1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Ltac_plugin
open Util
open Pp
open Constrexpr
open Indfun_common
open Indfun
open Genarg
open Stdarg
open Misctypes
open Pcoq
open Pcoq.Prim
open Pcoq.Constr
open Pltac
DECLARE PLUGIN "recdef_plugin"
let pr_fun_ind_using prc prlc _ opt_c =
match opt_c with
| None -> mt ()
| Some b -> spc () ++ hov 2 (str "using" ++ spc () ++ Miscprint.pr_with_bindings prc prlc b)
(* Duplication of printing functions because "'a with_bindings" is
(internally) not uniform in 'a: indeed constr_with_bindings at the
"typed" level has type "open_constr with_bindings" instead of
"constr with_bindings"; hence, its printer cannot be polymorphic in
(prc,prlc)... *)
let pr_fun_ind_using_typed prc prlc _ opt_c =
match opt_c with
| None -> mt ()
| Some b ->
let (_, b) = b (Global.env ()) Evd.empty in
spc () ++ hov 2 (str "using" ++ spc () ++ Miscprint.pr_with_bindings prc prlc b)
ARGUMENT EXTEND fun_ind_using
TYPED AS constr_with_bindings option
PRINTED BY pr_fun_ind_using_typed
RAW_TYPED AS constr_with_bindings_opt
RAW_PRINTED BY pr_fun_ind_using
GLOB_TYPED AS constr_with_bindings_opt
GLOB_PRINTED BY pr_fun_ind_using
| [ "using" constr_with_bindings(c) ] -> [ Some c ]
| [ ] -> [ None ]
END
TACTIC EXTEND newfuninv
[ "functional" "inversion" quantified_hypothesis(hyp) reference_opt(fname) ] ->
[
Proofview.V82.tactic (Invfun.invfun hyp fname)
]
END
let pr_intro_as_pat _prc _ _ pat =
match pat with
| Some pat ->
spc () ++ str "as" ++ spc () ++ (* Miscprint.pr_intro_pattern prc pat *)
str"<simple_intropattern>"
| None -> mt ()
let out_disjunctive = function
| loc, IntroAction (IntroOrAndPattern l) -> (loc,l)
| _ -> CErrors.user_err Pp.(str "Disjunctive or conjunctive intro pattern expected.")
ARGUMENT EXTEND with_names TYPED AS intropattern_opt PRINTED BY pr_intro_as_pat
| [ "as" simple_intropattern(ipat) ] -> [ Some ipat ]
| [] ->[ None ]
END
let functional_induction b c x pat =
Proofview.V82.tactic (functional_induction true c x (Option.map out_disjunctive pat))
TACTIC EXTEND newfunind
["functional" "induction" ne_constr_list(cl) fun_ind_using(princl) with_names(pat)] ->
[
let c = match cl with
| [] -> assert false
| [c] -> c
| c::cl -> EConstr.applist(c,cl)
in
Extratactics.onSomeWithHoles (fun x -> functional_induction true c x pat) princl ]
END
(***** debug only ***)
TACTIC EXTEND snewfunind
["soft" "functional" "induction" ne_constr_list(cl) fun_ind_using(princl) with_names(pat)] ->
[
let c = match cl with
| [] -> assert false
| [c] -> c
| c::cl -> EConstr.applist(c,cl)
in
Extratactics.onSomeWithHoles (fun x -> functional_induction false c x pat) princl ]
END
let pr_constr_comma_sequence prc _ _ = prlist_with_sep pr_comma prc
ARGUMENT EXTEND constr_comma_sequence'
TYPED AS constr_list
PRINTED BY pr_constr_comma_sequence
| [ constr(c) "," constr_comma_sequence'(l) ] -> [ c::l ]
| [ constr(c) ] -> [ [c] ]
END
let pr_auto_using prc _prlc _prt = Pptactic.pr_auto_using prc
ARGUMENT EXTEND auto_using'
TYPED AS constr_list
PRINTED BY pr_auto_using
| [ "using" constr_comma_sequence'(l) ] -> [ l ]
| [ ] -> [ [] ]
END
module Gram = Pcoq.Gram
module Vernac = Pcoq.Vernac_
module Tactic = Pltac
type function_rec_definition_loc_argtype = (Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) Loc.located
let (wit_function_rec_definition_loc : function_rec_definition_loc_argtype Genarg.uniform_genarg_type) =
Genarg.create_arg "function_rec_definition_loc"
let function_rec_definition_loc =
Pcoq.create_generic_entry Pcoq.utactic "function_rec_definition_loc" (Genarg.rawwit wit_function_rec_definition_loc)
GEXTEND Gram
GLOBAL: function_rec_definition_loc ;
function_rec_definition_loc:
[ [ g = Vernac.rec_definition -> Loc.tag ~loc:!@loc g ]]
;
END
let () =
let raw_printer _ _ _ (loc,body) = Ppvernac.pr_rec_definition body in
Pptactic.declare_extra_vernac_genarg_pprule wit_function_rec_definition_loc raw_printer
(* TASSI: n'importe quoi ! *)
VERNAC COMMAND EXTEND Function
["Function" ne_function_rec_definition_loc_list_sep(recsl,"with")]
=> [ let hard = List.exists (function
| _,((_,(_,(CMeasureRec _|CWfRec _)),_,_,_),_) -> true
| _,((_,(_,CStructRec),_,_,_),_) -> false) recsl in
match
Vernac_classifier.classify_vernac
(Vernacexpr.(VernacExpr([], VernacFixpoint(Decl_kinds.NoDischarge, List.map snd recsl))))
with
| Vernacexpr.VtSideff ids, _ when hard ->
Vernacexpr.(VtStartProof ("Classic", GuaranteesOpacity, ids), VtLater)
| x -> x ]
-> [ do_generate_principle false (List.map snd recsl) ]
END
let pr_fun_scheme_arg (princ_name,fun_name,s) =
Names.Id.print princ_name ++ str " :=" ++ spc() ++ str "Induction for " ++
Libnames.pr_reference fun_name ++ spc() ++ str "Sort " ++
Termops.pr_sort_family s
VERNAC ARGUMENT EXTEND fun_scheme_arg
PRINTED BY pr_fun_scheme_arg
| [ ident(princ_name) ":=" "Induction" "for" reference(fun_name) "Sort" sort_family(s) ] -> [ (princ_name,fun_name,s) ]
END
let warning_error names e =
let (e, _) = ExplainErr.process_vernac_interp_error (e, Exninfo.null) in
match e with
| Building_graph e ->
let names = pr_enum Libnames.pr_reference names in
let error = if do_observe () then (spc () ++ CErrors.print e) else mt () in
warn_cannot_define_graph (names,error)
| Defining_principle e ->
let names = pr_enum Libnames.pr_reference names in
let error = if do_observe () then CErrors.print e else mt () in
warn_cannot_define_principle (names,error)
| _ -> raise e
VERNAC COMMAND EXTEND NewFunctionalScheme
["Functional" "Scheme" ne_fun_scheme_arg_list_sep(fas,"with") ]
=> [ Vernacexpr.VtSideff(List.map pi1 fas), Vernacexpr.VtLater ]
->
[
begin
try
Functional_principles_types.build_scheme fas
with Functional_principles_types.No_graph_found ->
begin
match fas with
| (_,fun_name,_)::_ ->
begin
begin
make_graph (Smartlocate.global_with_alias fun_name)
end
;
try Functional_principles_types.build_scheme fas
with Functional_principles_types.No_graph_found ->
CErrors.user_err Pp.(str "Cannot generate induction principle(s)")
| e when CErrors.noncritical e ->
let names = List.map (fun (_,na,_) -> na) fas in
warning_error names e
end
| _ -> assert false (* we can only have non empty list *)
end
| e when CErrors.noncritical e ->
let names = List.map (fun (_,na,_) -> na) fas in
warning_error names e
end
]
END
(***** debug only ***)
VERNAC COMMAND EXTEND NewFunctionalCase
["Functional" "Case" fun_scheme_arg(fas) ]
=> [ Vernacexpr.VtSideff[pi1 fas], Vernacexpr.VtLater ]
-> [ Functional_principles_types.build_case_scheme fas ]
END
(***** debug only ***)
VERNAC COMMAND EXTEND GenerateGraph CLASSIFIED AS QUERY
["Generate" "graph" "for" reference(c)] -> [ make_graph (Smartlocate.global_with_alias c) ]
END
|