with Invalid_argument _ -> anomaly (Pp.str "eq_cases_pattern_aux.")
	       in
	       eq_cases_pattern_aux eqs'
	 | _ -> raise NotUnifiable

let eq_cases_pattern pat1 pat2 =
  try
    eq_cases_pattern_aux [pat1,pat2];
    true
  with NotUnifiable -> false



let ids_of_pat =
  let rec ids_of_pat ids = CAst.with_val (function
    | PatVar Anonymous -> ids
    | PatVar(Name id) -> Id.Set.add id ids
    | PatCstr(_,patl,_) -> List.fold_left ids_of_pat ids patl
    )
  in
  ids_of_pat Id.Set.empty

let id_of_name = function
  | Anonymous -> Id.of_string "x"
  | Name x -> x

(* TODO: finish Rec caes *)
let ids_of_glob_constr c =
  let rec ids_of_glob_constr acc {loc; CAst.v = c} =
    let idof = id_of_name in
    match c with
      | GVar id -> id::acc
      | GApp (g,args) ->
          ids_of_glob_constr [] g @ List.flatten (List.map (ids_of_glob_constr []) args) @ acc
      | GLambda (na,k,ty,c) -> idof na :: ids_of_glob_constr [] ty @ ids_of_glob_constr [] c @ acc
      | GProd (na,k,ty,c) -> idof na :: ids_of_glob_constr [] ty @ ids_of_glob_constr [] c @ acc
      | GLetIn (na,b,t,c) -> idof na :: ids_of_glob_constr [] b @ Option.cata (ids_of_glob_constr []) [] t @ ids_of_glob_constr [] c @ acc
      | GCast (c,(CastConv t|CastVM t|CastNative t)) -> ids_of_glob_constr [] c @ ids_of_glob_constr [] t @ acc
      | GCast (c,CastCoerce) -> ids_of_glob_constr [] c @ acc
      | GIf (c,(na,po),b1,b2) -> ids_of_glob_constr [] c @ ids_of_glob_constr [] b1 @ ids_of_glob_constr [] b2 @ acc
      | GLetTuple (nal,(na,po),b,c) ->
          List.map idof nal @ ids_of_glob_constr [] b @ ids_of_glob_constr [] c @ acc
      | GCases (sty,rtntypopt,tml,brchl) ->
	  List.flatten (List.map (fun (_,(idl,patl,c)) -> idl @ ids_of_glob_constr [] c) brchl)
      | GRec _ -> failwith "Fix inside a constructor branch"
      | (GSort _ | GHole _ | GRef _ | GEvar _ | GPatVar _) -> []
  in
  (* build the set *)
  List.fold_left (fun acc x -> Id.Set.add x acc) Id.Set.empty (ids_of_glob_constr [] c)





let zeta_normalize =
  let rec zeta_normalize_term x = CAst.map (function
      | GRef _
      | GVar _
      | GEvar _
      | GPatVar _ as rt -> rt
      | GApp(rt',rtl) ->
	  GApp(zeta_normalize_term rt',
	       List.map zeta_normalize_term rtl
	      )
      | GLambda(name,k,t,b) ->
	  GLambda(name,
		  k,
		  zeta_normalize_term t,
		  zeta_normalize_term b
		 )
      | GProd(name,k,t,b) ->
	  GProd(name,
	        k,
		zeta_normalize_term t,
		zeta_normalize_term b
		 )
      | GLetIn(Name id,def,typ,b) ->
	  (zeta_normalize_term (replace_var_by_term id def b)).CAst.v
      | GLetIn(Anonymous,def,typ,b) ->
          (zeta_normalize_term b).CAst.v
      | GLetTuple(nal,(na,rto),def,b) ->
	  GLetTuple(nal,
		    (na,Option.map zeta_normalize_term rto),
		    zeta_normalize_term def,
		    zeta_normalize_term b
		   )
      | GCases(sty,infos,el,brl) ->
	  GCases(sty,
		 infos,
		 List.map (fun (e,x) -> (zeta_normalize_term e,x)) el,
		 List.map zeta_normalize_br brl
		)
      | GIf(b,(na,e_option),lhs,rhs) ->
	  GIf(zeta_normalize_term b,
	      (na,Option.map zeta_normalize_term e_option),
	      zeta_normalize_term lhs,
	      zeta_normalize_term rhs
	     )
      | GRec _ -> raise (UserError(None,str "Not handled GRec"))
      | GSort _
      | GHole _ as rt -> rt
      | GCast(b,c) ->
	  GCast(zeta_normalize_term b,
                Miscops.map_cast_type zeta_normalize_term c)
    ) x
  and zeta_normalize_br (loc,(idl,patl,res)) =
    (loc,(idl,patl,zeta_normalize_term res))
  in
  zeta_normalize_term




let expand_as =

  let rec add_as map ({loc; CAst.v = pat } as rt) =
    match pat with
      | PatVar _ -> map
      | PatCstr(_,patl,Name id) ->
	  Id.Map.add id (pattern_to_term rt) (List.fold_left add_as map patl)
      | PatCstr(_,patl,_) -> List.fold_left add_as map patl
  in
  let rec expand_as map = CAst.map (function
      | GRef _ | GEvar _ | GPatVar _ | GSort _ | GHole _ as rt -> rt
      | GVar id as rt ->
	  begin
	    try
	      (Id.Map.find id map).CAst.v
	    with Not_found -> rt
	  end
      | GApp(f,args) -> GApp(expand_as map f,List.map (expand_as map) args)
      | GLambda(na,k,t,b) -> GLambda(na,k,expand_as map t, expand_as map b)
      | GProd(na,k,t,b) -> GProd(na,k,expand_as map t, expand_as map b)
      | GLetIn(na,v,typ,b) -> GLetIn(na, expand_as map v,Option.map (expand_as map) typ,expand_as map b)
      | GLetTuple(nal,(na,po),v,b) ->
	  GLetTuple(nal,(na,Option.map (expand_as map) po),
		    expand_as map v, expand_as map b)
      | GIf(e,(na,po),br1,br2) ->
	  GIf(expand_as map e,(na,Option.map (expand_as map) po),
	      expand_as map br1, expand_as map br2)
      | GRec _ ->  user_err Pp.(str "Not handled GRec")
      | GCast(b,c) ->
	  GCast(expand_as map b,
		Miscops.map_cast_type (expand_as map) c)
      | GCases(sty,po,el,brl) ->
	  GCases(sty, Option.map (expand_as map) po, List.map (fun (rt,t) -> expand_as map rt,t) el,
		List.map (expand_as_br map) brl)
    )
  and expand_as_br map (loc,(idl,cpl,rt)) =
    (loc,(idl,cpl, expand_as (List.fold_left add_as map cpl) rt))
  in
  expand_as Id.Map.empty



           
(* [resolve_and_replace_implicits ?expected_type env sigma rt] solves implicits of [rt] w.r.t. [env] and [sigma] and then replace them by their solution 
 *)

exception Found of Evd.evar_info
let resolve_and_replace_implicits ?(flags=Pretyping.all_and_fail_flags) ?(expected_type=Pretyping.WithoutTypeConstraint) env sigma rt =
  let open Evd in
  let open Evar_kinds in 
  (* we first (pseudo) understand [rt] and get back the computed evar_map *)
  (* FIXME : JF (30/03/2017) I'm not completely sure to have split understand as needed. 
If someone knows how to prevent solved existantial removal in  understand, please do not hesitate to change the computation of [ctx] here *) 
  let ctx,_ = Pretyping.ise_pretype_gen flags env sigma Glob_ops.empty_lvar expected_type rt in
  let ctx, f = Evarutil.nf_evars_and_universes ctx in

  (* then we map [rt] to replace the implicit holes by their values *)
  let rec change rt =
    match rt.CAst.v with
    | GHole(ImplicitArg(grk,pk,bk),_,_) -> (* we only want to deal with implicit arguments *)
       (
         try (* we scan the new evar map to find the evar corresponding to this hole (by looking the source *)
           Evd.fold (* to simulate an iter *)
             (fun _ evi _ ->
               match evi.evar_source with
               | (loc_evi,ImplicitArg(gr_evi,p_evi,b_evi)) ->
                  if Globnames.eq_gr grk gr_evi && pk=p_evi && bk=b_evi  && rt.CAst.loc = loc_evi
                  then raise (Found evi)
               | _ -> ()
             )
             ctx
             ();
           (* the hole was not solved : we do nothing *)
           rt
         with Found evi -> (* we found the evar corresponding to this hole *)
           match evi.evar_body with
           | Evar_defined c ->
           (* we just have to lift the solution in glob_term *)
              Detyping.detype false [] env ctx (EConstr.of_constr (f c))
           | Evar_empty -> rt (* the hole was not solved : we do nothing *)
       )
    | _ -> Glob_ops.map_glob_constr change rt 
  in
  change rt