1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Term
open Errors
open Util
open Formula
open Unify
open Tacmach
open Globnames
open Pp
let newcnt ()=
let cnt=ref (-1) in
fun b->if b then incr cnt;!cnt
let priority = (* pure heuristics, <=0 for non reversible *)
function
Right rf->
begin
match rf with
Rarrow -> 100
| Rand -> 40
| Ror -> -15
| Rfalse -> -50
| Rforall -> 100
| Rexists (_,_,_) -> -29
end
| Left lf ->
match lf with
Lfalse -> 999
| Land _ -> 90
| Lor _ -> 40
| Lforall (_,_,_) -> -30
| Lexists _ -> 60
| LA(_,lap) ->
match lap with
LLatom -> 0
| LLfalse (_,_) -> 100
| LLand (_,_) -> 80
| LLor (_,_) -> 70
| LLforall _ -> -20
| LLexists (_,_) -> 50
| LLarrow (_,_,_) -> -10
module OrderedFormula=
struct
type t=Formula.t
let compare e1 e2=
(priority e1.pat) - (priority e2.pat)
end
module OrderedConstr=
struct
type t=constr
let compare=constr_ord
end
type h_item = global_reference * (int*constr) option
module Hitem=
struct
type t = h_item
let compare (id1,co1) (id2,co2)=
let c = Globnames.RefOrdered.compare id1 id2 in
if c = 0 then
let cmp (i1, c1) (i2, c2) =
let c = Int.compare i1 i2 in
if c = 0 then OrderedConstr.compare c1 c2 else c
in
Option.compare cmp co1 co2
else c
end
module CM=Map.Make(OrderedConstr)
module History=Set.Make(Hitem)
let cm_add typ nam cm=
try
let l=CM.find typ cm in CM.add typ (nam::l) cm
with
Not_found->CM.add typ [nam] cm
let cm_remove typ nam cm=
try
let l=CM.find typ cm in
let l0=List.filter (fun id-> not (Globnames.eq_gr id nam)) l in
match l0 with
[]->CM.remove typ cm
| _ ->CM.add typ l0 cm
with Not_found ->cm
module HP=Heap.Functional(OrderedFormula)
type t=
{redexes:HP.t;
context:(global_reference list) CM.t;
latoms:constr list;
gl:types;
glatom:constr option;
cnt:counter;
history:History.t;
depth:int}
let deepen seq={seq with depth=seq.depth-1}
let record item seq={seq with history=History.add item seq.history}
let lookup item seq=
History.mem item seq.history ||
match item with
(_,None)->false
| (id,Some ((m,t) as c))->
let p (id2,o)=
match o with
None -> false
| Some ((m2,t2) as c2)-> Globnames.eq_gr id id2 && m2>m && more_general c2 c in
History.exists p seq.history
let add_formula side nam t seq gl=
match build_formula side nam t gl seq.cnt with
Left f->
begin
match side with
Concl ->
{seq with
redexes=HP.add f seq.redexes;
gl=f.constr;
glatom=None}
| _ ->
{seq with
redexes=HP.add f seq.redexes;
context=cm_add f.constr nam seq.context}
end
| Right t->
match side with
Concl ->
{seq with gl=t;glatom=Some t}
| _ ->
{seq with
context=cm_add t nam seq.context;
latoms=t::seq.latoms}
let re_add_formula_list lf seq=
let do_one f cm=
if f.id == dummy_id then cm
else cm_add f.constr f.id cm in
{seq with
redexes=List.fold_right HP.add lf seq.redexes;
context=List.fold_right do_one lf seq.context}
let find_left t seq=List.hd (CM.find t seq.context)
(*let rev_left seq=
try
let lpat=(HP.maximum seq.redexes).pat in
left_reversible lpat
with Heap.EmptyHeap -> false
*)
let rec take_formula seq=
let hd=HP.maximum seq.redexes
and hp=HP.remove seq.redexes in
if hd.id == dummy_id then
let nseq={seq with redexes=hp} in
if seq.gl==hd.constr then
hd,nseq
else
take_formula nseq (* discarding deprecated goal *)
else
hd,{seq with
redexes=hp;
context=cm_remove hd.constr hd.id seq.context}
let empty_seq depth=
{redexes=HP.empty;
context=CM.empty;
latoms=[];
gl=(mkMeta 1);
glatom=None;
cnt=newcnt ();
history=History.empty;
depth=depth}
let expand_constructor_hints =
List.map_append (function
| IndRef ind ->
List.init (Inductiveops.nconstructors ind)
(fun i -> ConstructRef (ind,i+1))
| gr ->
[gr])
let extend_with_ref_list l seq gl =
let l = expand_constructor_hints l in
let f gr (seq,gl) =
let gl, c = pf_eapply Evd.fresh_global gl gr in
let typ=(pf_type_of gl c) in
(add_formula Hyp gr typ seq gl,gl) in
List.fold_right f l (seq,gl)
open Auto
let extend_with_auto_hints l seq gl=
let seqref=ref seq in
let f p_a_t =
match p_a_t.code with
Res_pf (c,_) | Give_exact (c,_)
| Res_pf_THEN_trivial_fail (c,_) ->
(try
let gr = global_of_constr c in
let typ=(pf_type_of gl c) in
seqref:=add_formula Hint gr typ !seqref gl
with Not_found->())
| _-> () in
let g _ l = List.iter f l in
let h dbname=
let hdb=
try
searchtable_map dbname
with Not_found->
error ("Firstorder: "^dbname^" : No such Hint database") in
Hint_db.iter g hdb in
List.iter h l;
!seqref, gl (*FIXME: forgetting about universes*)
let print_cmap map=
let print_entry c l s=
let xc=Constrextern.extern_constr false (Global.env ()) c in
str "| " ++
prlist Printer.pr_global l ++
str " : " ++
Ppconstr.pr_constr_expr xc ++
cut () ++
s in
(v 0
(str "-----" ++
cut () ++
CM.fold print_entry map (mt ()) ++
str "-----"))
|