1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open CErrors
open Util
open Names
open EConstr
open Vars
open Tacmach.New
open Tactics
open Tacticals.New
open Proofview.Notations
open Termops
open Formula
open Sequent
open Globnames
open Locus
module NamedDecl = Context.Named.Declaration
type tactic = unit Proofview.tactic
type seqtac= (Sequent.t -> tactic) -> Sequent.t -> tactic
type lseqtac= global_reference -> seqtac
type 'a with_backtracking = tactic -> 'a
let wrap n b continue seq =
Proofview.Goal.nf_enter begin fun gls ->
Control.check_for_interrupt ();
let nc = Proofview.Goal.hyps gls in
let env=pf_env gls in
let sigma = project gls in
let rec aux i nc ctx=
if i<=0 then seq else
match nc with
[]->anomaly (Pp.str "Not the expected number of hyps.")
| nd::q->
let id = NamedDecl.get_id nd in
if occur_var env sigma id (pf_concl gls) ||
List.exists (occur_var_in_decl env sigma id) ctx then
(aux (i-1) q (nd::ctx))
else
add_formula env sigma Hyp (VarRef id) (NamedDecl.get_type nd) (aux (i-1) q (nd::ctx)) in
let seq1=aux n nc [] in
let seq2=if b then
add_formula env sigma Concl dummy_id (pf_concl gls) seq1 else seq1 in
continue seq2
end
let basename_of_global=function
VarRef id->id
| _->assert false
let clear_global=function
VarRef id-> clear [id]
| _->tclIDTAC
(* connection rules *)
let axiom_tac t seq =
Proofview.Goal.enter begin fun gl ->
try
pf_constr_of_global (find_left (project gl) t seq) >>= fun c ->
exact_no_check c
with Not_found -> tclFAIL 0 (Pp.str "No axiom link")
end
let ll_atom_tac a backtrack id continue seq =
let open EConstr in
tclIFTHENELSE
(tclTHENLIST
[(Proofview.tclEVARMAP >>= fun sigma ->
let gr =
try Proofview.tclUNIT (find_left sigma a seq)
with Not_found -> tclFAIL 0 (Pp.str "No link")
in
gr >>= fun gr ->
pf_constr_of_global gr >>= fun left ->
pf_constr_of_global id >>= fun id ->
generalize [(mkApp(id, [|left|]))]);
clear_global id;
intro])
(wrap 1 false continue seq) backtrack
(* right connectives rules *)
let and_tac backtrack continue seq=
tclIFTHENELSE simplest_split (wrap 0 true continue seq) backtrack
let or_tac backtrack continue seq=
tclORELSE
(any_constructor false (Some (tclCOMPLETE (wrap 0 true continue seq))))
backtrack
let arrow_tac backtrack continue seq=
tclIFTHENELSE intro (wrap 1 true continue seq)
(tclORELSE
(tclTHEN introf (tclCOMPLETE (wrap 1 true continue seq)))
backtrack)
(* left connectives rules *)
let left_and_tac ind backtrack id continue seq =
Proofview.Goal.enter begin fun gl ->
let n=(construct_nhyps (pf_env gl) ind).(0) in
tclIFTHENELSE
(tclTHENLIST
[(pf_constr_of_global id >>= simplest_elim);
clear_global id;
tclDO n intro])
(wrap n false continue seq)
backtrack
end
let left_or_tac ind backtrack id continue seq =
Proofview.Goal.enter begin fun gl ->
let v=construct_nhyps (pf_env gl) ind in
let f n=
tclTHENLIST
[clear_global id;
tclDO n intro;
wrap n false continue seq] in
tclIFTHENSVELSE
(pf_constr_of_global id >>= simplest_elim)
(Array.map f v)
backtrack
end
let left_false_tac id=
Tacticals.New.pf_constr_of_global id >>= simplest_elim
(* left arrow connective rules *)
(* We use this function for false, and, or, exists *)
let ll_ind_tac (ind,u as indu) largs backtrack id continue seq =
Proofview.Goal.enter begin fun gl ->
let rcs=ind_hyps (pf_env gl) (project gl) 0 indu largs in
let vargs=Array.of_list largs in
(* construire le terme H->B, le generaliser etc *)
let myterm idc i=
let rc=rcs.(i) in
let p=List.length rc in
let u = EInstance.make u in
let cstr=mkApp ((mkConstructU ((ind,(i+1)),u)),vargs) in
let vars=Array.init p (fun j->mkRel (p-j)) in
let capply=mkApp ((lift p cstr),vars) in
let head=mkApp ((lift p idc),[|capply|]) in
EConstr.it_mkLambda_or_LetIn head rc in
let lp=Array.length rcs in
let newhyps idc =List.init lp (myterm idc) in
tclIFTHENELSE
(tclTHENLIST
[(pf_constr_of_global id >>= fun idc -> generalize (newhyps idc));
clear_global id;
tclDO lp intro])
(wrap lp false continue seq) backtrack
end
let ll_arrow_tac a b c backtrack id continue seq=
let open EConstr in
let open Vars in
let cc=mkProd(Anonymous,a,(lift 1 b)) in
let d idc = mkLambda (Anonymous,b,
mkApp (idc, [|mkLambda (Anonymous,(lift 1 a),(mkRel 2))|])) in
tclORELSE
(tclTHENS (cut c)
[tclTHENLIST
[introf;
clear_global id;
wrap 1 false continue seq];
tclTHENS (cut cc)
[(pf_constr_of_global id >>= fun c -> exact_no_check c);
tclTHENLIST
[(pf_constr_of_global id >>= fun idc -> generalize [d idc]);
clear_global id;
introf;
introf;
tclCOMPLETE (wrap 2 true continue seq)]]])
backtrack
(* quantifier rules (easy side) *)
let forall_tac backtrack continue seq=
tclORELSE
(tclIFTHENELSE intro (wrap 0 true continue seq)
(tclORELSE
(tclTHEN introf (tclCOMPLETE (wrap 0 true continue seq)))
backtrack))
(if !qflag then
tclFAIL 0 (Pp.str "reversible in 1st order mode")
else
backtrack)
let left_exists_tac ind backtrack id continue seq =
Proofview.Goal.enter begin fun gl ->
let n=(construct_nhyps (pf_env gl) ind).(0) in
tclIFTHENELSE
(Tacticals.New.pf_constr_of_global id >>= simplest_elim)
(tclTHENLIST [clear_global id;
tclDO n intro;
(wrap (n-1) false continue seq)])
backtrack
end
let ll_forall_tac prod backtrack id continue seq=
tclORELSE
(tclTHENS (cut prod)
[tclTHENLIST
[intro;
(pf_constr_of_global id >>= fun idc ->
Proofview.Goal.enter begin fun gls->
let open EConstr in
let id0 = List.nth (pf_ids_of_hyps gls) 0 in
let term=mkApp(idc,[|mkVar(id0)|]) in
tclTHEN (generalize [term]) (clear [id0])
end);
clear_global id;
intro;
tclCOMPLETE (wrap 1 false continue (deepen seq))];
tclCOMPLETE (wrap 0 true continue (deepen seq))])
backtrack
(* rules for instantiation with unification moved to instances.ml *)
(* special for compatibility with old Intuition *)
let constant str = Universes.constr_of_global
@@ Coqlib.coq_reference "User" ["Init";"Logic"] str
let defined_connectives=lazy
[AllOccurrences,EvalConstRef (fst (Constr.destConst (constant "not")));
AllOccurrences,EvalConstRef (fst (Constr.destConst (constant "iff")))]
let normalize_evaluables=
Proofview.Goal.enter begin fun gl ->
unfold_in_concl (Lazy.force defined_connectives) <*>
tclMAP
(fun id -> unfold_in_hyp (Lazy.force defined_connectives) (id,InHypTypeOnly))
(pf_ids_of_hyps gl)
end
|