1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
|
Require Import Bool PArith DecidableClass Omega ROmega.
Ltac bool :=
repeat match goal with
| [ H : ?P && ?Q = true |- _ ] =>
apply andb_true_iff in H; destruct H
| |- ?P && ?Q = true =>
apply <- andb_true_iff; split
end.
Arguments decide P /H.
Hint Extern 5 => progress bool.
Ltac define t x H :=
set (x := t) in *; assert (H : t = x) by reflexivity; clearbody x.
Lemma Decidable_sound : forall P (H : Decidable P),
decide P = true -> P.
Proof.
intros P H Hp; apply -> Decidable_spec; assumption.
Qed.
Lemma Decidable_complete : forall P (H : Decidable P),
P -> decide P = true.
Proof.
intros P H Hp; apply <- Decidable_spec; assumption.
Qed.
Lemma Decidable_sound_alt : forall P (H : Decidable P),
~ P -> decide P = false.
Proof.
intros P [wit spec] Hd; destruct wit; simpl; tauto.
Qed.
Lemma Decidable_complete_alt : forall P (H : Decidable P),
decide P = false -> ~ P.
Proof.
intros P [wit spec] Hd Hc; simpl in *; intuition congruence.
Qed.
Ltac try_rewrite :=
repeat match goal with
| [ H : ?P |- _ ] => rewrite H
end.
(* We opacify here decide for proofs, and will make it transparent for
reflexive tactics later on. *)
Global Opaque decide.
Ltac tac_decide :=
match goal with
| [ H : @decide ?P ?D = true |- _ ] => apply (@Decidable_sound P D) in H
| [ H : @decide ?P ?D = false |- _ ] => apply (@Decidable_complete_alt P D) in H
| [ |- @decide ?P ?D = true ] => apply (@Decidable_complete P D)
| [ |- @decide ?P ?D = false ] => apply (@Decidable_sound_alt P D)
| [ |- negb ?b = true ] => apply negb_true_iff
| [ |- negb ?b = false ] => apply negb_false_iff
| [ H : negb ?b = true |- _ ] => apply negb_true_iff in H
| [ H : negb ?b = false |- _ ] => apply negb_false_iff in H
end.
Ltac try_decide := repeat tac_decide.
Ltac make_decide P := match goal with
| [ |- context [@decide P ?D] ] =>
let b := fresh "b" in
let H := fresh "H" in
define (@decide P D) b H; destruct b; try_decide
| [ X : context [@decide P ?D] |- _ ] =>
let b := fresh "b" in
let H := fresh "H" in
define (@decide P D) b H; destruct b; try_decide
end.
Ltac case_decide := match goal with
| [ |- context [@decide ?P ?D] ] =>
let b := fresh "b" in
let H := fresh "H" in
define (@decide P D) b H; destruct b; try_decide
| [ X : context [@decide ?P ?D] |- _ ] =>
let b := fresh "b" in
let H := fresh "H" in
define (@decide P D) b H; destruct b; try_decide
| [ |- context [Pos.compare ?x ?y] ] =>
destruct (Pos.compare_spec x y); try (exfalso; zify; romega)
| [ X : context [Pos.compare ?x ?y] |- _ ] =>
destruct (Pos.compare_spec x y); try (exfalso; zify; romega)
end.
Section Definitions.
(** * Global, inductive definitions. *)
(** A Horner polynomial is either a constant, or a product P × (i + Q), where i
is a variable. *)
Inductive poly :=
| Cst : bool -> poly
| Poly : poly -> positive -> poly -> poly.
(* TODO: We should use [positive] instead of [nat] to encode variables, for
efficiency purpose. *)
Inductive null : poly -> Prop :=
| null_intro : null (Cst false).
(** Polynomials satisfy a uniqueness condition whenever they are valid. A
polynomial [p] satisfies [valid n p] whenever it is well-formed and each of
its variable indices is < [n]. *)
Inductive valid : positive -> poly -> Prop :=
| valid_cst : forall k c, valid k (Cst c)
| valid_poly : forall k p i q,
Pos.lt i k -> ~ null q -> valid i p -> valid (Pos.succ i) q -> valid k (Poly p i q).
(** Linear polynomials are valid polynomials in which every variable appears at
most once. *)
Inductive linear : positive -> poly -> Prop :=
| linear_cst : forall k c, linear k (Cst c)
| linear_poly : forall k p i q, Pos.lt i k -> ~ null q ->
linear i p -> linear i q -> linear k (Poly p i q).
End Definitions.
Section Computational.
Program Instance Decidable_PosEq : forall (p q : positive), Decidable (p = q) :=
{ Decidable_witness := Pos.eqb p q }.
Next Obligation.
apply Pos.eqb_eq.
Qed.
Program Instance Decidable_PosLt : forall p q, Decidable (Pos.lt p q) :=
{ Decidable_witness := Pos.ltb p q }.
Next Obligation.
apply Pos.ltb_lt.
Qed.
Program Instance Decidable_PosLe : forall p q, Decidable (Pos.le p q) :=
{ Decidable_witness := Pos.leb p q }.
Next Obligation.
apply Pos.leb_le.
Qed.
(** * The core reflexive part. *)
Hint Constructors valid.
Fixpoint beq_poly pl pr :=
match pl with
| Cst cl =>
match pr with
| Cst cr => decide (cl = cr)
| Poly _ _ _ => false
end
| Poly pl il ql =>
match pr with
| Cst _ => false
| Poly pr ir qr =>
decide (il = ir) && beq_poly pl pr && beq_poly ql qr
end
end.
(* We could do that with [decide equality] but dependency in proofs is heavy *)
Program Instance Decidable_eq_poly : forall (p q : poly), Decidable (eq p q) := {
Decidable_witness := beq_poly p q
}.
Next Obligation.
split.
revert q; induction p; intros [] ?; simpl in *; bool; try_decide;
f_equal; first [intuition congruence|auto].
revert q; induction p; intros [] Heq; simpl in *; bool; try_decide; intuition;
try injection Heq; first[congruence|intuition].
Qed.
Program Instance Decidable_null : forall p, Decidable (null p) := {
Decidable_witness := match p with Cst false => true | _ => false end
}.
Next Obligation.
split.
destruct p as [[]|]; first [discriminate|constructor].
inversion 1; trivial.
Qed.
Definition list_nth {A} p (l : list A) def :=
Pos.peano_rect (fun _ => list A -> A)
(fun l => match l with nil => def | cons t l => t end)
(fun _ F l => match l with nil => def | cons t l => F l end) p l.
Fixpoint eval var (p : poly) :=
match p with
| Cst c => c
| Poly p i q =>
let vi := list_nth i var false in
xorb (eval var p) (andb vi (eval var q))
end.
Fixpoint valid_dec k p :=
match p with
| Cst c => true
| Poly p i q =>
negb (decide (null q)) && decide (i < k)%positive &&
valid_dec i p && valid_dec (Pos.succ i) q
end.
Program Instance Decidable_valid : forall n p, Decidable (valid n p) := {
Decidable_witness := valid_dec n p
}.
Next Obligation.
split.
revert n; induction p; unfold valid_dec in *; intuition; bool; try_decide; auto.
intros H; induction H; unfold valid_dec in *; bool; try_decide; auto.
Qed.
(** Basic algebra *)
(* Addition of polynomials *)
Fixpoint poly_add pl {struct pl} :=
match pl with
| Cst cl =>
fix F pr := match pr with
| Cst cr => Cst (xorb cl cr)
| Poly pr ir qr => Poly (F pr) ir qr
end
| Poly pl il ql =>
fix F pr {struct pr} := match pr with
| Cst cr => Poly (poly_add pl pr) il ql
| Poly pr ir qr =>
match Pos.compare il ir with
| Eq =>
let qs := poly_add ql qr in
(* Ensure validity *)
if decide (null qs) then poly_add pl pr
else Poly (poly_add pl pr) il qs
| Gt => Poly (poly_add pl (Poly pr ir qr)) il ql
| Lt => Poly (F pr) ir qr
end
end
end.
(* Multiply a polynomial by a constant *)
Fixpoint poly_mul_cst v p :=
match p with
| Cst c => Cst (andb c v)
| Poly p i q =>
let r := poly_mul_cst v q in
(* Ensure validity *)
if decide (null r) then poly_mul_cst v p
else Poly (poly_mul_cst v p) i r
end.
(* Multiply a polynomial by a monomial *)
Fixpoint poly_mul_mon k p :=
match p with
| Cst c =>
if decide (null p) then p
else Poly (Cst false) k p
| Poly p i q =>
if decide (i <= k)%positive then Poly (Cst false) k (Poly p i q)
else Poly (poly_mul_mon k p) i (poly_mul_mon k q)
end.
(* Multiplication of polynomials *)
Fixpoint poly_mul pl {struct pl} :=
match pl with
| Cst cl => poly_mul_cst cl
| Poly pl il ql =>
fun pr =>
(* Multiply by a factor *)
let qs := poly_mul ql pr in
(* Ensure validity *)
if decide (null qs) then poly_mul pl pr
else poly_add (poly_mul pl pr) (poly_mul_mon il qs)
end.
(** Quotienting a polynomial by the relation X_i^2 ~ X_i *)
(* Remove the multiple occurrences of monomials x_k *)
Fixpoint reduce_aux k p :=
match p with
| Cst c => Cst c
| Poly p i q =>
if decide (i = k) then poly_add (reduce_aux k p) (reduce_aux k q)
else
let qs := reduce_aux i q in
(* Ensure validity *)
if decide (null qs) then (reduce_aux k p)
else Poly (reduce_aux k p) i qs
end.
(* Rewrite any x_k ^ {n + 1} to x_k *)
Fixpoint reduce p :=
match p with
| Cst c => Cst c
| Poly p i q =>
let qs := reduce_aux i q in
(* Ensure validity *)
if decide (null qs) then reduce p
else Poly (reduce p) i qs
end.
End Computational.
Section Validity.
(* Decision procedure of validity *)
Hint Constructors valid linear.
Lemma valid_le_compat : forall k l p, valid k p -> (k <= l)%positive -> valid l p.
Proof.
intros k l p H Hl; induction H; constructor; eauto.
now eapply Pos.lt_le_trans; eassumption.
Qed.
Lemma linear_le_compat : forall k l p, linear k p -> (k <= l)%positive -> linear l p.
Proof.
intros k l p H; revert l; induction H; constructor; eauto; zify; romega.
Qed.
Lemma linear_valid_incl : forall k p, linear k p -> valid k p.
Proof.
intros k p H; induction H; constructor; auto.
eapply valid_le_compat; eauto; zify; romega.
Qed.
End Validity.
Section Evaluation.
(* Useful simple properties *)
Lemma eval_null_zero : forall p var, null p -> eval var p = false.
Proof.
intros p var []; reflexivity.
Qed.
Lemma eval_extensional_eq_compat : forall p var1 var2,
(forall x, list_nth x var1 false = list_nth x var2 false) -> eval var1 p = eval var2 p.
Proof.
intros p var1 var2 H; induction p; simpl; try_rewrite; auto.
Qed.
Lemma eval_suffix_compat : forall k p var1 var2,
(forall i, (i < k)%positive -> list_nth i var1 false = list_nth i var2 false) -> valid k p ->
eval var1 p = eval var2 p.
Proof.
intros k p var1 var2 Hvar Hv; revert var1 var2 Hvar.
induction Hv; intros var1 var2 Hvar; simpl; [now auto|].
rewrite Hvar; [|now auto]; erewrite (IHHv1 var1 var2).
+ erewrite (IHHv2 var1 var2); [ring|].
intros; apply Hvar; zify; omega.
+ intros; apply Hvar; zify; omega.
Qed.
End Evaluation.
Section Algebra.
(* Compatibility with evaluation *)
Lemma poly_add_compat : forall pl pr var, eval var (poly_add pl pr) = xorb (eval var pl) (eval var pr).
Proof.
intros pl; induction pl; intros pr var; simpl.
+ induction pr; simpl; auto; solve [try_rewrite; ring].
+ induction pr; simpl; auto; try solve [try_rewrite; simpl; ring].
destruct (Pos.compare_spec p p0); repeat case_decide; simpl; first [try_rewrite; ring|idtac].
try_rewrite; ring_simplify; repeat rewrite xorb_assoc.
match goal with [ |- context [xorb (andb ?b1 ?b2) (andb ?b1 ?b3)] ] =>
replace (xorb (andb b1 b2) (andb b1 b3)) with (andb b1 (xorb b2 b3)) by ring
end.
rewrite <- IHpl2.
match goal with [ H : null ?p |- _ ] => rewrite (eval_null_zero _ _ H) end; ring.
simpl; rewrite IHpl1; simpl; ring.
Qed.
Lemma poly_mul_cst_compat : forall v p var,
eval var (poly_mul_cst v p) = andb v (eval var p).
Proof.
intros v p; induction p; intros var; simpl; [ring|].
case_decide; simpl; try_rewrite; [ring_simplify|ring].
replace (v && list_nth p2 var false && eval var p3) with (list_nth p2 var false && (v && eval var p3)) by ring.
rewrite <- IHp2; inversion H; simpl; ring.
Qed.
Lemma poly_mul_mon_compat : forall i p var,
eval var (poly_mul_mon i p) = (list_nth i var false && eval var p).
Proof.
intros i p var; induction p; simpl; case_decide; simpl; try_rewrite; try ring.
inversion H; ring.
match goal with [ |- ?u = ?t ] => set (x := t); destruct x; reflexivity end.
match goal with [ |- ?u = ?t ] => set (x := t); destruct x; reflexivity end.
Qed.
Lemma poly_mul_compat : forall pl pr var, eval var (poly_mul pl pr) = andb (eval var pl) (eval var pr).
Proof.
intros pl; induction pl; intros pr var; simpl.
apply poly_mul_cst_compat.
case_decide; simpl.
rewrite IHpl1; ring_simplify.
replace (eval var pr && list_nth p var false && eval var pl2)
with (list_nth p var false && (eval var pl2 && eval var pr)) by ring.
now rewrite <- IHpl2; inversion H; simpl; ring.
rewrite poly_add_compat, poly_mul_mon_compat, IHpl1, IHpl2; ring.
Qed.
Hint Extern 5 =>
match goal with
| [ |- (Pos.max ?x ?y <= ?z)%positive ] =>
apply Pos.max_case_strong; intros; zify; romega
| [ |- (?z <= Pos.max ?x ?y)%positive ] =>
apply Pos.max_case_strong; intros; zify; romega
| [ |- (Pos.max ?x ?y < ?z)%positive ] =>
apply Pos.max_case_strong; intros; zify; romega
| [ |- (?z < Pos.max ?x ?y)%positive ] =>
apply Pos.max_case_strong; intros; zify; romega
| _ => zify; omega
end.
Hint Resolve Pos.le_max_r Pos.le_max_l.
Hint Constructors valid linear.
(* Compatibility of validity w.r.t algebraic operations *)
Lemma poly_add_valid_compat : forall kl kr pl pr, valid kl pl -> valid kr pr ->
valid (Pos.max kl kr) (poly_add pl pr).
Proof.
intros kl kr pl pr Hl Hr; revert kr pr Hr; induction Hl; intros kr pr Hr; simpl.
{ eapply valid_le_compat; [clear k|apply Pos.le_max_r].
now induction Hr; auto. }
{ assert (Hle : (Pos.max (Pos.succ i) kr <= Pos.max k kr)%positive) by auto.
apply (valid_le_compat (Pos.max (Pos.succ i) kr)); [|assumption].
clear - IHHl1 IHHl2 Hl2 Hr H0; induction Hr.
constructor; auto.
now rewrite <- (Pos.max_id i); intuition.
destruct (Pos.compare_spec i i0); subst; try case_decide; repeat (constructor; intuition).
+ apply (valid_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; auto.
+ apply (valid_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; zify; romega.
+ apply (valid_le_compat (Pos.max (Pos.succ i0) (Pos.succ i0))); [now auto|]; rewrite Pos.max_id; zify; romega.
+ apply (valid_le_compat (Pos.max (Pos.succ i) i0)); intuition.
+ apply (valid_le_compat (Pos.max i (Pos.succ i0))); intuition.
}
Qed.
Lemma poly_mul_cst_valid_compat : forall k v p, valid k p -> valid k (poly_mul_cst v p).
Proof.
intros k v p H; induction H; simpl; [now auto|].
case_decide; [|now auto].
eapply (valid_le_compat i); [now auto|zify; romega].
Qed.
Lemma poly_mul_mon_null_compat : forall i p, null (poly_mul_mon i p) -> null p.
Proof.
intros i p; induction p; simpl; case_decide; simpl; inversion 1; intuition.
Qed.
Lemma poly_mul_mon_valid_compat : forall k i p,
valid k p -> valid (Pos.max (Pos.succ i) k) (poly_mul_mon i p).
Proof.
intros k i p H; induction H; simpl poly_mul_mon; case_decide; intuition.
+ apply (valid_le_compat (Pos.succ i)); auto; constructor; intuition.
- match goal with [ H : null ?p |- _ ] => solve[inversion H] end.
+ apply (valid_le_compat k); auto; constructor; intuition.
- assert (X := poly_mul_mon_null_compat); intuition eauto.
- cutrewrite <- (Pos.max (Pos.succ i) i0 = i0); intuition.
- cutrewrite <- (Pos.max (Pos.succ i) (Pos.succ i0) = Pos.succ i0); intuition.
Qed.
Lemma poly_mul_valid_compat : forall kl kr pl pr, valid kl pl -> valid kr pr ->
valid (Pos.max kl kr) (poly_mul pl pr).
Proof.
intros kl kr pl pr Hl Hr; revert kr pr Hr.
induction Hl; intros kr pr Hr; simpl.
+ apply poly_mul_cst_valid_compat; auto.
apply (valid_le_compat kr); now auto.
+ apply (valid_le_compat (Pos.max (Pos.max i kr) (Pos.max (Pos.succ i) (Pos.max (Pos.succ i) kr)))).
- case_decide.
{ apply (valid_le_compat (Pos.max i kr)); auto. }
{ apply poly_add_valid_compat; auto.
now apply poly_mul_mon_valid_compat; intuition. }
- repeat apply Pos.max_case_strong; zify; omega.
Qed.
(* Compatibility of linearity wrt to linear operations *)
Lemma poly_add_linear_compat : forall kl kr pl pr, linear kl pl -> linear kr pr ->
linear (Pos.max kl kr) (poly_add pl pr).
Proof.
intros kl kr pl pr Hl; revert kr pr; induction Hl; intros kr pr Hr; simpl.
+ apply (linear_le_compat kr); [|apply Pos.max_case_strong; zify; omega].
now induction Hr; constructor; auto.
+ apply (linear_le_compat (Pos.max kr (Pos.succ i))); [|now auto].
induction Hr; simpl.
- constructor; auto.
replace i with (Pos.max i i) by (apply Pos.max_id); intuition.
- destruct (Pos.compare_spec i i0); subst; try case_decide; repeat (constructor; intuition).
{ apply (linear_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; auto. }
{ apply (linear_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; auto. }
{ apply (linear_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; auto. }
{ apply (linear_le_compat (Pos.max i0 (Pos.succ i))); intuition. }
{ apply (linear_le_compat (Pos.max i (Pos.succ i0))); intuition. }
Qed.
End Algebra.
Section Reduce.
(* A stronger version of the next lemma *)
Lemma reduce_aux_eval_compat : forall k p var, valid (Pos.succ k) p ->
(list_nth k var false && eval var (reduce_aux k p) = list_nth k var false && eval var p).
Proof.
intros k p var; revert k; induction p; intros k Hv; simpl; auto.
inversion Hv; case_decide; subst.
+ rewrite poly_add_compat; ring_simplify.
specialize (IHp1 k); specialize (IHp2 k).
destruct (list_nth k var false); ring_simplify; [|now auto].
rewrite <- (andb_true_l (eval var p1)), <- (andb_true_l (eval var p3)).
rewrite <- IHp2; auto; rewrite <- IHp1; [ring|].
apply (valid_le_compat k); [now auto|zify; omega].
+ remember (list_nth k var false) as b; destruct b; ring_simplify; [|now auto].
case_decide; simpl.
- rewrite <- (IHp2 p2); [inversion H|now auto]; simpl.
replace (eval var p1) with (list_nth k var false && eval var p1) by (rewrite <- Heqb; ring); rewrite <- (IHp1 k).
{ rewrite <- Heqb; ring. }
{ apply (valid_le_compat p2); [auto|zify; omega]. }
- rewrite (IHp2 p2); [|now auto].
replace (eval var p1) with (list_nth k var false && eval var p1) by (rewrite <- Heqb; ring).
rewrite <- (IHp1 k); [rewrite <- Heqb; ring|].
apply (valid_le_compat p2); [auto|zify; omega].
Qed.
(* Reduction preserves evaluation by boolean assignations *)
Lemma reduce_eval_compat : forall k p var, valid k p ->
eval var (reduce p) = eval var p.
Proof.
intros k p var H; induction H; simpl; auto.
case_decide; try_rewrite; simpl.
+ rewrite <- reduce_aux_eval_compat; auto; inversion H3; simpl; ring.
+ repeat rewrite reduce_aux_eval_compat; try_rewrite; now auto.
Qed.
Lemma reduce_aux_le_compat : forall k l p, valid k p -> (k <= l)%positive ->
reduce_aux l p = reduce_aux k p.
Proof.
intros k l p; revert k l; induction p; intros k l H Hle; simpl; auto.
inversion H; subst; repeat case_decide; subst; try (exfalso; zify; omega).
+ apply IHp1; [|now auto]; eapply valid_le_compat; [eauto|zify; omega].
+ f_equal; apply IHp1; auto.
now eapply valid_le_compat; [eauto|zify; omega].
Qed.
(* Reduce projects valid polynomials into linear ones *)
Lemma linear_reduce_aux : forall i p, valid (Pos.succ i) p -> linear i (reduce_aux i p).
Proof.
intros i p; revert i; induction p; intros i Hp; simpl.
+ constructor.
+ inversion Hp; subst; case_decide; subst.
- rewrite <- (Pos.max_id i) at 1; apply poly_add_linear_compat.
{ apply IHp1; eapply valid_le_compat; [eassumption|zify; omega]. }
{ intuition. }
- case_decide.
{ apply IHp1; eapply valid_le_compat; [eauto|zify; omega]. }
{ constructor; try (zify; omega); auto.
erewrite (reduce_aux_le_compat p2); [|assumption|zify; omega].
apply IHp1; eapply valid_le_compat; [eauto|]; zify; omega. }
Qed.
Lemma linear_reduce : forall k p, valid k p -> linear k (reduce p).
Proof.
intros k p H; induction H; simpl.
+ now constructor.
+ case_decide.
- eapply linear_le_compat; [eauto|zify; omega].
- constructor; auto.
apply linear_reduce_aux; auto.
Qed.
End Reduce.
|