1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
|
(* Authors: Nicolas Ayache and Jean-Christophe Filliâtre *)
(* Tactics to call decision procedures *)
(* Works in two steps:
- first the Coq context and the current goal are translated in
Polymorphic First-Order Logic (see fol.mli in this directory)
- then the resulting query is passed to the Why tool that translates
it to the syntax of the selected prover (Simplify, CVC Lite, haRVey,
Zenon)
*)
open Util
open Pp
open Libobject
open Summary
open Term
open Tacmach
open Tactics
open Tacticals
open Fol
open Names
open Nameops
open Namegen
open Termops
open Coqlib
open Hipattern
open Libnames
open Declarations
open Dp_why
let debug = ref false
let set_debug b = debug := b
let trace = ref false
let set_trace b = trace := b
let timeout = ref 10
let set_timeout n = timeout := n
let dp_timeout_obj =
declare_object
{(default_object "Dp_timeout") with
cache_function = (fun (_,x) -> set_timeout x);
load_function = (fun _ (_,x) -> set_timeout x)}
let dp_timeout x = Lib.add_anonymous_leaf (dp_timeout_obj x)
let dp_debug_obj =
declare_object
{(default_object "Dp_debug") with
cache_function = (fun (_,x) -> set_debug x);
load_function = (fun _ (_,x) -> set_debug x)}
let dp_debug x = Lib.add_anonymous_leaf (dp_debug_obj x)
let dp_trace_obj =
declare_object
{(default_object "Dp_trace") with
cache_function = (fun (_,x) -> set_trace x);
load_function = (fun _ (_,x) -> set_trace x)}
let dp_trace x = Lib.add_anonymous_leaf (dp_trace_obj x)
let logic_dir = ["Coq";"Logic";"Decidable"]
let coq_modules =
init_modules @ [logic_dir] @ arith_modules @ zarith_base_modules
@ [["Coq"; "ZArith"; "BinInt"];
["Coq"; "Reals"; "Rdefinitions"];
["Coq"; "Reals"; "Raxioms";];
["Coq"; "Reals"; "Rbasic_fun";];
["Coq"; "Reals"; "R_sqrt";];
["Coq"; "Reals"; "Rfunctions";]]
@ [["Coq"; "omega"; "OmegaLemmas"]]
let constant = gen_constant_in_modules "dp" coq_modules
(* integers constants and operations *)
let coq_Z = lazy (constant "Z")
let coq_Zplus = lazy (constant "Zplus")
let coq_Zmult = lazy (constant "Zmult")
let coq_Zopp = lazy (constant "Zopp")
let coq_Zminus = lazy (constant "Zminus")
let coq_Zdiv = lazy (constant "Zdiv")
let coq_Zs = lazy (constant "Zs")
let coq_Zgt = lazy (constant "Zgt")
let coq_Zle = lazy (constant "Zle")
let coq_Zge = lazy (constant "Zge")
let coq_Zlt = lazy (constant "Zlt")
let coq_Z0 = lazy (constant "Z0")
let coq_Zpos = lazy (constant "Zpos")
let coq_Zneg = lazy (constant "Zneg")
let coq_xH = lazy (constant "xH")
let coq_xI = lazy (constant "xI")
let coq_xO = lazy (constant "xO")
let coq_iff = lazy (constant "iff")
(* real constants and operations *)
let coq_R = lazy (constant "R")
let coq_R0 = lazy (constant "R0")
let coq_R1 = lazy (constant "R1")
let coq_Rgt = lazy (constant "Rgt")
let coq_Rle = lazy (constant "Rle")
let coq_Rge = lazy (constant "Rge")
let coq_Rlt = lazy (constant "Rlt")
let coq_Rplus = lazy (constant "Rplus")
let coq_Rmult = lazy (constant "Rmult")
let coq_Ropp = lazy (constant "Ropp")
let coq_Rminus = lazy (constant "Rminus")
let coq_Rdiv = lazy (constant "Rdiv")
let coq_powerRZ = lazy (constant "powerRZ")
(* not Prop typed expressions *)
exception NotProp
(* not first-order expressions *)
exception NotFO
(* Renaming of Coq globals *)
let global_names = Hashtbl.create 97
let used_names = Hashtbl.create 97
let rename_global r =
try
Hashtbl.find global_names r
with Not_found ->
let rec loop id =
if Hashtbl.mem used_names id then
loop (lift_subscript id)
else begin
Hashtbl.add used_names id ();
let s = string_of_id id in
Hashtbl.add global_names r s;
s
end
in
loop (Nametab.basename_of_global r)
let foralls =
List.fold_right
(fun (x,t) p -> Forall (x, t, p))
let fresh_var = function
| Anonymous -> rename_global (VarRef (id_of_string "x"))
| Name x -> rename_global (VarRef x)
(* coq_rename_vars env [(x1,t1);...;(xn,tn)] renames the xi outside of
env names, and returns the new variables together with the new
environment *)
let coq_rename_vars env vars =
let avoid = ref (ids_of_named_context (Environ.named_context env)) in
List.fold_right
(fun (na,t) (newvars, newenv) ->
let id = next_name_away na !avoid in
avoid := id :: !avoid;
id :: newvars, Environ.push_named (id, None, t) newenv)
vars ([],env)
(* extract the prenex type quantifications i.e.
type_quantifiers env (A1:Set)...(Ak:Set)t = A1...An, (env+Ai), t *)
let decomp_type_quantifiers env t =
let rec loop vars t = match kind_of_term t with
| Prod (n, a, t) when is_Set a || is_Type a ->
loop ((n,a) :: vars) t
| _ ->
let vars, env = coq_rename_vars env vars in
let t = substl (List.map mkVar vars) t in
List.rev vars, env, t
in
loop [] t
(* same thing with lambda binders (for axiomatize body) *)
let decomp_type_lambdas env t =
let rec loop vars t = match kind_of_term t with
| Lambda (n, a, t) when is_Set a || is_Type a ->
loop ((n,a) :: vars) t
| _ ->
let vars, env = coq_rename_vars env vars in
let t = substl (List.map mkVar vars) t in
List.rev vars, env, t
in
loop [] t
let decompose_arrows =
let rec arrows_rec l c = match kind_of_term c with
| Prod (_,t,c) when not (dependent (mkRel 1) c) -> arrows_rec (t :: l) c
| Cast (c,_,_) -> arrows_rec l c
| _ -> List.rev l, c
in
arrows_rec []
let rec eta_expanse t vars env i =
assert (i >= 0);
if i = 0 then
t, vars, env
else
match kind_of_term (Typing.type_of env Evd.empty t) with
| Prod (n, a, b) when not (dependent (mkRel 1) b) ->
let avoid = ids_of_named_context (Environ.named_context env) in
let id = next_name_away n avoid in
let env' = Environ.push_named (id, None, a) env in
let t' = mkApp (t, [| mkVar id |]) in
eta_expanse t' (id :: vars) env' (pred i)
| _ ->
assert false
let rec skip_k_args k cl = match k, cl with
| 0, _ -> cl
| _, _ :: cl -> skip_k_args (k-1) cl
| _, [] -> raise NotFO
(* Coq global references *)
type global = Gnot_fo | Gfo of Fol.decl
let globals = ref Refmap.empty
let globals_stack = ref []
(* synchronization *)
let () =
Summary.declare_summary "Dp globals"
{ Summary.freeze_function = (fun () -> !globals, !globals_stack);
Summary.unfreeze_function =
(fun (g,s) -> globals := g; globals_stack := s);
Summary.init_function = (fun () -> ()) }
let add_global r d = globals := Refmap.add r d !globals
let mem_global r = Refmap.mem r !globals
let lookup_global r = match Refmap.find r !globals with
| Gnot_fo -> raise NotFO
| Gfo d -> d
let locals = Hashtbl.create 97
let lookup_local r = match Hashtbl.find locals r with
| Gnot_fo -> raise NotFO
| Gfo d -> d
let iter_all_constructors i f =
let _, oib = Global.lookup_inductive i in
Array.iteri
(fun j tj -> f j (mkConstruct (i, j+1)))
oib.mind_nf_lc
(* injection c [t1,...,tn] adds the injection axiom
forall x1:t1,...,xn:tn,y1:t1,...,yn:tn.
c(x1,...,xn)=c(y1,...,yn) -> x1=y1 /\ ... /\ xn=yn *)
let injection c l =
let i = ref 0 in
let var s = incr i; id_of_string (s ^ string_of_int !i) in
let xl = List.map (fun t -> rename_global (VarRef (var "x")), t) l in
i := 0;
let yl = List.map (fun t -> rename_global (VarRef (var "y")), t) l in
let f =
List.fold_right2
(fun (x,_) (y,_) p -> And (Fatom (Eq (App (x,[]),App (y,[]))), p))
xl yl True
in
let vars = List.map (fun (x,_) -> App(x,[])) in
let f = Imp (Fatom (Eq (App (c, vars xl), App (c, vars yl))), f) in
let foralls = List.fold_right (fun (x,t) p -> Forall (x, t, p)) in
let f = foralls xl (foralls yl f) in
let ax = Axiom ("injection_" ^ c, f) in
globals_stack := ax :: !globals_stack
(* rec_names_for c [|n1;...;nk|] builds the list of constant names for
identifiers n1...nk with the same path as c, if they exist; otherwise
raises Not_found *)
let rec_names_for c =
let mp,dp,_ = Names.repr_con c in
array_map_to_list
(function
| Name id ->
let c' = Names.make_con mp dp (label_of_id id) in
ignore (Global.lookup_constant c');
msgnl (Printer.pr_constr (mkConst c'));
c'
| Anonymous ->
raise Not_found)
(* abstraction tables *)
let term_abstractions = Hashtbl.create 97
let new_abstraction =
let r = ref 0 in fun () -> incr r; "abstraction_" ^ string_of_int !r
(* Arithmetic constants *)
exception NotArithConstant
(* translates a closed Coq term p:positive into a FOL term of type int *)
let big_two = Big_int.succ_big_int Big_int.unit_big_int
let rec tr_positive p = match kind_of_term p with
| Term.Construct _ when p = Lazy.force coq_xH ->
Big_int.unit_big_int
| Term.App (f, [|a|]) when f = Lazy.force coq_xI ->
(*
Plus (Mult (Cst 2, tr_positive a), Cst 1)
*)
Big_int.succ_big_int (Big_int.mult_big_int big_two (tr_positive a))
| Term.App (f, [|a|]) when f = Lazy.force coq_xO ->
(*
Mult (Cst 2, tr_positive a)
*)
Big_int.mult_big_int big_two (tr_positive a)
| Term.Cast (p, _, _) ->
tr_positive p
| _ ->
raise NotArithConstant
(* translates a closed Coq term t:Z or R into a FOL term of type int or real *)
let rec tr_arith_constant t = match kind_of_term t with
| Term.Construct _ when t = Lazy.force coq_Z0 ->
Cst Big_int.zero_big_int
| Term.App (f, [|a|]) when f = Lazy.force coq_Zpos ->
Cst (tr_positive a)
| Term.App (f, [|a|]) when f = Lazy.force coq_Zneg ->
Cst (Big_int.minus_big_int (tr_positive a))
| Term.Const _ when t = Lazy.force coq_R0 ->
RCst Big_int.zero_big_int
| Term.Const _ when t = Lazy.force coq_R1 ->
RCst Big_int.unit_big_int
| Term.App (f, [|a;b|]) when f = Lazy.force coq_Rplus ->
let ta = tr_arith_constant a in
let tb = tr_arith_constant b in
begin match ta,tb with
| RCst na, RCst nb -> RCst (Big_int.add_big_int na nb)
| _ -> raise NotArithConstant
end
| Term.App (f, [|a;b|]) when f = Lazy.force coq_Rmult ->
let ta = tr_arith_constant a in
let tb = tr_arith_constant b in
begin match ta,tb with
| RCst na, RCst nb -> RCst (Big_int.mult_big_int na nb)
| _ -> raise NotArithConstant
end
| Term.App (f, [|a;b|]) when f = Lazy.force coq_powerRZ ->
tr_powerRZ a b
| Term.Cast (t, _, _) ->
tr_arith_constant t
| _ ->
raise NotArithConstant
(* translates a constant of the form (powerRZ 2 int_constant) *)
and tr_powerRZ a b =
(* checking first that a is (R1 + R1) *)
match kind_of_term a with
| Term.App (f, [|c;d|]) when f = Lazy.force coq_Rplus ->
begin
match kind_of_term c,kind_of_term d with
| Term.Const _, Term.Const _
when c = Lazy.force coq_R1 && d = Lazy.force coq_R1 ->
begin
match tr_arith_constant b with
| Cst n -> Power2 n
| _ -> raise NotArithConstant
end
| _ -> raise NotArithConstant
end
| _ -> raise NotArithConstant
(* translate a Coq term t:Set into a FOL type expression;
tv = list of type variables *)
and tr_type tv env t =
let t = Reductionops.nf_betadeltaiota env Evd.empty t in
if t = Lazy.force coq_Z then
Tid ("int", [])
else if t = Lazy.force coq_R then
Tid ("real", [])
else match kind_of_term t with
| Var x when List.mem x tv ->
Tvar (string_of_id x)
| _ ->
let f, cl = decompose_app t in
begin try
let r = global_of_constr f in
match tr_global env r with
| DeclType (id, k) ->
assert (k = List.length cl); (* since t:Set *)
Tid (id, List.map (tr_type tv env) cl)
| _ ->
raise NotFO
with
| Not_found ->
raise NotFO
| NotFO ->
(* we need to abstract some part of (f cl) *)
(*TODO*)
raise NotFO
end
and make_term_abstraction tv env c =
let ty = Typing.type_of env Evd.empty c in
let id = new_abstraction () in
match tr_decl env id ty with
| DeclFun (id,_,_,_) as _d ->
raise NotFO
(* [CM 07/09/2009] deactivated because it generates
unbound identifiers 'abstraction_<number>'
begin try
Hashtbl.find term_abstractions c
with Not_found ->
Hashtbl.add term_abstractions c id;
globals_stack := d :: !globals_stack;
id
end
*)
| _ ->
raise NotFO
(* translate a Coq declaration id:ty in a FOL declaration, that is either
- a type declaration : DeclType (id, n) where n:int is the type arity
- a function declaration : DeclFun (id, tl, t) ; that includes constants
- a predicate declaration : DeclPred (id, tl)
- an axiom : Axiom (id, p)
*)
and tr_decl env id ty =
let tv, env, t = decomp_type_quantifiers env ty in
if is_Set t || is_Type t then
DeclType (id, List.length tv)
else if is_Prop t then
DeclPred (id, List.length tv, [])
else
let s = Typing.type_of env Evd.empty t in
if is_Prop s then
Axiom (id, tr_formula tv [] env t)
else
let l, t = decompose_arrows t in
let l = List.map (tr_type tv env) l in
if is_Prop t then
DeclPred(id, List.length tv, l)
else
let s = Typing.type_of env Evd.empty t in
if is_Set s || is_Type s then
DeclFun (id, List.length tv, l, tr_type tv env t)
else
raise NotFO
(* tr_global(r) = tr_decl(id(r),typeof(r)) + a cache mechanism *)
and tr_global env r = match r with
| VarRef id ->
lookup_local id
| r ->
try
lookup_global r
with Not_found ->
try
let ty = Global.type_of_global r in
let id = rename_global r in
let d = tr_decl env id ty in
(* r can be already declared if it is a constructor *)
if not (mem_global r) then begin
add_global r (Gfo d);
globals_stack := d :: !globals_stack
end;
begin try axiomatize_body env r id d with NotFO -> () end;
d
with NotFO ->
add_global r Gnot_fo;
raise NotFO
and axiomatize_body env r id d = match r with
| VarRef _ ->
assert false
| ConstRef c ->
begin match (Global.lookup_constant c).const_body with
| Some b ->
let b = force b in
let axioms =
(match d with
| DeclPred (id, _, []) ->
let tv, env, b = decomp_type_lambdas env b in
let value = tr_formula tv [] env b in
[id, Iff (Fatom (Pred (id, [])), value)]
| DeclFun (id, _, [], _) ->
let tv, env, b = decomp_type_lambdas env b in
let value = tr_term tv [] env b in
[id, Fatom (Eq (Fol.App (id, []), value))]
| DeclFun (id, _, l, _) | DeclPred (id, _, l) ->
(*Format.eprintf "axiomatize_body %S@." id;*)
let b = match kind_of_term b with
(* a single recursive function *)
| Fix (_, (_,_,[|b|])) ->
subst1 (mkConst c) b
(* mutually recursive functions *)
| Fix ((_,i), (names,_,bodies)) ->
(* we only deal with named functions *)
begin try
let l = rec_names_for c names in
substl (List.rev_map mkConst l) bodies.(i)
with Not_found ->
b
end
| _ ->
b
in
let tv, env, b = decomp_type_lambdas env b in
let vars, t = decompose_lam b in
let n = List.length l in
let k = List.length vars in
assert (k <= n);
let vars, env = coq_rename_vars env vars in
let t = substl (List.map mkVar vars) t in
let t, vars, env = eta_expanse t vars env (n-k) in
let vars = List.rev vars in
let bv = vars in
let vars = List.map (fun x -> string_of_id x) vars in
let fol_var x = Fol.App (x, []) in
let fol_vars = List.map fol_var vars in
let vars = List.combine vars l in
begin match d with
| DeclFun (_, _, _, ty) ->
begin match kind_of_term t with
| Case (ci, _, e, br) ->
equations_for_case env id vars tv bv ci e br
| _ ->
let t = tr_term tv bv env t in
let ax =
add_proof (Fun_def (id, vars, ty, t))
in
let p = Fatom (Eq (App (id, fol_vars), t)) in
[ax, foralls vars p]
end
| DeclPred _ ->
let value = tr_formula tv bv env t in
let p = Iff (Fatom (Pred (id, fol_vars)), value) in
[id, foralls vars p]
| _ ->
assert false
end
| DeclType _ ->
raise NotFO
| Axiom _ -> assert false)
in
let axioms = List.map (fun (id,ax) -> Axiom (id, ax)) axioms in
globals_stack := axioms @ !globals_stack
| None ->
() (* Coq axiom *)
end
| IndRef i ->
iter_all_constructors i
(fun _ c ->
let rc = global_of_constr c in
try
begin match tr_global env rc with
| DeclFun (_, _, [], _) -> ()
| DeclFun (idc, _, al, _) -> injection idc al
| _ -> ()
end
with NotFO ->
())
| _ -> ()
and equations_for_case env id vars tv bv ci e br = match kind_of_term e with
| Var x when List.exists (fun (y, _) -> string_of_id x = y) vars ->
let eqs = ref [] in
iter_all_constructors ci.ci_ind
(fun j cj ->
try
let cjr = global_of_constr cj in
begin match tr_global env cjr with
| DeclFun (idc, _, l, _) ->
let b = br.(j) in
let rec_vars, b = decompose_lam b in
let rec_vars, env = coq_rename_vars env rec_vars in
let coq_rec_vars = List.map mkVar rec_vars in
let b = substl coq_rec_vars b in
let rec_vars = List.rev rec_vars in
let coq_rec_term = applist (cj, List.rev coq_rec_vars) in
let b = replace_vars [x, coq_rec_term] b in
let bv = bv @ rec_vars in
let rec_vars = List.map string_of_id rec_vars in
let fol_var x = Fol.App (x, []) in
let fol_rec_vars = List.map fol_var rec_vars in
let fol_rec_term = App (idc, fol_rec_vars) in
let rec_vars = List.combine rec_vars l in
let fol_vars = List.map fst vars in
let fol_vars = List.map fol_var fol_vars in
let fol_vars = List.map (fun y -> match y with
| App (id, _) ->
if id = string_of_id x
then fol_rec_term
else y
| _ -> y)
fol_vars in
let vars = vars @ rec_vars in
let rec remove l e = match l with
| [] -> []
| (y, t)::l' -> if y = string_of_id e then l'
else (y, t)::(remove l' e) in
let vars = remove vars x in
let p =
Fatom (Eq (App (id, fol_vars),
tr_term tv bv env b))
in
eqs := (id ^ "_" ^ idc, foralls vars p) :: !eqs
| _ ->
assert false end
with NotFO ->
());
!eqs
| _ ->
raise NotFO
(* assumption: t:T:Set *)
and tr_term tv bv env t =
try
tr_arith_constant t
with NotArithConstant ->
match kind_of_term t with
(* binary operations on integers *)
| Term.App (f, [|a;b|]) when f = Lazy.force coq_Zplus ->
Plus (tr_term tv bv env a, tr_term tv bv env b)
| Term.App (f, [|a;b|]) when f = Lazy.force coq_Zminus ->
Moins (tr_term tv bv env a, tr_term tv bv env b)
| Term.App (f, [|a;b|]) when f = Lazy.force coq_Zmult ->
Mult (tr_term tv bv env a, tr_term tv bv env b)
| Term.App (f, [|a;b|]) when f = Lazy.force coq_Zdiv ->
Div (tr_term tv bv env a, tr_term tv bv env b)
| Term.App (f, [|a|]) when f = Lazy.force coq_Zopp ->
Opp (tr_term tv bv env a)
(* binary operations on reals *)
| Term.App (f, [|a;b|]) when f = Lazy.force coq_Rplus ->
Plus (tr_term tv bv env a, tr_term tv bv env b)
| Term.App (f, [|a;b|]) when f = Lazy.force coq_Rminus ->
Moins (tr_term tv bv env a, tr_term tv bv env b)
| Term.App (f, [|a;b|]) when f = Lazy.force coq_Rmult ->
Mult (tr_term tv bv env a, tr_term tv bv env b)
| Term.App (f, [|a;b|]) when f = Lazy.force coq_Rdiv ->
Div (tr_term tv bv env a, tr_term tv bv env b)
| Term.Var id when List.mem id bv ->
App (string_of_id id, [])
| _ ->
let f, cl = decompose_app t in
begin try
let r = global_of_constr f in
match tr_global env r with
| DeclFun (s, k, _, _) ->
let cl = skip_k_args k cl in
Fol.App (s, List.map (tr_term tv bv env) cl)
| _ ->
raise NotFO
with
| Not_found ->
raise NotFO
| NotFO -> (* we need to abstract some part of (f cl) *)
let rec abstract app = function
| [] ->
Fol.App (make_term_abstraction tv env app, [])
| x :: l as args ->
begin try
let s = make_term_abstraction tv env app in
Fol.App (s, List.map (tr_term tv bv env) args)
with NotFO ->
abstract (applist (app, [x])) l
end
in
let app,l = match cl with
| x :: l -> applist (f, [x]), l | [] -> raise NotFO
in
abstract app l
end
and quantifiers n a b tv bv env =
let vars, env = coq_rename_vars env [n,a] in
let id = match vars with [x] -> x | _ -> assert false in
let b = subst1 (mkVar id) b in
let t = tr_type tv env a in
let bv = id :: bv in
id, t, bv, env, b
(* assumption: f is of type Prop *)
and tr_formula tv bv env f =
let c, args = decompose_app f in
match kind_of_term c, args with
| Var id, [] ->
Fatom (Pred (rename_global (VarRef id), []))
| _, [t;a;b] when c = build_coq_eq () ->
let ty = Typing.type_of env Evd.empty t in
if is_Set ty || is_Type ty then
let _ = tr_type tv env t in
Fatom (Eq (tr_term tv bv env a, tr_term tv bv env b))
else
raise NotFO
(* comparisons on integers *)
| _, [a;b] when c = Lazy.force coq_Zle ->
Fatom (Le (tr_term tv bv env a, tr_term tv bv env b))
| _, [a;b] when c = Lazy.force coq_Zlt ->
Fatom (Lt (tr_term tv bv env a, tr_term tv bv env b))
| _, [a;b] when c = Lazy.force coq_Zge ->
Fatom (Ge (tr_term tv bv env a, tr_term tv bv env b))
| _, [a;b] when c = Lazy.force coq_Zgt ->
Fatom (Gt (tr_term tv bv env a, tr_term tv bv env b))
(* comparisons on reals *)
| _, [a;b] when c = Lazy.force coq_Rle ->
Fatom (Le (tr_term tv bv env a, tr_term tv bv env b))
| _, [a;b] when c = Lazy.force coq_Rlt ->
Fatom (Lt (tr_term tv bv env a, tr_term tv bv env b))
| _, [a;b] when c = Lazy.force coq_Rge ->
Fatom (Ge (tr_term tv bv env a, tr_term tv bv env b))
| _, [a;b] when c = Lazy.force coq_Rgt ->
Fatom (Gt (tr_term tv bv env a, tr_term tv bv env b))
| _, [] when c = build_coq_False () ->
False
| _, [] when c = build_coq_True () ->
True
| _, [a] when c = build_coq_not () ->
Not (tr_formula tv bv env a)
| _, [a;b] when c = build_coq_and () ->
And (tr_formula tv bv env a, tr_formula tv bv env b)
| _, [a;b] when c = build_coq_or () ->
Or (tr_formula tv bv env a, tr_formula tv bv env b)
| _, [a;b] when c = Lazy.force coq_iff ->
Iff (tr_formula tv bv env a, tr_formula tv bv env b)
| Prod (n, a, b), _ ->
if is_imp_term f then
Imp (tr_formula tv bv env a, tr_formula tv bv env b)
else
let id, t, bv, env, b = quantifiers n a b tv bv env in
Forall (string_of_id id, t, tr_formula tv bv env b)
| _, [_; a] when c = build_coq_ex () ->
begin match kind_of_term a with
| Lambda(n, a, b) ->
let id, t, bv, env, b = quantifiers n a b tv bv env in
Exists (string_of_id id, t, tr_formula tv bv env b)
| _ ->
(* unusual case of the shape (ex p) *)
raise NotFO (* TODO: we could eta-expanse *)
end
| _ ->
begin try
let r = global_of_constr c in
match tr_global env r with
| DeclPred (s, k, _) ->
let args = skip_k_args k args in
Fatom (Pred (s, List.map (tr_term tv bv env) args))
| _ ->
raise NotFO
with Not_found ->
raise NotFO
end
let tr_goal gl =
Hashtbl.clear locals;
let tr_one_hyp (id, ty) =
try
let s = rename_global (VarRef id) in
let d = tr_decl (pf_env gl) s ty in
Hashtbl.add locals id (Gfo d);
d
with NotFO ->
Hashtbl.add locals id Gnot_fo;
raise NotFO
in
let hyps =
List.fold_right
(fun h acc -> try tr_one_hyp h :: acc with NotFO -> acc)
(pf_hyps_types gl) []
in
let c = tr_formula [] [] (pf_env gl) (pf_concl gl) in
let hyps = List.rev_append !globals_stack (List.rev hyps) in
hyps, c
type prover = Simplify | Ergo | Yices | CVCLite | Harvey | Zenon | Gwhy | CVC3 | Z3
let remove_files = List.iter (fun f -> try Sys.remove f with _ -> ())
let sprintf = Format.sprintf
let file_contents f =
let buf = Buffer.create 1024 in
try
let c = open_in f in
begin try
while true do
let s = input_line c in Buffer.add_string buf s;
Buffer.add_char buf '\n'
done;
assert false
with End_of_file ->
close_in c;
Buffer.contents buf
end
with _ ->
sprintf "(cannot open %s)" f
let timeout_sys_command cmd =
if !debug then Format.eprintf "command line: %s@." cmd;
let out = Filename.temp_file "out" "" in
let cmd = sprintf "why-cpulimit %d %s > %s 2>&1" !timeout cmd out in
let ret = Sys.command cmd in
if !debug then
Format.eprintf "Output file %s:@.%s@." out (file_contents out);
ret, out
let timeout_or_failure c cmd out =
if c = 152 then
Timeout
else
Failure
(sprintf "command %s failed with output:\n%s " cmd (file_contents out))
let call_prover ?(opt="") file =
if !debug then Format.eprintf "calling prover on %s@." file;
let out = Filename.temp_file "out" "" in
let cmd =
sprintf "why-dp -timeout %d -batch %s > %s 2>&1" !timeout file out in
match Sys.command cmd with
0 -> Valid None
| 1 -> Failure (sprintf "could not run why-dp\n%s" (file_contents out))
| 2 -> Invalid
| 3 -> DontKnow
| 4 -> Timeout
| 5 -> Failure (sprintf "prover failed:\n%s" (file_contents out))
| n -> Failure (sprintf "Unknown exit status of why-dp: %d" n)
let prelude_files = ref ([] : string list)
let set_prelude l = prelude_files := l
let dp_prelude_obj =
declare_object
{(default_object "Dp_prelude") with
cache_function = (fun (_,x) -> set_prelude x);
load_function = (fun _ (_,x) -> set_prelude x)}
let dp_prelude x = Lib.add_anonymous_leaf (dp_prelude_obj x)
let why_files f = String.concat " " (!prelude_files @ [f])
let call_simplify fwhy =
let cmd =
sprintf "why --simplify %s" (why_files fwhy)
in
if Sys.command cmd <> 0 then error ("call to " ^ cmd ^ " failed");
let fsx = Filename.chop_suffix fwhy ".why" ^ "_why.sx" in
(*
let cmd =
sprintf "why-cpulimit %d Simplify %s > out 2>&1 && grep -q -w Valid out"
!timeout fsx
in
let out = Sys.command cmd in
let r =
if out = 0 then Valid None else if out = 1 then Invalid else Timeout
in
*)
let r = call_prover fsx in
if not !debug then remove_files [fwhy; fsx];
r
let call_ergo fwhy =
let cmd = sprintf "why --alt-ergo %s" (why_files fwhy) in
if Sys.command cmd <> 0 then error ("call to " ^ cmd ^ " failed");
let fwhy = Filename.chop_suffix fwhy ".why" ^ "_why.why" in
(*let ftrace = Filename.temp_file "ergo_trace" "" in*)
(*NB: why-dp can't handle -cctrace
let cmd =
if !trace then
sprintf "alt-ergo -cctrace %s %s" ftrace fwhy
else
sprintf "alt-ergo %s" fwhy
in*)
let r = call_prover fwhy in
if not !debug then remove_files [fwhy; (*out*)];
r
let call_zenon fwhy =
let cmd =
sprintf "why --no-zenon-prelude --zenon %s" (why_files fwhy)
in
if Sys.command cmd <> 0 then error ("call to " ^ cmd ^ " failed");
let fznn = Filename.chop_suffix fwhy ".why" ^ "_why.znn" in
(* why-dp won't let us having coqterm...
let out = Filename.temp_file "dp_out" "" in
let cmd =
sprintf "timeout %d zenon -ocoqterm %s > %s 2>&1" !timeout fznn out
in
let c = Sys.command cmd in
if not !debug then remove_files [fwhy; fznn];
if c = 137 then
Timeout
else begin
if c <> 0 then anomaly ("command failed: " ^ cmd);
if Sys.command (sprintf "grep -q -w Error %s" out) = 0 then
error "Zenon failed";
let c = Sys.command (sprintf "grep -q PROOF-FOUND %s" out) in
if c = 0 then Valid (Some out) else Invalid
end
*)
let r = call_prover fznn in
if not !debug then remove_files [fwhy; fznn];
r
let call_smt ~smt fwhy =
let cmd =
sprintf "why -smtlib --encoding sstrat %s" (why_files fwhy)
in
if Sys.command cmd <> 0 then error ("call to " ^ cmd ^ " failed");
let fsmt = Filename.chop_suffix fwhy ".why" ^ "_why.smt" in
let opt = "-smt-solver " ^ smt in
let r = call_prover ~opt fsmt in
if not !debug then remove_files [fwhy; fsmt];
r
(*
let call_yices fwhy =
let cmd =
sprintf "why -smtlib --encoding sstrat %s" (why_files fwhy)
in
if Sys.command cmd <> 0 then error ("call to " ^ cmd ^ " failed");
let fsmt = Filename.chop_suffix fwhy ".why" ^ "_why.smt" in
let cmd =
sprintf "why-cpulimit %d yices -pc 0 -smt %s > out 2>&1 && grep -q -w unsat out"
!timeout fsmt
in
let out = Sys.command cmd in
let r =
if out = 0 then Valid None else if out = 1 then Invalid else Timeout
in
if not !debug then remove_files [fwhy; fsmt];
r
let call_cvc3 fwhy =
let cmd =
sprintf "why -smtlib --encoding sstrat %s" (why_files fwhy)
in
if Sys.command cmd <> 0 then error ("call to " ^ cmd ^ " failed");
let fsmt = Filename.chop_suffix fwhy ".why" ^ "_why.smt" in
let cmd =
sprintf "why-cpulimit %d cvc3 -lang smt %s > out 2>&1 && grep -q -w unsat out"
!timeout fsmt
in
let out = Sys.command cmd in
let r =
if out = 0 then Valid None else if out = 1 then Invalid else Timeout
in
if not !debug then remove_files [fwhy; fsmt];
r
*)
let call_cvcl fwhy =
let cmd =
sprintf "why --cvcl --encoding sstrat %s" (why_files fwhy)
in
if Sys.command cmd <> 0 then error ("call to " ^ cmd ^ " failed");
let fcvc = Filename.chop_suffix fwhy ".why" ^ "_why.cvc" in
(*
let cmd =
sprintf "timeout %d cvcl < %s > out 2>&1 && grep -q -w Valid out"
!timeout fcvc
in
let out = Sys.command cmd in
let r =
if out = 0 then Valid None else if out = 1 then Invalid else Timeout
in
*)
let r = call_prover fcvc in
if not !debug then remove_files [fwhy; fcvc];
r
let call_harvey fwhy =
let cmd =
sprintf "why --harvey --encoding strat %s" (why_files fwhy)
in
if Sys.command cmd <> 0 then error ("call to " ^ cmd ^ " failed");
let frv = Filename.chop_suffix fwhy ".why" ^ "_why.rv" in
(*
let out = Sys.command (sprintf "rvc -e -t %s > /dev/null 2>&1" frv) in
if out <> 0 then anomaly ("call to rvc -e -t " ^ frv ^ " failed");
let f = Filename.chop_suffix frv ".rv" ^ "-0.baf" in
let outf = Filename.temp_file "rv" ".out" in
let out =
Sys.command (sprintf "timeout %d rv -e\"-T 2000\" %s > %s 2>&1"
!timeout f outf)
in
let r =
if out <> 0 then
Timeout
else
let cmd =
sprintf "grep \"Proof obligation in\" %s | grep -q \"is valid\"" outf
in
if Sys.command cmd = 0 then Valid None else Invalid
in
if not !debug then remove_files [fwhy; frv; outf];
*)
let r = call_prover frv in
if not !debug then remove_files [fwhy; frv];
r
let call_gwhy fwhy =
let cmd = sprintf "gwhy %s" (why_files fwhy) in
if Sys.command cmd <> 0 then ignore (Sys.command (sprintf "emacs %s" fwhy));
NoAnswer
let ergo_proof_from_file f gl =
let s =
let buf = Buffer.create 1024 in
let c = open_in f in
try
while true do Buffer.add_string buf (input_line c) done; assert false
with End_of_file ->
close_in c;
Buffer.contents buf
in
let parsed_constr = Pcoq.parse_string Pcoq.Constr.constr s in
let t = Constrintern.interp_constr (project gl) (pf_env gl) parsed_constr in
exact_check t gl
let call_prover prover q =
let fwhy = Filename.temp_file "coq_dp" ".why" in
Dp_why.output_file fwhy q;
match prover with
| Simplify -> call_simplify fwhy
| Ergo -> call_ergo fwhy
| CVC3 -> call_smt ~smt:"cvc3" fwhy
| Yices -> call_smt ~smt:"yices" fwhy
| Z3 -> call_smt ~smt:"z3" fwhy
| Zenon -> call_zenon fwhy
| CVCLite -> call_cvcl fwhy
| Harvey -> call_harvey fwhy
| Gwhy -> call_gwhy fwhy
let dp prover gl =
Coqlib.check_required_library ["Coq";"ZArith";"ZArith"];
let concl_type = pf_type_of gl (pf_concl gl) in
if not (is_Prop concl_type) then error "Conclusion is not a Prop";
try
let q = tr_goal gl in
begin match call_prover prover q with
| Valid (Some f) when prover = Zenon -> Dp_zenon.proof_from_file f gl
| Valid (Some f) when prover = Ergo -> ergo_proof_from_file f gl
| Valid _ -> Tactics.admit_as_an_axiom gl
| Invalid -> error "Invalid"
| DontKnow -> error "Don't know"
| Timeout -> error "Timeout"
| Failure s -> error s
| NoAnswer -> Tacticals.tclIDTAC gl
end
with NotFO ->
error "Not a first order goal"
let simplify = tclTHEN intros (dp Simplify)
let ergo = tclTHEN intros (dp Ergo)
let cvc3 = tclTHEN intros (dp CVC3)
let yices = tclTHEN intros (dp Yices)
let z3 = tclTHEN intros (dp Z3)
let cvc_lite = tclTHEN intros (dp CVCLite)
let harvey = dp Harvey
let zenon = tclTHEN intros (dp Zenon)
let gwhy = tclTHEN intros (dp Gwhy)
let dp_hint l =
let env = Global.env () in
let one_hint (qid,r) =
if not (mem_global r) then begin
let ty = Global.type_of_global r in
let s = Typing.type_of env Evd.empty ty in
if is_Prop s then
try
let id = rename_global r in
let tv, env, ty = decomp_type_quantifiers env ty in
let d = Axiom (id, tr_formula tv [] env ty) in
add_global r (Gfo d);
globals_stack := d :: !globals_stack
with NotFO ->
add_global r Gnot_fo;
msg_warning
(pr_reference qid ++
str " ignored (not a first order proposition)")
else begin
add_global r Gnot_fo;
msg_warning
(pr_reference qid ++ str " ignored (not a proposition)")
end
end
in
List.iter one_hint (List.map (fun qid -> qid, Nametab.global qid) l)
let dp_hint_obj =
declare_object
{(default_object "Dp_hint") with
cache_function = (fun (_,l) -> dp_hint l);
load_function = (fun _ (_,l) -> dp_hint l)}
let dp_hint l = Lib.add_anonymous_leaf (dp_hint_obj l)
let dp_predefined qid s =
let r = Nametab.global qid in
let ty = Global.type_of_global r in
let env = Global.env () in
let id = rename_global r in
try
let d = match tr_decl env id ty with
| DeclType (_, n) -> DeclType (s, n)
| DeclFun (_, n, tyl, ty) -> DeclFun (s, n, tyl, ty)
| DeclPred (_, n, tyl) -> DeclPred (s, n, tyl)
| Axiom _ as d -> d
in
match d with
| Axiom _ -> msg_warning (str " ignored (axiom)")
| d -> add_global r (Gfo d)
with NotFO ->
msg_warning (str " ignored (not a first order declaration)")
let dp_predefined_obj =
declare_object
{(default_object "Dp_predefined") with
cache_function = (fun (_,(id,s)) -> dp_predefined id s);
load_function = (fun _ (_,(id,s)) -> dp_predefined id s)}
let dp_predefined id s = Lib.add_anonymous_leaf (dp_predefined_obj (id,s))
let _ = declare_summary "Dp options"
{ freeze_function =
(fun () -> !debug, !trace, !timeout, !prelude_files);
unfreeze_function =
(fun (d,tr,tm,pr) ->
debug := d; trace := tr; timeout := tm; prelude_files := pr);
init_function =
(fun () ->
debug := false; trace := false; timeout := 10;
prelude_files := []) }
|