1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i camlp4deps: "grammar/grammar.cma" i*)
open Util
open Compat
open Pp
open Decl_expr
open Names
open Pcoq
open Vernacexpr
open Tok (* necessary for camlp4 *)
open Pcoq.Constr
open Pcoq.Tactic
let pr_goal gs =
let (g,sigma) = Goal.V82.nf_evar (Tacmach.project gs) (Evd.sig_it gs) in
let env = Goal.V82.env sigma g in
let preamb,thesis,penv,pc =
(str " *** Declarative Mode ***" ++ fnl ()++fnl ()),
(str "thesis := " ++ fnl ()),
Printer.pr_context_of env,
Printer.pr_goal_concl_style_env env (Goal.V82.concl sigma g)
in
preamb ++
str" " ++ hv 0 (penv ++ fnl () ++
str (Printer.emacs_str "") ++
str "============================" ++ fnl () ++
thesis ++ str " " ++ pc) ++ fnl ()
(* arnaud: rebrancher ça ?
let pr_open_subgoals () =
let p = Proof_global.give_me_the_proof () in
let { Evd.it = goals ; sigma = sigma } = Proof.V82.subgoals p in
let close_cmd = Decl_mode.get_end_command p in
pr_subgoals close_cmd sigma goals
*)
let pr_raw_proof_instr _ _ _ instr =
Errors.anomaly (Pp.str "Cannot print a proof_instr")
(* arnaud: Il nous faut quelque chose de type extr_genarg_printer si on veut aller
dans cette direction
Ppdecl_proof.pr_proof_instr (Global.env()) instr
*)
let pr_proof_instr _ _ _ instr = Empty.abort instr
let pr_glob_proof_instr _ _ _ instr = Empty.abort instr
let interp_proof_instr _ { Evd.it = gl ; sigma = sigma }=
Decl_interp.interp_proof_instr
(Decl_mode.get_info sigma gl)
(sigma)
(Goal.V82.env sigma gl)
let vernac_decl_proof () =
let pf = Proof_global.give_me_the_proof () in
if Proof.is_done pf then
Errors.error "Nothing left to prove here."
else
begin
Decl_proof_instr.go_to_proof_mode () ;
Proof_global.set_proof_mode "Declarative" ;
Vernacentries.print_subgoals ()
end
(* spiwack: some bureaucracy is not performed here *)
let vernac_return () =
begin
Decl_proof_instr.return_from_tactic_mode () ;
Proof_global.set_proof_mode "Declarative" ;
Vernacentries.print_subgoals ()
end
let vernac_proof_instr instr =
begin
Decl_proof_instr.proof_instr instr;
Vernacentries.print_subgoals ()
end
(* Before we can write an new toplevel command (see below)
which takes a [proof_instr] as argument, we need to declare
how to parse it, print it, globalise it and interprete it.
Normally we could do that easily through ARGUMENT EXTEND,
but as the parsing is fairly complicated we will do it manually to
indirect through the [proof_instr] grammar entry. *)
(* spiwack: proposal: doing that directly from argextend.ml4, maybe ? *)
(* Only declared at raw level, because only used in vernac commands. *)
let wit_proof_instr : (raw_proof_instr, Empty.t, Empty.t) Genarg.genarg_type =
Genarg.make0 None "proof_instr"
(* We create a new parser entry [proof_mode]. The Declarative proof mode
will replace the normal parser entry for tactics with this one. *)
let proof_mode : vernac_expr Gram.entry =
Gram.entry_create "vernac:proof_command"
(* Auxiliary grammar entry. *)
let proof_instr : raw_proof_instr Gram.entry =
Pcoq.create_generic_entry "proof_instr" (Genarg.rawwit wit_proof_instr)
let _ = Pptactic.declare_extra_genarg_pprule wit_proof_instr
pr_raw_proof_instr pr_glob_proof_instr pr_proof_instr
let classify_proof_instr _ = VtProofStep, VtLater
(* We use the VERNAC EXTEND facility with a custom non-terminal
to populate [proof_mode] with a new toplevel interpreter.
The "-" indicates that the rule does not start with a distinguished
string. *)
VERNAC proof_mode EXTEND ProofInstr CLASSIFIED BY classify_proof_instr
[ - proof_instr(instr) ] -> [ vernac_proof_instr instr ]
END
(* It is useful to use GEXTEND directly to call grammar entries that have been
defined previously VERNAC EXTEND. In this case we allow, in proof mode,
the use of commands like Check or Print. VERNAC EXTEND does quite a bit of
bureaucracy for us, but it is not needed in this sort of case, and it would require
to have an ARGUMENT EXTEND version of the "proof_mode" grammar entry. *)
GEXTEND Gram
GLOBAL: proof_mode ;
proof_mode: LAST
[ [ c=G_vernac.subgoal_command -> c (Some (Vernacexpr.SelectNth 1)) ] ]
;
END
(* We register a new proof mode here *)
let _ =
Proof_global.register_proof_mode { Proof_global.
name = "Declarative" ; (* name for identifying and printing *)
(* function [set] goes from No Proof Mode to
Declarative Proof Mode performing side effects *)
set = begin fun () ->
(* We set the command non terminal to
[proof_mode] (which we just defined). *)
G_vernac.set_command_entry proof_mode ;
(* We substitute the goal printer, by the one we built
for the proof mode. *)
Printer.set_printer_pr { Printer.default_printer_pr with
Printer.pr_goal = pr_goal }
end ;
(* function [reset] goes back to No Proof Mode from
Declarative Proof Mode *)
reset = begin fun () ->
(* We restore the command non terminal to
[noedit_mode]. *)
G_vernac.set_command_entry G_vernac.noedit_mode ;
(* We restore the goal printer to default *)
Printer.set_printer_pr Printer.default_printer_pr
end
}
VERNAC COMMAND EXTEND DeclProof
[ "proof" ] => [ VtProofMode "Declarative", VtNow ] -> [ vernac_decl_proof () ]
END
VERNAC COMMAND EXTEND DeclReturn
[ "return" ] => [ VtProofMode "Classic", VtNow ] -> [ vernac_return () ]
END
let none_is_empty = function
None -> []
| Some l -> l
GEXTEND Gram
GLOBAL: proof_instr;
thesis :
[[ "thesis" -> Plain
| "thesis"; "for"; i=ident -> (For i)
]];
statement :
[[ i=ident ; ":" ; c=constr -> {st_label=Name i;st_it=c}
| i=ident -> {st_label=Anonymous;
st_it=Constrexpr.CRef (Libnames.Ident (!@loc, i), None)}
| c=constr -> {st_label=Anonymous;st_it=c}
]];
constr_or_thesis :
[[ t=thesis -> Thesis t ] |
[ c=constr -> This c
]];
statement_or_thesis :
[
[ t=thesis -> {st_label=Anonymous;st_it=Thesis t} ]
|
[ i=ident ; ":" ; cot=constr_or_thesis -> {st_label=Name i;st_it=cot}
| i=ident -> {st_label=Anonymous;
st_it=This (Constrexpr.CRef (Libnames.Ident (!@loc, i), None))}
| c=constr -> {st_label=Anonymous;st_it=This c}
]
];
justification_items :
[[ -> Some []
| "by"; l=LIST1 constr SEP "," -> Some l
| "by"; "*" -> None ]]
;
justification_method :
[[ -> None
| "using"; tac = tactic -> Some tac ]]
;
simple_cut_or_thesis :
[[ ls = statement_or_thesis;
j = justification_items;
taco = justification_method
-> {cut_stat=ls;cut_by=j;cut_using=taco} ]]
;
simple_cut :
[[ ls = statement;
j = justification_items;
taco = justification_method
-> {cut_stat=ls;cut_by=j;cut_using=taco} ]]
;
elim_type:
[[ IDENT "induction" -> ET_Induction
| IDENT "cases" -> ET_Case_analysis ]]
;
block_type :
[[ IDENT "claim" -> B_claim
| IDENT "focus" -> B_focus
| IDENT "proof" -> B_proof
| et=elim_type -> B_elim et ]]
;
elim_obj:
[[ IDENT "on"; c=constr -> Real c
| IDENT "of"; c=simple_cut -> Virtual c ]]
;
elim_step:
[[ IDENT "consider" ;
h=consider_vars ; IDENT "from" ; c=constr -> Pconsider (c,h)
| IDENT "per"; et=elim_type; obj=elim_obj -> Pper (et,obj)
| IDENT "suffices"; ls=suff_clause;
j = justification_items;
taco = justification_method
-> Psuffices {cut_stat=ls;cut_by=j;cut_using=taco} ]]
;
rew_step :
[[ "~=" ; c=simple_cut -> (Rhs,c)
| "=~" ; c=simple_cut -> (Lhs,c)]]
;
cut_step:
[[ "then"; tt=elim_step -> Pthen tt
| "then"; c=simple_cut_or_thesis -> Pthen (Pcut c)
| IDENT "thus"; tt=rew_step -> Pthus (let s,c=tt in Prew (s,c))
| IDENT "thus"; c=simple_cut_or_thesis -> Pthus (Pcut c)
| IDENT "hence"; c=simple_cut_or_thesis -> Phence (Pcut c)
| tt=elim_step -> tt
| tt=rew_step -> let s,c=tt in Prew (s,c);
| IDENT "have"; c=simple_cut_or_thesis -> Pcut c;
| IDENT "claim"; c=statement -> Pclaim c;
| IDENT "focus"; IDENT "on"; c=statement -> Pfocus c;
| "end"; bt = block_type -> Pend bt;
| IDENT "escape" -> Pescape ]]
;
(* examiner s'il est possible de faire R _ et _ R pour R une relation qcq*)
loc_id:
[[ id=ident -> fun x -> (!@loc,(id,x)) ]];
hyp:
[[ id=loc_id -> id None ;
| id=loc_id ; ":" ; c=constr -> id (Some c)]]
;
consider_vars:
[[ name=hyp -> [Hvar name]
| name=hyp; ","; v=consider_vars -> (Hvar name) :: v
| name=hyp;
IDENT "such"; IDENT "that"; h=consider_hyps -> (Hvar name)::h
]]
;
consider_hyps:
[[ st=statement; IDENT "and"; h=consider_hyps -> Hprop st::h
| st=statement; IDENT "and";
IDENT "consider" ; v=consider_vars -> Hprop st::v
| st=statement -> [Hprop st]
]]
;
assume_vars:
[[ name=hyp -> [Hvar name]
| name=hyp; ","; v=assume_vars -> (Hvar name) :: v
| name=hyp;
IDENT "such"; IDENT "that"; h=assume_hyps -> (Hvar name)::h
]]
;
assume_hyps:
[[ st=statement; IDENT "and"; h=assume_hyps -> Hprop st::h
| st=statement; IDENT "and";
IDENT "we"; IDENT "have" ; v=assume_vars -> Hprop st::v
| st=statement -> [Hprop st]
]]
;
assume_clause:
[[ IDENT "we" ; IDENT "have" ; v=assume_vars -> v
| h=assume_hyps -> h ]]
;
suff_vars:
[[ name=hyp; IDENT "to"; IDENT "show" ; c = constr_or_thesis ->
[Hvar name],c
| name=hyp; ","; v=suff_vars ->
let (q,c) = v in ((Hvar name) :: q),c
| name=hyp;
IDENT "such"; IDENT "that"; h=suff_hyps ->
let (q,c) = h in ((Hvar name) :: q),c
]];
suff_hyps:
[[ st=statement; IDENT "and"; h=suff_hyps ->
let (q,c) = h in (Hprop st::q),c
| st=statement; IDENT "and";
IDENT "to" ; IDENT "have" ; v=suff_vars ->
let (q,c) = v in (Hprop st::q),c
| st=statement; IDENT "to"; IDENT "show" ; c = constr_or_thesis ->
[Hprop st],c
]]
;
suff_clause:
[[ IDENT "to" ; IDENT "have" ; v=suff_vars -> v
| h=suff_hyps -> h ]]
;
let_vars:
[[ name=hyp -> [Hvar name]
| name=hyp; ","; v=let_vars -> (Hvar name) :: v
| name=hyp; IDENT "be";
IDENT "such"; IDENT "that"; h=let_hyps -> (Hvar name)::h
]]
;
let_hyps:
[[ st=statement; IDENT "and"; h=let_hyps -> Hprop st::h
| st=statement; IDENT "and"; "let"; v=let_vars -> Hprop st::v
| st=statement -> [Hprop st]
]];
given_vars:
[[ name=hyp -> [Hvar name]
| name=hyp; ","; v=given_vars -> (Hvar name) :: v
| name=hyp; IDENT "such"; IDENT "that"; h=given_hyps -> (Hvar name)::h
]]
;
given_hyps:
[[ st=statement; IDENT "and"; h=given_hyps -> Hprop st::h
| st=statement; IDENT "and"; IDENT "given"; v=given_vars -> Hprop st::v
| st=statement -> [Hprop st]
]];
suppose_vars:
[[name=hyp -> [Hvar name]
|name=hyp; ","; v=suppose_vars -> (Hvar name) :: v
|name=hyp; OPT[IDENT "be"];
IDENT "such"; IDENT "that"; h=suppose_hyps -> (Hvar name)::h
]]
;
suppose_hyps:
[[ st=statement_or_thesis; IDENT "and"; h=suppose_hyps -> Hprop st::h
| st=statement_or_thesis; IDENT "and"; IDENT "we"; IDENT "have";
v=suppose_vars -> Hprop st::v
| st=statement_or_thesis -> [Hprop st]
]]
;
suppose_clause:
[[ IDENT "we"; IDENT "have"; v=suppose_vars -> v;
| h=suppose_hyps -> h ]]
;
intro_step:
[[ IDENT "suppose" ; h=assume_clause -> Psuppose h
| IDENT "suppose" ; IDENT "it"; IDENT "is" ; c=pattern LEVEL "0" ;
po=OPT[ "with"; p=LIST1 hyp SEP ","-> p ] ;
ho=OPT[ IDENT "and" ; h=suppose_clause -> h ] ->
Pcase (none_is_empty po,c,none_is_empty ho)
| "let" ; v=let_vars -> Plet v
| IDENT "take"; witnesses = LIST1 constr SEP "," -> Ptake witnesses
| IDENT "assume"; h=assume_clause -> Passume h
| IDENT "given"; h=given_vars -> Pgiven h
| IDENT "define"; id=ident; args=LIST0 hyp;
"as"; body=constr -> Pdefine(id,args,body)
| IDENT "reconsider"; id=ident; "as" ; typ=constr -> Pcast (This id,typ)
| IDENT "reconsider"; t=thesis; "as" ; typ=constr -> Pcast (Thesis t ,typ)
]]
;
emphasis :
[[ -> 0
| "*" -> 1
| "**" -> 2
| "***" -> 3
]]
;
bare_proof_instr:
[[ c = cut_step -> c ;
| i = intro_step -> i ]]
;
proof_instr :
[[ e=emphasis;i=bare_proof_instr;"." -> {emph=e;instr=i}]]
;
END;;
|