1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*s Production of Scheme syntax. *)
open Pp
open CErrors
open Util
open Names
open Miniml
open Mlutil
open Table
open Common
(*s Scheme renaming issues. *)
let keywords =
List.fold_right (fun s -> Id.Set.add (Id.of_string s))
[ "define"; "let"; "lambda"; "lambdas"; "match";
"apply"; "car"; "cdr";
"error"; "delay"; "force"; "_"; "__"]
Id.Set.empty
let pp_comment s = str";; "++h 0 s++fnl ()
let pp_header_comment = function
| None -> mt ()
| Some com -> pp_comment com ++ fnl () ++ fnl ()
let preamble _ comment _ usf =
pp_header_comment comment ++
str ";; This extracted scheme code relies on some additional macros\n" ++
str ";; available at http://www.pps.univ-paris-diderot.fr/~letouzey/scheme\n" ++
str "(load \"macros_extr.scm\")\n\n" ++
(if usf.mldummy then str "(define __ (lambda (_) __))\n\n" else mt ())
let pr_id id =
str @@ String.map (fun c -> if c == '\'' then '~' else c) (Id.to_string id)
let paren = pp_par true
let pp_abst st = function
| [] -> assert false
| [id] -> paren (str "lambda " ++ paren (pr_id id) ++ spc () ++ st)
| l -> paren
(str "lambdas " ++ paren (prlist_with_sep spc pr_id l) ++ spc () ++ st)
let pp_apply st _ = function
| [] -> st
| [a] -> hov 2 (paren (st ++ spc () ++ a))
| args -> hov 2 (paren (str "@ " ++ st ++
(prlist_strict (fun x -> spc () ++ x) args)))
(*s The pretty-printer for Scheme syntax *)
let pp_global k r = str (Common.pp_global k r)
(*s Pretty-printing of expressions. *)
let rec pp_expr env args =
let apply st = pp_apply st true args in
function
| MLrel n ->
let id = get_db_name n env in apply (pr_id id)
| MLapp (f,args') ->
let stl = List.map (pp_expr env []) args' in
pp_expr env (stl @ args) f
| MLlam _ as a ->
let fl,a' = collect_lams a in
let fl,env' = push_vars (List.map id_of_mlid fl) env in
apply (pp_abst (pp_expr env' [] a') (List.rev fl))
| MLletin (id,a1,a2) ->
let i,env' = push_vars [id_of_mlid id] env in
apply
(hv 0
(hov 2
(paren
(str "let " ++
paren
(paren
(pr_id (List.hd i) ++ spc () ++ pp_expr env [] a1))
++ spc () ++ hov 0 (pp_expr env' [] a2)))))
| MLglob r ->
apply (pp_global Term r)
| MLcons (_,r,args') ->
assert (List.is_empty args);
let st =
str "`" ++
paren (pp_global Cons r ++
(if List.is_empty args' then mt () else spc ()) ++
prlist_with_sep spc (pp_cons_args env) args')
in
if is_coinductive r then paren (str "delay " ++ st) else st
| MLtuple _ -> error "Cannot handle tuples in Scheme yet."
| MLcase (_,_,pv) when not (is_regular_match pv) ->
error "Cannot handle general patterns in Scheme yet."
| MLcase (_,t,pv) when is_custom_match pv ->
let mkfun (ids,_,e) =
if not (List.is_empty ids) then named_lams (List.rev ids) e
else dummy_lams (ast_lift 1 e) 1
in
apply
(paren
(hov 2
(str (find_custom_match pv) ++ fnl () ++
prvect (fun tr -> pp_expr env [] (mkfun tr) ++ fnl ()) pv
++ pp_expr env [] t)))
| MLcase (typ,t, pv) ->
let e =
if not (is_coinductive_type typ) then pp_expr env [] t
else paren (str "force" ++ spc () ++ pp_expr env [] t)
in
apply (v 3 (paren (str "match " ++ e ++ fnl () ++ pp_pat env pv)))
| MLfix (i,ids,defs) ->
let ids',env' = push_vars (List.rev (Array.to_list ids)) env in
pp_fix env' i (Array.of_list (List.rev ids'),defs) args
| MLexn s ->
(* An [MLexn] may be applied, but I don't really care. *)
paren (str "error" ++ spc () ++ qs s)
| MLdummy _ ->
str "__" (* An [MLdummy] may be applied, but I don't really care. *)
| MLmagic a ->
pp_expr env args a
| MLaxiom -> paren (str "error \"AXIOM TO BE REALIZED\"")
and pp_cons_args env = function
| MLcons (_,r,args) when is_coinductive r ->
paren (pp_global Cons r ++
(if List.is_empty args then mt () else spc ()) ++
prlist_with_sep spc (pp_cons_args env) args)
| e -> str "," ++ pp_expr env [] e
and pp_one_pat env (ids,p,t) =
let r = match p with
| Pusual r -> r
| Pcons (r,l) -> r (* cf. the check [is_regular_match] above *)
| _ -> assert false
in
let ids,env' = push_vars (List.rev_map id_of_mlid ids) env in
let args =
if List.is_empty ids then mt ()
else (str " " ++ prlist_with_sep spc pr_id (List.rev ids))
in
(pp_global Cons r ++ args), (pp_expr env' [] t)
and pp_pat env pv =
prvect_with_sep fnl
(fun x -> let s1,s2 = pp_one_pat env x in
hov 2 (str "((" ++ s1 ++ str ")" ++ spc () ++ s2 ++ str ")")) pv
(*s names of the functions ([ids]) are already pushed in [env],
and passed here just for convenience. *)
and pp_fix env j (ids,bl) args =
paren
(str "letrec " ++
(v 0 (paren
(prvect_with_sep fnl
(fun (fi,ti) ->
paren ((pr_id fi) ++ spc () ++ (pp_expr env [] ti)))
(Array.map2 (fun id b -> (id,b)) ids bl)) ++
fnl () ++
hov 2 (pp_apply (pr_id (ids.(j))) true args))))
(*s Pretty-printing of a declaration. *)
let pp_decl = function
| Dind _ -> mt ()
| Dtype _ -> mt ()
| Dfix (rv, defs,_) ->
let names = Array.map
(fun r -> if is_inline_custom r then mt () else pp_global Term r) rv
in
prvecti
(fun i r ->
let void = is_inline_custom r ||
(not (is_custom r) &&
match defs.(i) with MLexn "UNUSED" -> true | _ -> false)
in
if void then mt ()
else
hov 2
(paren (str "define " ++ names.(i) ++ spc () ++
(if is_custom r then str (find_custom r)
else pp_expr (empty_env ()) [] defs.(i)))
++ fnl ()) ++ fnl ())
rv
| Dterm (r, a, _) ->
if is_inline_custom r then mt ()
else
hov 2 (paren (str "define " ++ pp_global Term r ++ spc () ++
(if is_custom r then str (find_custom r)
else pp_expr (empty_env ()) [] a)))
++ fnl2 ()
let rec pp_structure_elem = function
| (l,SEdecl d) -> pp_decl d
| (l,SEmodule m) -> pp_module_expr m.ml_mod_expr
| (l,SEmodtype m) -> mt ()
(* for the moment we simply discard module type *)
and pp_module_expr = function
| MEstruct (mp,sel) -> prlist_strict pp_structure_elem sel
| MEfunctor _ -> mt ()
(* for the moment we simply discard unapplied functors *)
| MEident _ | MEapply _ -> assert false
(* should be expanded in extract_env *)
let pp_struct =
let pp_sel (mp,sel) =
push_visible mp [];
let p = prlist_strict pp_structure_elem sel in
pop_visible (); p
in
prlist_strict pp_sel
let scheme_descr = {
keywords = keywords;
file_suffix = ".scm";
file_naming = file_of_modfile;
preamble = preamble;
pp_struct = pp_struct;
sig_suffix = None;
sig_preamble = (fun _ _ _ _ -> mt ());
pp_sig = (fun _ -> mt ());
pp_decl = pp_decl;
}
|