aboutsummaryrefslogtreecommitdiffhomepage
path: root/parsing/pcoq.ml
blob: 305cd4f80f5d331d74dbdc13d288179a96782532 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

open Pp
open Compat
open Errors
open Util
open Extend
open Genarg

(** The parser of Coq *)

module G = GrammarMake (CLexer)

let warning_verbose = Compat.warning_verbose

let of_coq_assoc = function
| Extend.RightA -> CompatGramext.RightA
| Extend.LeftA -> CompatGramext.LeftA
| Extend.NonA -> CompatGramext.NonA

let of_coq_position = function
| Extend.First -> CompatGramext.First
| Extend.Last -> CompatGramext.Last
| Extend.Before s -> CompatGramext.Before s
| Extend.After s -> CompatGramext.After s
| Extend.Level s -> CompatGramext.Level s

module Symbols = GramextMake(G)

let camlp4_verbosity silent f x =
  let a = !warning_verbose in
  warning_verbose := silent;
  f x;
  warning_verbose := a

let camlp4_verbose f x = camlp4_verbosity (Flags.is_verbose ()) f x


(** [grammar_object] is the superclass of all grammar entries *)

module type Gramobj =
sig
  type grammar_object
  val weaken_entry : 'a G.entry -> grammar_object G.entry
end

module Gramobj : Gramobj =
struct
  type grammar_object = Obj.t
  let weaken_entry e = Obj.magic e
end

(** Grammar entries with associated types *)

type grammar_object = Gramobj.grammar_object
let weaken_entry x = Gramobj.weaken_entry x

(** Grammar extensions *)

(** NB: [extend_statment =
         gram_position option * single_extend_statment list]
    and [single_extend_statment =
         string option * gram_assoc option * production_rule list]
    and [production_rule = symbol list * action]

    In [single_extend_statement], first two parameters are name and
    assoc iff a level is created *)

(** Type of reinitialization data *)
type gram_reinit = gram_assoc * gram_position

type ext_kind =
  | ByGrammar of
      grammar_object G.entry
      * gram_reinit option (** for reinitialization if ever needed *)
      * G.extend_statment
  | ByEXTEND of (unit -> unit) * (unit -> unit)

(** The list of extensions *)

let camlp4_state = ref []

(** Deletion *)

let grammar_delete e reinit (pos,rls) =
  List.iter
    (fun (n,ass,lev) ->
      List.iter (fun (pil,_) -> G.delete_rule e pil) (List.rev lev))
    (List.rev rls);
  match reinit with
  | Some (a,ext) ->
    let a = of_coq_assoc a in
    let ext = of_coq_position ext in
    let lev = match pos with
    | Some (CompatGramext.Level n) -> n
    | _ -> assert false
    in
    maybe_uncurry (G.extend e) (Some ext, [Some lev,Some a,[]])
  | None -> ()

(** The apparent parser of Coq; encapsulate G to keep track
    of the extensions. *)

module Gram =
  struct
    include G
    let extend e =
      maybe_curry
	(fun ext ->
	   camlp4_state :=
	     (ByEXTEND ((fun () -> grammar_delete e None ext),
			(fun () -> maybe_uncurry (G.extend e) ext)))
	   :: !camlp4_state;
	   maybe_uncurry (G.extend e) ext)
    let delete_rule e pil =
      (* spiwack: if you use load an ML module which contains GDELETE_RULE
	  in a section, God kills a kitty. As it would corrupt remove_grammars.
          There does not seem to be a good way to undo a delete rule. As deleting
	  takes fewer arguments than extending. The production rule isn't returned
	  by delete_rule. If we could retrieve the necessary information, then
	  ByEXTEND provides just the framework we need to allow this in section.
	  I'm not entirely sure it makes sense, but at least it would be more correct.
          *)
      G.delete_rule e pil
  end

(** This extension command is used by the Grammar constr *)

let unsafe_grammar_extend e reinit (pos, st) =
  let map_s (lvl, assoc, rule) = (lvl, Option.map of_coq_assoc assoc, rule) in
  let ext =  (Option.map of_coq_position pos, List.map map_s st) in
  camlp4_state := ByGrammar (weaken_entry e,reinit,ext) :: !camlp4_state;
  camlp4_verbose (maybe_uncurry (G.extend e)) ext

(** Remove extensions

   [n] is the number of extended entries (not the number of Grammar commands!)
   to remove. *)

let rec remove_grammars n =
  if n>0 then
    (match !camlp4_state with
       | [] -> anomaly ~label:"Pcoq.remove_grammars" (Pp.str "too many rules to remove")
       | ByGrammar(g,reinit,ext)::t ->
           grammar_delete g reinit ext;
           camlp4_state := t;
           remove_grammars (n-1)
       | ByEXTEND (undo,redo)::t ->
           undo();
           camlp4_state := t;
           remove_grammars n;
           redo();
           camlp4_state := ByEXTEND (undo,redo) :: !camlp4_state)

let make_rule r = [None, None, r]

(** An entry that checks we reached the end of the input. *)

let eoi_entry en =
  let e = Gram.entry_create ((Gram.Entry.name en) ^ "_eoi") in
  let symbs = [Symbols.snterm (Gram.Entry.obj en); Symbols.stoken Tok.EOI] in
  let act = Gram.action (fun _ x loc -> x) in
  maybe_uncurry (Gram.extend e) (None, make_rule [symbs, act]);
  e

let map_entry f en =
  let e = Gram.entry_create ((Gram.Entry.name en) ^ "_map") in
  let symbs = [Symbols.snterm (Gram.Entry.obj en)] in
  let act = Gram.action (fun x loc -> f x) in
  maybe_uncurry (Gram.extend e) (None, make_rule [symbs, act]);
  e

(* Parse a string, does NOT check if the entire string was read
   (use eoi_entry) *)

let parse_string f x =
  let strm = Stream.of_string x in Gram.entry_parse f (Gram.parsable strm)

type gram_universe = string

let utables : (string, unit) Hashtbl.t =
  Hashtbl.create 97

let create_universe u =
  let () = Hashtbl.add utables u () in
  u

let uprim   = create_universe "prim"
let uconstr = create_universe "constr"
let utactic = create_universe "tactic"
let uvernac = create_universe "vernac"

let get_univ u =
  if Hashtbl.mem utables u then u
  else raise Not_found

let new_entry u s =
  let ename = u ^ ":" ^ s in
  let e = Gram.entry_create ename in
  e

let make_gen_entry u s = new_entry u s

module GrammarObj =
struct
  type ('r, _, _) obj = 'r Gram.entry
  let name = "grammar"
  let default _ = None
end

module Grammar = Register(GrammarObj)

let register_grammar = Grammar.register0
let genarg_grammar = Grammar.obj

let create_generic_entry (type a) u s (etyp : a raw_abstract_argument_type) : a Gram.entry =
  let e = new_entry u s in
  let Rawwit t = etyp in
  let () = Grammar.register0 t e in
  e

(* Initial grammar entries *)

module Prim =
  struct
    let gec_gen n = make_gen_entry uprim n

    (* Entries that can be referred via the string -> Gram.entry table *)
    (* Typically for tactic or vernac extensions *)
    let preident = gec_gen "preident"
    let ident = gec_gen "ident"
    let natural = gec_gen "natural"
    let index = gec_gen "index"
    let integer = gec_gen "integer"
    let bigint = Gram.entry_create "Prim.bigint"
    let string = gec_gen "string"
    let reference = make_gen_entry uprim "reference"
    let by_notation = Gram.entry_create "by_notation"
    let smart_global = Gram.entry_create "smart_global"

    (* parsed like ident but interpreted as a term *)
    let var = gec_gen "var"

    let name = Gram.entry_create "Prim.name"
    let identref = Gram.entry_create "Prim.identref"
    let pidentref = Gram.entry_create "Prim.pidentref"
    let pattern_ident = Gram.entry_create "pattern_ident"
    let pattern_identref = Gram.entry_create "pattern_identref"

    (* A synonym of ident - maybe ident will be located one day *)
    let base_ident = Gram.entry_create "Prim.base_ident"

    let qualid = Gram.entry_create "Prim.qualid"
    let fullyqualid = Gram.entry_create "Prim.fullyqualid"
    let dirpath = Gram.entry_create "Prim.dirpath"

    let ne_string = Gram.entry_create "Prim.ne_string"
    let ne_lstring = Gram.entry_create "Prim.ne_lstring"

  end

module Constr =
  struct
    let gec_constr = make_gen_entry uconstr

    (* Entries that can be referred via the string -> Gram.entry table *)
    let constr = gec_constr "constr"
    let operconstr = gec_constr "operconstr"
    let constr_eoi = eoi_entry constr
    let lconstr = gec_constr "lconstr"
    let binder_constr = gec_constr "binder_constr"
    let ident = make_gen_entry uconstr "ident"
    let global = make_gen_entry uconstr "global"
    let sort = make_gen_entry uconstr "sort"
    let pattern = Gram.entry_create "constr:pattern"
    let constr_pattern = gec_constr "constr_pattern"
    let lconstr_pattern = gec_constr "lconstr_pattern"
    let closed_binder = Gram.entry_create "constr:closed_binder"
    let binder = Gram.entry_create "constr:binder"
    let binders = Gram.entry_create "constr:binders"
    let open_binders = Gram.entry_create "constr:open_binders"
    let binders_fixannot = Gram.entry_create "constr:binders_fixannot"
    let typeclass_constraint = Gram.entry_create "constr:typeclass_constraint"
    let record_declaration = Gram.entry_create "constr:record_declaration"
    let appl_arg = Gram.entry_create "constr:appl_arg"
  end

module Module =
  struct
    let module_expr = Gram.entry_create "module_expr"
    let module_type = Gram.entry_create "module_type"
  end

module Tactic =
  struct
    (* Main entry for extensions *)
    let simple_tactic = Gram.entry_create "tactic:simple_tactic"

    (* Entries that can be referred via the string -> Gram.entry table *)
    (* Typically for tactic user extensions *)
    let open_constr =
      make_gen_entry utactic "open_constr"
    let constr_with_bindings =
      make_gen_entry utactic "constr_with_bindings"
    let bindings =
      make_gen_entry utactic "bindings"
    let hypident = Gram.entry_create "hypident"
    let constr_may_eval = make_gen_entry utactic "constr_may_eval"
    let constr_eval = make_gen_entry utactic "constr_eval"
    let uconstr =
      make_gen_entry utactic "uconstr"
    let quantified_hypothesis =
      make_gen_entry utactic "quantified_hypothesis"
    let int_or_var = make_gen_entry utactic "int_or_var"
    let red_expr = make_gen_entry utactic "red_expr"
    let simple_intropattern =
      make_gen_entry utactic "simple_intropattern"
    let clause_dft_concl = 
      make_gen_entry utactic "clause"


    (* Main entries for ltac *)
    let tactic_arg = Gram.entry_create "tactic:tactic_arg"
    let tactic_expr = make_gen_entry utactic "tactic_expr"
    let binder_tactic = make_gen_entry utactic "binder_tactic"

    let tactic = make_gen_entry utactic "tactic"

    (* Main entry for quotations *)
    let tactic_eoi = eoi_entry tactic

  end

module Vernac_ =
  struct
    let gec_vernac s = Gram.entry_create ("vernac:" ^ s)

    (* The different kinds of vernacular commands *)
    let gallina = gec_vernac "gallina"
    let gallina_ext = gec_vernac "gallina_ext"
    let command = gec_vernac "command"
    let syntax = gec_vernac "syntax_command"
    let vernac = gec_vernac "Vernac.vernac"
    let vernac_eoi = eoi_entry vernac
    let rec_definition = gec_vernac "Vernac.rec_definition"
    (* Main vernac entry *)
    let main_entry = Gram.entry_create "vernac"
    let noedit_mode = gec_vernac "noedit_command"

    let () =
      let act_vernac = Gram.action (fun v loc -> Some (!@loc, v)) in
      let act_eoi = Gram.action (fun _ loc -> None) in
      let rule = [
        ([ Symbols.stoken Tok.EOI ], act_eoi);
        ([ Symbols.snterm (Gram.Entry.obj vernac) ], act_vernac );
      ] in
      maybe_uncurry (Gram.extend main_entry) (None, make_rule rule)

    let command_entry_ref = ref noedit_mode
    let command_entry =
      Gram.Entry.of_parser "command_entry"
        (fun strm -> Gram.parse_tokens_after_filter !command_entry_ref strm)

  end

let main_entry = Vernac_.main_entry

let set_command_entry e = Vernac_.command_entry_ref := e
let get_command_entry () = !Vernac_.command_entry_ref

(**********************************************************************)
(* This determines (depending on the associativity of the current
   level and on the expected associativity) if a reference to constr_n is
   a reference to the current level (to be translated into "SELF" on the
   left border and into "constr LEVEL n" elsewhere), to the level below
   (to be translated into "NEXT") or to an below wrt associativity (to be
   translated in camlp4 into "constr" without level) or to another level
   (to be translated into "constr LEVEL n")

   The boolean is true if the entry was existing _and_ empty; this to
   circumvent a weakness of camlp4/camlp5 whose undo mechanism is not the
   converse of the extension mechanism *)

let constr_level = string_of_int

let default_levels =
  [200,Extend.RightA,false;
   100,Extend.RightA,false;
   99,Extend.RightA,true;
   10,Extend.RightA,false;
   9,Extend.RightA,false;
   8,Extend.RightA,true;
   1,Extend.LeftA,false;
   0,Extend.RightA,false]

let default_pattern_levels =
  [200,Extend.RightA,true;
   100,Extend.RightA,false;
   99,Extend.RightA,true;
   11,Extend.LeftA,false;
   10,Extend.RightA,false;
   1,Extend.LeftA,false;
   0,Extend.RightA,false]

(* At a same level, LeftA takes precedence over RightA and NoneA *)
(* In case, several associativity exists for a level, we make two levels, *)
(* first LeftA, then RightA and NoneA together *)

let admissible_assoc = function
  | Extend.LeftA, Some (Extend.RightA | Extend.NonA) -> false
  | Extend.RightA, Some Extend.LeftA -> false
  | _ -> true

let create_assoc = function
  | None -> Extend.RightA
  | Some a -> a

let error_level_assoc p current expected =
  let pr_assoc = function
    | Extend.LeftA -> str "left"
    | Extend.RightA -> str "right"
    | Extend.NonA -> str "non" in
  errorlabstrm ""
    (str "Level " ++ int p ++ str " is already declared " ++
     pr_assoc current ++ str " associative while it is now expected to be " ++
     pr_assoc expected ++ str " associative.")

let create_pos = function
  | None -> Extend.First
  | Some lev -> Extend.After (constr_level lev)

let find_position_gen current ensure assoc lev =
  match lev with
  | None ->
      current, (None, None, None, None)
  | Some n ->
      let after = ref None in
      let init = ref None in
      let rec add_level q = function
        | (p,_,_ as pa)::l when p > n -> pa :: add_level (Some p) l
        | (p,a,reinit)::l when Int.equal p n ->
            if reinit then
	      let a' = create_assoc assoc in
              (init := Some (a',create_pos q); (p,a',false)::l)
	    else if admissible_assoc (a,assoc) then
	      raise Exit
            else
	      error_level_assoc p a (Option.get assoc)
	| l -> after := q; (n,create_assoc assoc,ensure)::l
      in
      try
	let updated = add_level None current in
	let assoc = create_assoc assoc in
        begin match !init with
        | None ->
	  (* Create the entry *)
	   updated, (Some (create_pos !after), Some assoc, Some (constr_level n), None)
        | _ ->
	  (* The reinit flag has been updated *)
	   updated, (Some (Extend.Level (constr_level n)), None, None, !init)
        end
      with
	  (* Nothing has changed *)
          Exit ->
	    (* Just inherit the existing associativity and name (None) *)
	    current, (Some (Extend.Level (constr_level n)), None, None, None)

let level_stack =
  ref [(default_levels, default_pattern_levels)]

let remove_levels n =
  level_stack := List.skipn n !level_stack

let rec list_mem_assoc_triple x = function
  | [] -> false
  | (a,b,c) :: l -> Int.equal a x || list_mem_assoc_triple x l

type gram_level =
  gram_position option * gram_assoc option * string option *
  (** for reinitialization: *) gram_reinit option

let top = function
| [] -> assert false
| h :: _ -> h

let register_empty_levels forpat levels =
  let rec filter accu = function
  | [] -> ([], accu)
  | n :: rem ->
    let rem, accu = filter accu rem in
    let (clev, plev) = top accu in
    let levels = if forpat then plev else clev in
    if not (list_mem_assoc_triple n levels) then
      let nlev, ans = find_position_gen levels true None (Some n) in
      let nlev = if forpat then (clev, nlev) else (nlev, plev) in
      ans :: rem, nlev :: accu
    else rem, accu
  in
  let ans, accu = filter !level_stack levels in
  let () = level_stack := accu in
  ans

let find_position forpat assoc level =
  let (clev, plev) = top !level_stack in
  let levels = if forpat then plev else clev in
  let nlev, ans = find_position_gen levels false assoc level in
  let nlev = if forpat then (clev, nlev) else (nlev, plev) in
  level_stack := nlev :: !level_stack;
  ans

(* Synchronise the stack of level updates *)
let synchronize_level_positions () =
  let lev = top !level_stack in
  level_stack := lev :: !level_stack

(** Binding general entry keys to symbol *)

let rec of_coq_action : type a r. (r, a, Loc.t -> r) Extend.rule -> a -> Gram.action = function
| Stop -> fun f -> Gram.action (fun loc -> f (to_coqloc loc))
| Next (r, _) -> fun f -> Gram.action (fun x -> of_coq_action r (f x))

let rec symbol_of_prod_entry_key : type s a. (s, a) symbol -> _ = function
  | Atoken t -> Symbols.stoken t
  | Alist1 s -> Symbols.slist1 (symbol_of_prod_entry_key s)
  | Alist1sep (s,sep) ->
      Symbols.slist1sep (symbol_of_prod_entry_key s, symbol_of_prod_entry_key sep)
  | Alist0 s -> Symbols.slist0 (symbol_of_prod_entry_key s)
  | Alist0sep (s,sep) ->
      Symbols.slist0sep (symbol_of_prod_entry_key s, symbol_of_prod_entry_key sep)
  | Aopt s -> Symbols.sopt (symbol_of_prod_entry_key s)
  | Aself -> Symbols.sself
  | Anext -> Symbols.snext
  | Aentry e ->
    Symbols.snterm (Gram.Entry.obj (weaken_entry e))
  | Aentryl (e, n) ->
    Symbols.snterml (Gram.Entry.obj (weaken_entry e), string_of_int n)
  | Arules rs ->
    Gram.srules' (List.map symbol_of_rules rs)

and symbol_of_rule : type s a r. (s, a, r) Extend.rule -> _ = function
| Stop -> fun accu -> accu
| Next (r, s) -> fun accu -> symbol_of_rule r (symbol_of_prod_entry_key s :: accu)

and symbol_of_rules : type a. a Extend.rules -> _ = function
| Rules (r, act) ->
  let symb = symbol_of_rule r.norec_rule [] in
  let act = of_coq_action r.norec_rule act in
  (symb, act)

let of_coq_production_rule : type a. a Extend.production_rule -> _ = function
| Rule (toks, act) -> (symbol_of_rule toks [], of_coq_action toks act)

let of_coq_single_extend_statement (lvl, assoc, rule) =
  (lvl, assoc, List.map of_coq_production_rule rule)

let of_coq_extend_statement (pos, st) =
  (pos, List.map of_coq_single_extend_statement st)

let grammar_extend e reinit ext =
  let ext = of_coq_extend_statement ext in
  unsafe_grammar_extend e reinit ext

let list_entry_names () = []

let epsilon_value f e =
  let r = Rule (Next (Stop, e), fun x _ -> f x) in
  let ext = of_coq_extend_statement (None, [None, None, [r]]) in
  let entry = G.entry_create "epsilon" in
  let () = maybe_uncurry (G.extend entry) ext in
  try Some (parse_string entry "") with _ -> None

(** Registering grammar of generic arguments *)

let () =
  let open Stdarg in
  let open Constrarg in
(*   Grammar.register0 wit_unit; *)
(*   Grammar.register0 wit_bool; *)
  Grammar.register0 wit_int (Prim.integer);
  Grammar.register0 wit_string (Prim.string);
  Grammar.register0 wit_pre_ident (Prim.preident);
  Grammar.register0 wit_int_or_var (Tactic.int_or_var);
  Grammar.register0 wit_intro_pattern (Tactic.simple_intropattern);
  Grammar.register0 wit_ident (Prim.ident);
  Grammar.register0 wit_var (Prim.var);
  Grammar.register0 wit_ref (Prim.reference);
  Grammar.register0 wit_quant_hyp (Tactic.quantified_hypothesis);
  Grammar.register0 wit_constr (Constr.constr);
  Grammar.register0 wit_uconstr (Tactic.uconstr);
  Grammar.register0 wit_open_constr (Tactic.open_constr);
  Grammar.register0 wit_constr_with_bindings (Tactic.constr_with_bindings);
  Grammar.register0 wit_bindings (Tactic.bindings);
(*   Grammar.register0 wit_hyp_location_flag; *)
  Grammar.register0 wit_red_expr (Tactic.red_expr);
  Grammar.register0 wit_tactic (Tactic.tactic);
  Grammar.register0 wit_ltac (Tactic.tactic);
  Grammar.register0 wit_clause_dft_concl (Tactic.clause_dft_concl);
  ()