1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Miniml
open Term
open Declarations
open Names
open Libnames
open Globnames
open Pp
open Errors
open Util
open Table
open Extraction
open Modutil
open Common
open Mod_subst
(***************************************)
(*S Part I: computing Coq environment. *)
(***************************************)
let toplevel_env () =
let get_reference = function
| (_,kn), Lib.Leaf o ->
let mp,_,l = repr_kn kn in
begin match Libobject.object_tag o with
| "CONSTANT" ->
let constant = Global.lookup_constant (constant_of_kn kn) in
Some (l, SFBconst constant)
| "INDUCTIVE" ->
let inductive = Global.lookup_mind (mind_of_kn kn) in
Some (l, SFBmind inductive)
| "MODULE" ->
let modl = Global.lookup_module (MPdot (mp, l)) in
Some (l, SFBmodule modl)
| "MODULE TYPE" ->
let modtype = Global.lookup_modtype (MPdot (mp, l)) in
Some (l, SFBmodtype modtype)
| "INCLUDE" -> error "No extraction of toplevel Include yet."
| _ -> None
end
| _ -> None
in
List.rev (List.map_filter get_reference (Lib.contents ()))
let environment_until dir_opt =
let rec parse = function
| [] when Option.is_empty dir_opt -> [Lib.current_mp (), toplevel_env ()]
| [] -> []
| d :: l ->
let meb =
Modops.destr_nofunctor (Global.lookup_module (MPfile d)).mod_type
in
match dir_opt with
| Some d' when DirPath.equal d d' -> [MPfile d, meb]
| _ -> (MPfile d, meb) :: (parse l)
in parse (Library.loaded_libraries ())
(*s Visit:
a structure recording the needed dependencies for the current extraction *)
module type VISIT = sig
(* Reset the dependencies by emptying the visit lists *)
val reset : unit -> unit
(* Add the module_path and all its prefixes to the mp visit list.
We'll keep all fields of these modules. *)
val add_mp_all : module_path -> unit
(* Add reference / ... in the visit lists.
These functions silently add the mp of their arg in the mp list *)
val add_ref : global_reference -> unit
val add_decl_deps : ml_decl -> unit
val add_spec_deps : ml_spec -> unit
(* Test functions:
is a particular object a needed dependency for the current extraction ? *)
val needed_ind : mutual_inductive -> bool
val needed_con : constant -> bool
val needed_mp : module_path -> bool
val needed_mp_all : module_path -> bool
end
module Visit : VISIT = struct
type must_visit =
{ mutable ind : KNset.t; mutable con : KNset.t;
mutable mp : MPset.t; mutable mp_all : MPset.t }
(* the imperative internal visit lists *)
let v = { ind = KNset.empty ; con = KNset.empty ;
mp = MPset.empty; mp_all = MPset.empty }
(* the accessor functions *)
let reset () =
v.ind <- KNset.empty;
v.con <- KNset.empty;
v.mp <- MPset.empty;
v.mp_all <- MPset.empty
let needed_ind i = KNset.mem (user_mind i) v.ind
let needed_con c = KNset.mem (user_con c) v.con
let needed_mp mp = MPset.mem mp v.mp || MPset.mem mp v.mp_all
let needed_mp_all mp = MPset.mem mp v.mp_all
let add_mp mp =
check_loaded_modfile mp; v.mp <- MPset.union (prefixes_mp mp) v.mp
let add_mp_all mp =
check_loaded_modfile mp; v.mp <- MPset.union (prefixes_mp mp) v.mp;
v.mp_all <- MPset.add mp v.mp_all
let add_ind i =
let kn = user_mind i in
v.ind <- KNset.add kn v.ind; add_mp (modpath kn)
let add_con c =
let kn = user_con c in
v.con <- KNset.add kn v.con; add_mp (modpath kn)
let add_ref = function
| ConstRef c -> add_con c
| IndRef (ind,_) | ConstructRef ((ind,_),_) -> add_ind ind
| VarRef _ -> assert false
let add_decl_deps = decl_iter_references add_ref add_ref add_ref
let add_spec_deps = spec_iter_references add_ref add_ref add_ref
end
let add_field_label mp = function
| (lab, SFBconst _) -> Visit.add_ref (ConstRef (Constant.make2 mp lab))
| (lab, SFBmind _) -> Visit.add_ref (IndRef (MutInd.make2 mp lab, 0))
| (lab, (SFBmodule _|SFBmodtype _)) -> Visit.add_mp_all (MPdot (mp,lab))
let rec add_labels mp = function
| MoreFunctor (_,_,m) -> add_labels mp m
| NoFunctor sign -> List.iter (add_field_label mp) sign
exception Impossible
let check_arity env cb =
let t = Typeops.type_of_constant_type env cb.const_type in
if Reduction.is_arity env t then raise Impossible
let check_fix env cb i =
match cb.const_body with
| Def lbody ->
(match kind_of_term (Mod_subst.force_constr lbody) with
| Fix ((_,j),recd) when Int.equal i j -> check_arity env cb; (true,recd)
| CoFix (j,recd) when Int.equal i j -> check_arity env cb; (false,recd)
| _ -> raise Impossible)
| Undef _ | OpaqueDef _ -> raise Impossible
let prec_declaration_equal (na1, ca1, ta1) (na2, ca2, ta2) =
Array.equal Name.equal na1 na2 &&
Array.equal eq_constr ca1 ca2 &&
Array.equal eq_constr ta1 ta2
let factor_fix env l cb msb =
let _,recd as check = check_fix env cb 0 in
let n = Array.length (let fi,_,_ = recd in fi) in
if Int.equal n 1 then [|l|], recd, msb
else begin
if List.length msb < n-1 then raise Impossible;
let msb', msb'' = List.chop (n-1) msb in
let labels = Array.make n l in
List.iteri
(fun j ->
function
| (l,SFBconst cb') ->
let check' = check_fix env cb' (j+1) in
if not ((fst check : bool) == (fst check') &&
prec_declaration_equal (snd check) (snd check'))
then raise Impossible;
labels.(j+1) <- l;
| _ -> raise Impossible) msb';
labels, recd, msb''
end
(** Expanding a [module_alg_expr] into a version without abbreviations
or functor applications. This is done via a detour to entries
(hack proposed by Elie)
*)
let expand_mexpr env mp me =
let inl = Some (Flags.get_inline_level()) in
let sign,_,_,_ = Mod_typing.translate_mse env (Some mp) inl me in
sign
(** Ad-hoc update of environment, inspired by [Mod_type.check_with_aux_def].
To check with Elie. *)
let rec mp_of_mexpr = function
| MEident mp -> mp
| MEwith (seb,_) -> mp_of_mexpr seb
| _ -> assert false
let env_for_mtb_with_def env mp me idl =
let struc = Modops.destr_nofunctor me in
let l = Label.of_id (List.hd idl) in
let spot = function (l',SFBconst _) -> Label.equal l l' | _ -> false in
let before = fst (List.split_when spot struc) in
Modops.add_structure mp before empty_delta_resolver env
(* From a [structure_body] (i.e. a list of [structure_field_body])
to specifications. *)
let rec extract_structure_spec env mp = function
| [] -> []
| (l,SFBconst cb) :: msig ->
let kn = Constant.make2 mp l in
let s = extract_constant_spec env kn cb in
let specs = extract_structure_spec env mp msig in
if logical_spec s then specs
else begin Visit.add_spec_deps s; (l,Spec s) :: specs end
| (l,SFBmind _) :: msig ->
let mind = MutInd.make2 mp l in
let s = Sind (mind, extract_inductive env mind) in
let specs = extract_structure_spec env mp msig in
if logical_spec s then specs
else begin Visit.add_spec_deps s; (l,Spec s) :: specs end
| (l,SFBmodule mb) :: msig ->
let specs = extract_structure_spec env mp msig in
let spec = extract_mbody_spec env mb.mod_mp mb in
(l,Smodule spec) :: specs
| (l,SFBmodtype mtb) :: msig ->
let specs = extract_structure_spec env mp msig in
let spec = extract_mbody_spec env mtb.mod_mp mtb in
(l,Smodtype spec) :: specs
(* From [module_expression] to specifications *)
(* Invariant: the [me] given to [extract_mexpr_spec] should either come
from a [mod_type] or [type_expr] field, or their [_alg] counterparts.
This way, any encountered [MEident] should be a true module type.
*)
and extract_mexpr_spec env mp1 (me_struct,me_alg) = match me_alg with
| MEident mp -> Visit.add_mp_all mp; MTident mp
| MEwith(me',WithDef(idl,(c,ctx)))->
let env' = env_for_mtb_with_def env (mp_of_mexpr me') me_struct idl in
let mt = extract_mexpr_spec env mp1 (me_struct,me') in
(match extract_with_type env' c with (* cb may contain some kn *)
| None -> mt
| Some (vl,typ) -> MTwith(mt,ML_With_type(idl,vl,typ)))
| MEwith(me',WithMod(idl,mp))->
Visit.add_mp_all mp;
MTwith(extract_mexpr_spec env mp1 (me_struct,me'), ML_With_module(idl,mp))
| MEapply _ -> extract_msignature_spec env mp1 me_struct
and extract_mexpression_spec env mp1 (me_struct,me_alg) = match me_alg with
| MoreFunctor (mbid, mtb, me_alg') ->
let me_struct' = match me_struct with
| MoreFunctor (mbid',_,me') when MBId.equal mbid' mbid -> me'
| _ -> assert false
in
let mp = MPbound mbid in
let env' = Modops.add_module_type mp mtb env in
MTfunsig (mbid, extract_mbody_spec env mp mtb,
extract_mexpression_spec env' mp1 (me_struct',me_alg'))
| NoFunctor m -> extract_mexpr_spec env mp1 (me_struct,m)
and extract_msignature_spec env mp1 = function
| NoFunctor struc ->
let env' = Modops.add_structure mp1 struc empty_delta_resolver env in
MTsig (mp1, extract_structure_spec env' mp1 struc)
| MoreFunctor (mbid, mtb, me) ->
let mp = MPbound mbid in
let env' = Modops.add_module_type mp mtb env in
MTfunsig (mbid, extract_mbody_spec env mp mtb,
extract_msignature_spec env' mp1 me)
and extract_mbody_spec env mp mb = match mb.mod_type_alg with
| Some ty -> extract_mexpression_spec env mp (mb.mod_type,ty)
| None -> extract_msignature_spec env mp mb.mod_type
(* From a [structure_body] (i.e. a list of [structure_field_body])
to implementations.
NB: when [all=false], the evaluation order of the list is
important: last to first ensures correct dependencies.
*)
let rec extract_structure env mp ~all = function
| [] -> []
| (l,SFBconst cb) :: struc ->
(try
let vl,recd,struc = factor_fix env l cb struc in
let vc = Array.map (Constant.make2 mp) vl in
let ms = extract_structure env mp ~all struc in
let b = Array.exists Visit.needed_con vc in
if all || b then
let d = extract_fixpoint env vc recd in
if (not b) && (logical_decl d) then ms
else begin Visit.add_decl_deps d; (l,SEdecl d) :: ms end
else ms
with Impossible ->
let ms = extract_structure env mp ~all struc in
let c = Constant.make2 mp l in
let b = Visit.needed_con c in
if all || b then
let d = extract_constant env c cb in
if (not b) && (logical_decl d) then ms
else begin Visit.add_decl_deps d; (l,SEdecl d) :: ms end
else ms)
| (l,SFBmind mib) :: struc ->
let ms = extract_structure env mp ~all struc in
let mind = MutInd.make2 mp l in
let b = Visit.needed_ind mind in
if all || b then
let d = Dind (mind, extract_inductive env mind) in
if (not b) && (logical_decl d) then ms
else begin Visit.add_decl_deps d; (l,SEdecl d) :: ms end
else ms
| (l,SFBmodule mb) :: struc ->
let ms = extract_structure env mp ~all struc in
let mp = MPdot (mp,l) in
let all' = all || Visit.needed_mp_all mp in
if all' || Visit.needed_mp mp then
(l,SEmodule (extract_module env mp ~all:all' mb)) :: ms
else ms
| (l,SFBmodtype mtb) :: struc ->
let ms = extract_structure env mp ~all struc in
let mp = MPdot (mp,l) in
if all || Visit.needed_mp mp then
(l,SEmodtype (extract_mbody_spec env mp mtb)) :: ms
else ms
(* From [module_expr] and [module_expression] to implementations *)
and extract_mexpr env mp = function
| MEwith _ -> assert false (* no 'with' syntax for modules *)
| me when lang () != Ocaml ->
(* In Haskell/Scheme, we expand everything.
For now, we also extract everything, dead code will be removed later
(see [Modutil.optimize_struct]. *)
extract_msignature env mp ~all:true (expand_mexpr env mp me)
| MEident mp ->
if is_modfile mp && not (modular ()) then error_MPfile_as_mod mp false;
Visit.add_mp_all mp; Miniml.MEident mp
| MEapply (me, arg) ->
Miniml.MEapply (extract_mexpr env mp me,
extract_mexpr env mp (MEident arg))
and extract_mexpression env mp = function
| NoFunctor me -> extract_mexpr env mp me
| MoreFunctor (mbid, mtb, me) ->
let mp1 = MPbound mbid in
let env' = Modops.add_module_type mp1 mtb env in
Miniml.MEfunctor
(mbid,
extract_mbody_spec env mp1 mtb,
extract_mexpression env' mp me)
and extract_msignature env mp ~all = function
| NoFunctor struc ->
let env' = Modops.add_structure mp struc empty_delta_resolver env in
Miniml.MEstruct (mp,extract_structure env' mp ~all struc)
| MoreFunctor (mbid, mtb, me) ->
let mp1 = MPbound mbid in
let env' = Modops.add_module_type mp1 mtb env in
Miniml.MEfunctor
(mbid,
extract_mbody_spec env mp1 mtb,
extract_msignature env' mp ~all me)
and extract_module env mp ~all mb =
(* A module has an empty [mod_expr] when :
- it is a module variable (for instance X inside a Module F [X:SIG])
- it is a module assumption (Declare Module).
Since we look at modules from outside, we shouldn't have variables.
But a Declare Module at toplevel seems legal (cf #2525). For the
moment we don't support this situation. *)
let impl = match mb.mod_expr with
| Abstract -> error_no_module_expr mp
| Algebraic me -> extract_mexpression env mp me
| Struct sign ->
(* This module has a signature, otherwise it would be FullStruct.
We extract just the elements required by this signature. *)
let () = add_labels mp mb.mod_type in
extract_msignature env mp ~all:false sign
| FullStruct -> extract_msignature env mp ~all mb.mod_type
in
(* Slight optimization: for modules without explicit signatures
([FullStruct] case), we build the type out of the extracted
implementation *)
let typ = match mb.mod_expr with
| FullStruct ->
assert (Option.is_empty mb.mod_type_alg);
mtyp_of_mexpr impl
| _ -> extract_mbody_spec env mp mb
in
{ ml_mod_expr = impl;
ml_mod_type = typ }
let mono_environment refs mpl =
Visit.reset ();
List.iter Visit.add_ref refs;
List.iter Visit.add_mp_all mpl;
let env = Global.env () in
let l = List.rev (environment_until None) in
List.rev_map
(fun (mp,struc) ->
mp, extract_structure env mp ~all:(Visit.needed_mp_all mp) struc)
l
(**************************************)
(*S Part II : Input/Output primitives *)
(**************************************)
let descr () = match lang () with
| Ocaml -> Ocaml.ocaml_descr
| Haskell -> Haskell.haskell_descr
| Scheme -> Scheme.scheme_descr
| JSON -> Json.json_descr
(* From a filename string "foo.ml" or "foo", builds "foo.ml" and "foo.mli"
Works similarly for the other languages. *)
let default_id = Id.of_string "Main"
let mono_filename f =
let d = descr () in
match f with
| None -> None, None, default_id
| Some f ->
let f =
if Filename.check_suffix f d.file_suffix then
Filename.chop_suffix f d.file_suffix
else f
in
let id =
if lang () != Haskell then default_id
else
try Id.of_string (Filename.basename f)
with UserError _ ->
error "Extraction: provided filename is not a valid identifier"
in
Some (f^d.file_suffix), Option.map ((^) f) d.sig_suffix, id
(* Builds a suitable filename from a module id *)
let module_filename mp =
let f = file_of_modfile mp in
let d = descr () in
let p = d.file_naming mp ^ d.file_suffix in
Some p, Option.map ((^) f) d.sig_suffix, Id.of_string f
(*s Extraction of one decl to stdout. *)
let print_one_decl struc mp decl =
let d = descr () in
reset_renaming_tables AllButExternal;
set_phase Pre;
ignore (d.pp_struct struc);
set_phase Impl;
push_visible mp [];
let ans = d.pp_decl decl in
pop_visible ();
ans
(*s Extraction of a ml struct to a file. *)
(** For Recursive Extraction, writing directly on stdout
won't work with coqide, we use a buffer instead *)
let buf = Buffer.create 1000
let formatter dry file =
let ft =
if dry then Format.make_formatter (fun _ _ _ -> ()) (fun _ -> ())
else
match file with
| Some f -> Pp_control.with_output_to f
| None -> Format.formatter_of_buffer buf
in
(* We never want to see ellipsis ... in extracted code *)
Format.pp_set_max_boxes ft max_int;
(* We reuse the width information given via "Set Printing Width" *)
(match Pp_control.get_margin () with
| None -> ()
| Some i ->
Format.pp_set_margin ft i;
Format.pp_set_max_indent ft (i-10));
(* note: max_indent should be < margin above, otherwise it's ignored *)
ft
let get_comment () =
let s = file_comment () in
if String.is_empty s then None
else
let split_comment = Str.split (Str.regexp "[ \t\n]+") s in
Some (prlist_with_sep spc str split_comment)
let print_structure_to_file (fn,si,mo) dry struc =
Buffer.clear buf;
let d = descr () in
reset_renaming_tables AllButExternal;
let unsafe_needs = {
mldummy = struct_ast_search ((==) MLdummy) struc;
tdummy = struct_type_search Mlutil.isDummy struc;
tunknown = struct_type_search ((==) Tunknown) struc;
magic =
if lang () != Haskell then false
else struct_ast_search (function MLmagic _ -> true | _ -> false) struc }
in
(* First, a dry run, for computing objects to rename or duplicate *)
set_phase Pre;
let devnull = formatter true None in
pp_with devnull (d.pp_struct struc);
let opened = opened_libraries () in
(* Print the implementation *)
let cout = if dry then None else Option.map open_out fn in
let ft = formatter dry cout in
let comment = get_comment () in
begin try
(* The real printing of the implementation *)
set_phase Impl;
pp_with ft (d.preamble mo comment opened unsafe_needs);
pp_with ft (d.pp_struct struc);
Option.iter close_out cout;
with reraise ->
Option.iter close_out cout; raise reraise
end;
if not dry then Option.iter info_file fn;
(* Now, let's print the signature *)
Option.iter
(fun si ->
let cout = open_out si in
let ft = formatter false (Some cout) in
begin try
set_phase Intf;
pp_with ft (d.sig_preamble mo comment opened unsafe_needs);
pp_with ft (d.pp_sig (signature_of_structure struc));
close_out cout;
with reraise ->
close_out cout; raise reraise
end;
info_file si)
(if dry then None else si);
(* Print the buffer content via Coq standard formatter (ok with coqide). *)
if not (Int.equal (Buffer.length buf) 0) then begin
Pp.msg_info (str (Buffer.contents buf));
Buffer.reset buf
end
(*********************************************)
(*s Part III: the actual extraction commands *)
(*********************************************)
let reset () =
Visit.reset (); reset_tables (); reset_renaming_tables Everything
let init modular library =
check_inside_section (); check_inside_module ();
set_keywords (descr ()).keywords;
set_modular modular;
set_library library;
reset ();
if modular && lang () == Scheme then error_scheme ()
let warns () =
warning_opaques (access_opaque ());
warning_axioms ()
(* From a list of [reference], let's retrieve whether they correspond
to modules or [global_reference]. Warn the user if both is possible. *)
let rec locate_ref = function
| [] -> [],[]
| r::l ->
let q = snd (qualid_of_reference r) in
let mpo = try Some (Nametab.locate_module q) with Not_found -> None
and ro =
try Some (Smartlocate.global_with_alias r)
with Nametab.GlobalizationError _ | UserError _ -> None
in
match mpo, ro with
| None, None -> Nametab.error_global_not_found q
| None, Some r -> let refs,mps = locate_ref l in r::refs,mps
| Some mp, None -> let refs,mps = locate_ref l in refs,mp::mps
| Some mp, Some r ->
warning_both_mod_and_cst q mp r;
let refs,mps = locate_ref l in refs,mp::mps
(*s Recursive extraction in the Coq toplevel. The vernacular command is
\verb!Recursive Extraction! [qualid1] ... [qualidn]. Also used when
extracting to a file with the command:
\verb!Extraction "file"! [qualid1] ... [qualidn]. *)
let full_extr f (refs,mps) =
init false false;
List.iter (fun mp -> if is_modfile mp then error_MPfile_as_mod mp true) mps;
let struc = optimize_struct (refs,mps) (mono_environment refs mps) in
warns ();
print_structure_to_file (mono_filename f) false struc;
reset ()
let full_extraction f lr = full_extr f (locate_ref lr)
(*s Separate extraction is similar to recursive extraction, with the output
decomposed in many files, one per Coq .v file *)
let separate_extraction lr =
init true false;
let refs,mps = locate_ref lr in
let struc = optimize_struct (refs,mps) (mono_environment refs mps) in
warns ();
let print = function
| (MPfile dir as mp, sel) as e ->
print_structure_to_file (module_filename mp) false [e]
| _ -> assert false
in
List.iter print struc;
reset ()
(*s Simple extraction in the Coq toplevel. The vernacular command
is \verb!Extraction! [qualid]. *)
let simple_extraction r =
Vernacentries.dump_global (Misctypes.AN r);
match locate_ref [r] with
| ([], [mp]) as p -> full_extr None p
| [r],[] ->
init false false;
let struc = optimize_struct ([r],[]) (mono_environment [r] []) in
let d = get_decl_in_structure r struc in
warns ();
let flag =
if is_custom r then str "(** User defined extraction *)" ++ fnl()
else mt ()
in
let ans = flag ++ print_one_decl struc (modpath_of_r r) d in
reset ();
Pp.msg_info ans
| _ -> assert false
(*s (Recursive) Extraction of a library. The vernacular command is
\verb!(Recursive) Extraction Library! [M]. *)
let extraction_library is_rec m =
init true true;
let dir_m =
let q = qualid_of_ident m in
try Nametab.full_name_module q with Not_found -> error_unknown_module q
in
Visit.add_mp_all (MPfile dir_m);
let env = Global.env () in
let l = List.rev (environment_until (Some dir_m)) in
let select l (mp,struc) =
if Visit.needed_mp mp
then (mp, extract_structure env mp true struc) :: l
else l
in
let struc = List.fold_left select [] l in
let struc = optimize_struct ([],[]) struc in
warns ();
let print = function
| (MPfile dir as mp, sel) as e ->
let dry = not is_rec && not (DirPath.equal dir dir_m) in
print_structure_to_file (module_filename mp) dry [e]
| _ -> assert false
in
List.iter print struc;
reset ()
let structure_for_compute c =
init false false;
let env = Global.env () in
let ast, mlt = Extraction.extract_constr env c in
let ast = Mlutil.normalize ast in
let refs = ref Refset.empty in
let add_ref r = refs := Refset.add r !refs in
let () = ast_iter_references add_ref add_ref add_ref ast in
let refs = Refset.elements !refs in
let struc = optimize_struct (refs,[]) (mono_environment refs []) in
let flatstruc = List.map snd (List.flatten (List.map snd struc)) in
flatstruc, ast, mlt
|