1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Unify
open Rules
open CErrors
open Util
open EConstr
open Vars
open Tacmach.New
open Tactics
open Tacticals.New
open Proofview.Notations
open Reductionops
open Formula
open Sequent
open Names
open Misctypes
open Context.Rel.Declaration
let compare_instance inst1 inst2=
let cmp c1 c2 = Constr.compare (EConstr.Unsafe.to_constr c1) (EConstr.Unsafe.to_constr c2) in
match inst1,inst2 with
Phantom(d1),Phantom(d2)->
(cmp d1 d2)
| Real((m1,c1),n1),Real((m2,c2),n2)->
((-) =? (-) ==? cmp) m2 m1 n1 n2 c1 c2
| Phantom(_),Real((m,_),_)-> if Int.equal m 0 then -1 else 1
| Real((m,_),_),Phantom(_)-> if Int.equal m 0 then 1 else -1
let compare_gr id1 id2 =
if id1==id2 then 0 else
if id1==dummy_id then 1
else if id2==dummy_id then -1
else Globnames.RefOrdered.compare id1 id2
module OrderedInstance=
struct
type t=instance * Globnames.global_reference
let compare (inst1,id1) (inst2,id2)=
(compare_instance =? compare_gr) inst2 inst1 id2 id1
(* we want a __decreasing__ total order *)
end
module IS=Set.Make(OrderedInstance)
let make_simple_atoms seq=
let ratoms=
match seq.glatom with
Some t->[t]
| None->[]
in {negative=seq.latoms;positive=ratoms}
let do_sequent sigma setref triv id seq i dom atoms=
let flag=ref true in
let phref=ref triv in
let do_atoms a1 a2 =
let do_pair t1 t2 =
match unif_atoms sigma i dom t1 t2 with
None->()
| Some (Phantom _) ->phref:=true
| Some c ->flag:=false;setref:=IS.add (c,id) !setref in
List.iter (fun t->List.iter (do_pair t) a2.negative) a1.positive;
List.iter (fun t->List.iter (do_pair t) a2.positive) a1.negative in
HP.iter (fun lf->do_atoms atoms lf.atoms) seq.redexes;
do_atoms atoms (make_simple_atoms seq);
!flag && !phref
let match_one_quantified_hyp sigma setref seq lf=
match lf.pat with
Left(Lforall(i,dom,triv))|Right(Rexists(i,dom,triv))->
if do_sequent sigma setref triv lf.id seq i dom lf.atoms then
setref:=IS.add ((Phantom dom),lf.id) !setref
| _ -> anomaly (Pp.str "can't happen.")
let give_instances sigma lf seq=
let setref=ref IS.empty in
List.iter (match_one_quantified_hyp sigma setref seq) lf;
IS.elements !setref
(* collector for the engine *)
let rec collect_quantified sigma seq=
try
let hd,seq1=take_formula sigma seq in
(match hd.pat with
Left(Lforall(_,_,_)) | Right(Rexists(_,_,_)) ->
let (q,seq2)=collect_quantified sigma seq1 in
((hd::q),seq2)
| _->[],seq)
with Heap.EmptyHeap -> [],seq
(* open instances processor *)
let dummy_bvid=Id.of_string "x"
let mk_open_instance env evmap id idc m t =
let var_id=
if id==dummy_id then dummy_bvid else
let typ=Typing.unsafe_type_of env evmap idc in
(* since we know we will get a product,
reduction is not too expensive *)
let (nam,_,_)=destProd evmap (whd_all env evmap typ) in
match nam with
Name id -> id
| Anonymous -> dummy_bvid in
let revt=substl (List.init m (fun i->mkRel (m-i))) t in
let rec aux n avoid env evmap decls =
if Int.equal n 0 then evmap, decls else
let nid=(fresh_id_in_env avoid var_id env) in
let (evmap, (c, _)) = Evarutil.new_type_evar env evmap Evd.univ_flexible in
let decl = LocalAssum (Name nid, c) in
aux (n-1) (Id.Set.add nid avoid) (EConstr.push_rel decl env) evmap (decl::decls) in
let evmap, decls = aux m Id.Set.empty env evmap [] in
(evmap, decls, revt)
(* tactics *)
let left_instance_tac (inst,id) continue seq=
let open EConstr in
Proofview.Goal.enter begin fun gl ->
let sigma = project gl in
match inst with
Phantom dom->
if lookup sigma (id,None) seq then
tclFAIL 0 (Pp.str "already done")
else
tclTHENS (cut dom)
[tclTHENLIST
[introf;
(pf_constr_of_global id >>= fun idc ->
Proofview.Goal.enter begin fun gl ->
let id0 = List.nth (pf_ids_of_hyps gl) 0 in
generalize [mkApp(idc, [|mkVar id0|])]
end);
introf;
tclSOLVE [wrap 1 false continue
(deepen (record (id,None) seq))]];
tclTRY assumption]
| Real((m,t),_)->
let c = (m, EConstr.to_constr sigma t) in
if lookup sigma (id,Some c) seq then
tclFAIL 0 (Pp.str "already done")
else
let special_generalize=
if m>0 then
(pf_constr_of_global id >>= fun idc ->
Proofview.Goal.enter begin fun gl->
let (evmap, rc, ot) = mk_open_instance (pf_env gl) (project gl) id idc m t in
let gt=
it_mkLambda_or_LetIn
(mkApp(idc,[|ot|])) rc in
let evmap, _ =
try Typing.type_of (pf_env gl) evmap gt
with e when CErrors.noncritical e ->
user_err Pp.(str "Untypable instance, maybe higher-order non-prenex quantification") in
Proofview.tclTHEN (Proofview.Unsafe.tclEVARS evmap)
(generalize [gt])
end)
else
pf_constr_of_global id >>= fun idc -> generalize [mkApp(idc,[|t|])]
in
tclTHENLIST
[special_generalize;
introf;
tclSOLVE
[wrap 1 false continue (deepen (record (id,Some c) seq))]]
end
let right_instance_tac inst continue seq=
let open EConstr in
Proofview.Goal.enter begin fun gl ->
match inst with
Phantom dom ->
tclTHENS (cut dom)
[tclTHENLIST
[introf;
Proofview.Goal.enter begin fun gl ->
let id0 = List.nth (pf_ids_of_hyps gl) 0 in
split (ImplicitBindings [mkVar id0])
end;
tclSOLVE [wrap 0 true continue (deepen seq)]];
tclTRY assumption]
| Real ((0,t),_) ->
(tclTHEN (split (ImplicitBindings [t]))
(tclSOLVE [wrap 0 true continue (deepen seq)]))
| Real ((m,t),_) ->
tclFAIL 0 (Pp.str "not implemented ... yet")
end
let instance_tac inst=
if (snd inst)==dummy_id then
right_instance_tac (fst inst)
else
left_instance_tac inst
let quantified_tac lf backtrack continue seq =
Proofview.Goal.enter begin fun gl ->
let insts=give_instances (project gl) lf seq in
tclORELSE
(tclFIRST (List.map (fun inst->instance_tac inst continue seq) insts))
backtrack
end
|